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ABSTRACT 

Large-scale re-engineering of synonymous sites is a promising strategy to generate 

attenuated viruses for vaccines. Attenuation typically relies on de-optimisation of codon 

pairs and maximization of CpG dinculeotide frequencies. So as to formulate 

evolutionarily-informed attenuation strategies, that aim to force nucleotide usage against 

the estimated direction favoured by selection, here we examine available whole-genome 

sequences of SARS-CoV2 to infer patterns of mutation and selection on synonymous sites. 

Analysis of mutational profiles indicates a strong mutation bias towards T with 

concomitant selection against T. Accounting for dinucleotide effects reinforces this 

conclusion, observed TT content being a quarter of that expected under neutrality. A 

significantly different mutational profile at CDS sites that are not 4-fold degenerate is 

consistent with contemporaneous selection against T mutations more widely.  Although 

selection against CpG dinucleotides is expected to drive synonymous site G+C content 

below mutational equilibrium, observed G+C content is slightly above equilibrium, 

possibly because of selection for higher expression. Consistent with gene-specific 

selection against CpG dinucleotides, we observe systematic differences of CpG content 

between SARS-CoV2 genes. We propose an evolutionarily informed gene-bespoke 

approach to attenuation that, unusually, seeks to increase usage of the already most 

common synonymous codons. Comparable analysis of H1N1 and Ebola finds that GC3 

deviated from neutral equilibrium is not a universal feature, cautioning against 

generalization of results.  

 

Understanding selective constraints on synonymous mutations (predominantly at codon third 

sites) provides the underlying rationale for the design of optimized transgenes (Fath, et al. 2011). 

For example, bacterial genes universally avoid strongly folded RNA structures at their 5' ends (Gu, 

et al. 2010; Umu, et al. 2016), and this property has been used to optimize transgene expression 

(Kudla, et al. 2009; Goodman, et al. 2013; Boel, et al. 2016). Similarly, selection on synonymous 

sites causes coadaptation between codon usage and tRNA pools (Ikemura 1981; Higgs and Ran 

2008), which can increase gene expression through a recently discovered mechanism that involves 

the recognition of slowly translated codons by a dedicated mRNA degradation pathway 

(Buschauer, et al. 2020).  The effects of modification of synonymous site nucleotides are not 

modest: modulation of RNA structures, synonymous site GC content or codon-tRNA adaptation 
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alters protein levels in prokaryotic and eukaryotic cells by orders of magnitude (Gustafsson, et al. 

2004; Kudla, et al. 2009; Fath, et al. 2011; Bentele, et al. 2013; Mordstein, et al. 2020).  

 

Understanding the mechanisms and role, if any, of selection on synonymous sites of viruses is 

similarly of applied importance as regards the design of attenuated versions for vaccines (e.g. 

Mueller, et al. 2010; Manokaran, et al. 2019; Cai, et al. 2020). In this instance, we aim to discern 

how selection acts on synonymous sites with a view to engineering the virus against the direction 

favoured by selection. In particular, viral attenuation can be achieved by alteration of synonymous 

sites as a means to modify the pattern of dinucleotides that bridge between successive codons 

(alias codon pair bias) while retaining the original protein (Karlin, et al. 1994; Rima and McFerran 

1997; Coleman, et al. 2008).  The same strategy has been extended to bacterial vaccines (Coleman, 

et al. 2011). Attenuation via modification of many synonymous sites has the notable advantage 

that any such virus employed as a vaccine will likely need many mutations to acquire wild-type 

fitness. Such a strategy is thus likely to be robust to virus/vaccine intra-host evolution. Indeed, 

given the mutation rate of SARS-COV2 (about 1 mutation every two weeks) this not a concern as 

regards intra-host adaptation by the virus. Synonymous codon manipulation has thus been 

proposed as a viable strategy for SARS-CoV2 attenuation and vaccine production (e.g. Kames, et 

al. 2020). 

 

The codon pair bias attenuation effect has more recently been shown to be largely owing to 

increased CpG content (Tulloch, et al. 2014; Gaunt, et al. 2016). This is very likely to relate to the 

activity of the human Zinc Antiviral Protein (ZAP) as this targets transcripts with high CpG 

content (Takata, et al. 2017; Ficarelli, et al. 2020), although it is by no means the only antiviral 

peptide (Supplementary Table 1). As might be expected, ZAP is under positive selection owing to 

host-parasite coevolution (Kerns, et al. 2008). This suggests a simple attenuation strategy for 

SARS-CoV2, i.e. to increase CpG content (Kames, et al. 2020), this being consistent with the 

observed low CpG enrichment of the virus as sequenced in the wild (Xia 2020), also seen in 

cytoplasmic viruses more generally (Simmonds, et al. 2013). TpA is commonly considered 

alongside CpG not least because both are under-represented in native human transcripts 

(Simmonds, et al. 2013).  Similarly, viruses lacking CpG also tend not to have TpA and engineering 

increased CpG and TpA attenuates viruses (Simmonds, et al. 2013). TpA depletion in SARS-CoV2 

is weaker than CpG depletion (see below). 
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Given the possibility of selection against CpG and the possibility of being able to re-engineer 

synonymous sites, understanding forces operating on synonymous site composition, and 

nucleotide content more generally, is central to evolutionarily informed vaccine design, as well as 

to our understanding of the biology of SARS-CoV2. If there is selection against CpG residues, 

then we expect this to be evidenced as reduced G+C content at synonymous third sites, as 

mutation at third sites is least likely to have deleterious pleiotropic effects (e.g. via altering the 

amino acid specified). A codon with a C at position two selects for avoidance of G at the third 

site, while a codon starting with G selects for avoidance of C at the 5’ codon’s 3rd site. In turn, we 

might expect that boosting third site G+C in a manner that increases CpG would be a viable 

attenuation strategy.  

 

One means to test for such selection, or more generally fixation bias, is to identify a difference 

between predicted equilibrium G+C content under a neutral-mutation bias model and the values 

observed in the wild. To perform such a test one requires data on the relative rates of different 

classes of mutations  (A->T, G->C etc) and from these rates per occurrence of the nucleotide 

calculate the equilibrium position i.e. the nucleotide content at which the rate of gain by mutation 

from other residues is equal to the rate of mutational loss. One can then compare observed and 

neutral equilibrium predicted values, with any discrepancy implicating a fixation bias.  

 

Such methods have revealed commonplace deviations from null neutral expectations. For 

example, bacteria show a common GC->AT mutational bias (Hershberg and Petrov 2010), and 

hence a deviation from equilibrium in GC rich bacteria (Hildebrand, et al. 2010). Similarly, non-

equilibrium TA nucleotide skews (Charneski, et al. 2011) have been identified. A recent large 

survey indicated that G+C deviating from neutral equilibria is common within eukaryotes (Long, 

et al. 2018). To derive this conclusion Lynch and colleagues extracted, from mutation accumulation 

(MA) experiments or parent-offspring sequencing, mutational profiles for numerous species and 

showed that the observed G+C content, even at codon third sites, was commonly higher than 

expected under a purely neutral model (Long, et al. 2018). The cause of this is unresolved, although 

GC biased gene conversion is one possible explanation (Long, et al. 2018). The possible 

importance of this process is supported by the widespread observation of a G+C-recombination 

correlation (Pessia, et al. 2012), implying higher GC in domains of more common double strand 

break repair. The case is by no means closed, however, as evidence for higher recombination in 

domains of manipulated high GC (Marsolier-Kergoat and Yeramian 2009; Kiktev, et al. 2018) and 

absence of GC:AT bias during gene conversion in organisms with a G+C recombination 
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correlation (Liu, et al. 2018), both suggest the direction of the causative arrow may in some cases 

be reversed. 

 

Rapid, accurate and common sequencing of epidemic and pandemic pathogens provide a rich 

source of data from which to derive the mutational profile (Hershberg and Petrov 2010; 

Hildebrand, et al. 2010; Charneski, et al. 2011). It is possible to ascribe both ancestral and derived 

states and hence infer the full mononucleotide mutational matrix (a 4 x 4, 12 parameter matrix of 

all possible mutations from one state to another) and, with enough mutations, the full dinucleotide 

matrix (a 16 x 16, 240 parameter matrix of all possible mutations from one dinucleotide to 

another).  

 

As with parent-offspring sequencing and MA lines, we require that the mutations observed are an 

unbiased sample of the mutational profile (Long, et al. 2018). With very common sequencing (in 

all cases, short time periods between ancestor and progeny) we can ignore the possibility of 

multiple sequential hits at the same site (with the first hits going unsequenced) contaminating the 

mutational matrix. In principle the method can be misled by strong selection purging, in a non-

random fashion, mutations prior their appearing in the population.  However, if most selection is 

weak purifying selection there is then a lag between a deleterious mutation appearing (and being 

sequenced) and it being purged from a population. Declines in Ka/Ks as time to common ancestry 

increases in closely related bacteria strains (Rocha, et al. 2006) is consistent with such a model. In 

principle, even if there is strong selection on some mutations this too need not be problematic, so 

long as the profile of the mutations subject to strong selection is itself unbiased. Here then we 

apply this method to SARS-CoV2. To be cautious we consider only “high quality” mutations at 

four-fold degenerate sites to define the “cleanest” mutational matrix.  We show that employment 

of mutations at all CDS sites makes a small but detectable difference, indicative of 

contemporaneous selection prior to sequencing on non-synonymous variants.   

 

Under the assumption of selection against CpG (Xia 2020), we predict that the neutral mutational 

equilibrium GC content would be higher than the observed one. We find the opposite: the 

predicted neutral equilibrium (~16.5%), owing to a strong GC->AT mutation bias, is lower than 

the observed one at synonymous sites (GC3~28%, GC4~20%). This is consistent with selection 

for raised G+C content but data suggest the more profound effect is selection against T content, 

as both T3 and TT we find to be far below their mutational equilibria. Regarding the rationale of 

any possible selection, we observe, even with a very underpowered test, a correlation between gene 
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body nucleotide content and gene expression level that is suggestive of some expression mediated 

mode of selection.  The direction of the effect is consistent with our prior observation that human 

intronless transgenes that are AT rich have poor expression potential (Mordstein, et al. 2020). 

 

Unusually then, our data suggests that the most common third site residue (T) is also the one 

selected against. This result affects the strategy for attenuation.  Classically we presume selection 

dominates over mutation bias and so to design highly expressed genes one selects for the common 

codons assuming them to be the most optimal.  In this instance,  a parsimonious interpretation of 

the data is that the mutation bias is so strong that selection has been unable to fully counter its 

effects, leaving a sub-optimal (selected against) nucleotide (T) the most commonplace. Given our 

results we thus propose the unusual strategy of increasing the usage of the already most highly 

used residue so as to degrade performance of the virus.  Put differently, assuming selection acts 

against T and TT, a simple method to increase CpG content may not be the optimal strategy for 

viral attenuation. Given that prior evidence indicated that selection for reduced CpG content is 

particular to just immediate early genes (Lin, et al. 2020), we ask whether all SARS-CoV2 genes 

are equally subject to CpG bias. We find that they are not. Given this we propose a gene-bespoke 

approach sensitive to both CpG and putative selection on synonymous site T.  Our results come 

with at least four caveats: that we cannot eliminate recently altered mutational biases, that we 

cannot address non-selective fixation biases, that sequencing errors may impact the mutational 

matrix and that we can only assume, but not demonstrate, that recent mutations observed at 4-

fold degenerate sites are an unbiased reflection of the mutational process.  

 

METHODS 

Gene locations 

We employed NC_045512 to specify the gene sequence to determine observed GC content, CpG 

content etc. However, following further annotation of genes (Kim, et al. 2020) we modified the 

gene locations to reflect those specified: https://github.com/hyeshik/sars-cov-2-

transcriptome/blob/master/reference/SARS-CoV-2-annotations.gff. Specifically, to avoid a 

small codon overlap, we exclude the overlap hence employed annotation: 

ORF7a protein 27394..27759 -> 27394..27753 

ORF7b protein 27756..27887 -> 27762..27887 

To consider ORF1a and ORF1b independently and to avoid overlap we employ: 

ORF1a-> 266-13465  

ORF1b -> 13471-21552  
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Estimating flux rates from data 

11,687 SARS-CoV-2 genome assemblies were downloaded from the GISAID (Shu and McCauley 

2017) Initiative EpiCoV platform. Only assemblies flagged as “complete (>29,000 bp)”, “high 

coverage only”, and from a human isolate were downloaded.  GISAID define “high quality” 

as entries with <1% Ns and <0.05% unique amino acid mutations (not seen in other sequences in 

database) and no insertion/deletion unless verified by submitter). Sequences were aligned with 

MAFFT 7.458 (Katoh and Standley 2013) to Wuhan-Hu-1 reference genome (EPI_ISL_402124). 

Sites in the first and last 200 bp of the alignment were masked to account for the fact that a higher 

degree of spurious variants tend to locate at the ends of the multiple sequence alignment. Variant 

sites were obtained from the MSA using the package SNP-sites (Page, et al. 2016) and whole 

genome nucleotide flux estimates were obtained by counting the frequency of each type of 

mutation with respect to the reference genome.  

 

Isolates containing at least one coding sequence of length not divisible by three or containing a 

premature stop codon were excluded, removing 284 strains. CDSs were then translated using 

BioPython, re-aligned using MAFFT, and then reversed translated using TranslatorX (Abascal, et 

al. 2010). MSA of CDSs were concatenated and then, just as with the whole genome analysis, 

variant sites were obtained using SNP-sites and flux estimates were obtained by counting the 

frequency of each type of change with respect to the reference. 

 

Additionally, H1N1 influenza A pdm09 sequences for strains collected between January 2009 and 

August 2010 that contained segments PB2, PB1, PA, HA, NP, NA, MP and NS were obtained 

from GISAID (Shu and McCauley 2017) for 4 segments: RNA polymerase subunit (PB2), 

hemagglutinin (HA), nucleoprotein (NP), and neuraminidase (NA). Sequences with length not 

divisible by three or containing a stop codon when translated were excluded. Remaining sequences 

were translated by BioPython and aligned to Mexican strain EPI_ISL_66702 using MAFFT, and 

reverse translated to nucleotides using TranslatorX (Abascal, et al. 2010). 

 

Multiple sequence alignment of 1610 full Ebola virus (EBOV) genomes sampled between 17 

March 2014 and 24 October 2015 in West Africa was downloaded from EbolaID database 

(Carneiro and Pereira 2016). The alignment includes the reference genome NC_002549.1. 

Genomes with a proportion of more than 10% missing sites were discarded. CDSs for each strain 

were obtained by extracting the coordinates from the reference genome on the alignment. In order 
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to include in the analysis as the largest proportion of the gene ZEBOVgp4, the longest CDS 

(NP_066246.1) was used, and the shorter, overlapping proteins NP_066247.1 and NP_066248.1 

were discarded. Just as in the case of H1N1, sequences with length not divisible by three or 

containing a stop codon when translated were excluded. Remaining sequences were translated 

aligned to the reference strain using MAFFT, and reverse translated to nucleotides using 

TranslatorX  (Abascal, et al. 2010). 

 

Homoplasy screen 

Sites can appear as having independently occurring mutations for at least two reasons: the extra 

mutation may be a sequencing error or it may be a true homoplasy (i.e. the same mutation at the 

same site occurring more than once independently) (van Dorp, et al. 2020).  Sequencing errors 

need to be removed.  In principle knowing how to handle true homoplasies in the construction of 

a mutational matrix is not as simple.   

 

At first sight one might suggest that, as independent mutations, each occurrence of the mutation 

should be considered.  The key question, however, is whether the mutational profile at these sites 

is representative of activity at other sites.  If it isn’t, then their over inclusion will bias the matrix 

towards the profile of homoplasic sites away from that of the rest of the genome, which could 

itself cause a false signal of non-equilibrium status (i.e. where mutationally predicted and observed 

nucleotide compositions – largely at non-homoplasic sites-  disagree). A priori by virtue of the fact 

that they are homoplasic we might suppose that mutational activity at these sites is not reflective 

of the mutational profile elsewhere in the genome and it is the equilibrium properties of other sites 

that we are interested in.  One could then opt to filter out mutations at homoplasic sites 

considering them possibly unrepresentative.  However, we don’t know they are unrepresentative 

and so their removal may be depleting the analysis of information.  We also don’t know how many 

of the non-mutated sites had had the property of being homoplasic prior to current sequencing.  

An alternative, the middle way, is to include them but count all occurrences at any given site as 

one event, thereby employing the mutations but preventing such sites from overly skewing the 

matrix and further reducing the impact of possible (missed) sequencing errors. 

 

We opt for the latter “middle way” approach but also check for resilience by removing such sites.  

Fortunately, as such sites are so rare (10 of 972 4-fold degenerate sites), removal of these sites 

makes no important difference to calculation of GC equilibrium content, nor to estimation of 

observed nucleotide content.  We thus report the homoplasic-excluded results as minor asides. 
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Phylogenetic tree of SARS-CoV-2 was downloaded from the COVID-19 Genomics UK Consortium 

website (https://www.cogconsortium.uk/, version of 24-04-2020). Subsequently, the MSA and the 

resulting tree were used to identify recurrent mutations (homoplasies) using HomoplasyFinder 

(Crispell, et al. 2019). All ambiguous sites in the alignment were set to ‘N'. 

 

HomoplasyFinder identified 1740 putative homoplasies that were distributed over the SARS-CoV-2 

genome. In order to remove spurious homoplastic sites that could arise due to sequencing error, these 

were filtered using a set of parameters and thresholds defined in (van Dorp, et al. 2020) to obtain a 

set of high confidence homoplasies. Briefly, for each homoplasy, the proportion of isolates with the 

homoplasy pnn where the nearest neighbouring isolate in the phylogeny also carried the homoplasy 

was computed and all homoplasies with pnn < 0.1 were excluded. Furthermore, we also excluded 

homoplasies that were shared in less than 0.1% of the isolates (>11 isolates). We also required that no 

isolate had an ambiguous base near the homoplasies (±5 bp). These filters reduced the number of 

homoplastic sites to 223. 

 

Estimating neutral equilibria 

In principle one can estimate neutral GC equilibria knowing relative rates of GC->AT and AT-

>GC mutations alone e.g. (Long, et al. 2018). However, we take a fuller approach to estimate the 

equilibrium content of all nucleotides that also enables us to capture nucleotides skews (Charneski, 

et al. 2011). This has the advantage of treating all four bases as separate independent states, as is 

fitting for a single stranded virus unconstrained by base-pairing rules. Let us denote the frequency 

of G as G, the frequency of T, T etc. We shall write that the mutational frequency of G to T will 

be g2t etc, these being measured per occurrence of the starting base. The frequency of the 

nucleotides (N’) after some period will then be: 

G’ = G (1-g2t-g2c-g2a) + A (a2g) + T (t2g) + C (c2g) 

C’ = C (1-c2t-c2g-c2a) + A (a2c) + T (t2c) + G (g2c) 

A’ = A (1-a2t-a2c-a2g) + G (g2a) + T (t2a) + C (c2a) 

T’ = T (1-t2g-t2c-t2a) + A (a2t) + G (g2t) + C (c2t) 

We then solve such that G’=G, T’=T etc. This thus resolves to: 

G (g2t-g2c-g2a) = A (a2g) + T (t2g) + C (c2g) 

C (c2t-c2g-c2a) = A (a2c) + T (t2c) + G (g2c) 

A (a2t-a2c-a2g) = G (g2a) + T (t2a) + C (c2a) 

T (t2g-t2c-t2a) = A (a2t) + G (g2t) + C (c2t) 
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Note that the left hand of each equation is the rate of loss given current abundance, while the right 

is the rate of gain given current abundances (i.e. we are solving for gain =loss). The 12 flux 

parameters (a2t, a2c etc) we derive from the mutational profile these being the number of observed 

changes per relevant occurrence of the nucleotide in the ancestral (pre mutated) sequence. We 

then solve these four simultaneous equations. Note that we replace any one arbitrarily chosen 

frequency by 1- sum of the other three (e.g. T= 1-A-C-G). These were solved in NumPy. 

Equilibrium solutions we denote with an asterisk (e.g. G*, GC3* etc). N4* implies nucleotide 

content of nucleotide N at 4-fold degenerate sites. 

 

To assign bounds on the equilibrium estimates we perform a bootstrap test in which we resample 

with replacement M mutations from the set of M mutations. For each sampled vector we 

recalculate the predicted equilibria thereby assigning bounds. We report 95% bootstrap bounds 

from 100 re-samplings.  

 

The same approach applies to the 16 x 16 dinucleotide matrix with 240 parameters. 

 

Estimating dinucleotide enrichment 

For the dinucleotide NpM (e.g. CpG, GpC etc), we define gene body enrichment (E(NM)) as: 

 

E(NM) = p (NM)/[p(N) x p(M)] 

 

where p(NM) is the frequency of all dinucleotides within the gene that are NM and p(N) and p(M) 

are the frequencies of the mononucleotides within the same gene. We then consider site specific 

enrichment, i.e. sites 12, 23, or 31 defined by codon position, 31 being a third site and the codon 

first site of the following codon. Then at sites xy: 

 

E(NMxy) = p(NMxy)/[p(Nx) x p(My)] 

 

Where NMxy is the relevant dinucleotide initiating with N at site x.  

 

Gene expression 

We employ expression data specified by Kim et al. (2020).  We used the highest read count for 

each subgenomic RNAs in Supplemental Table 3 of Kim et al. (2020) and compared log2 

normalised read counts to gene G+C content, G+C at third sites, and CpG enrichment. Note that 
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subgenomic RNA measures exclude ORF1a and ORF1b.  ORF10 is excluded as no reads were 

identified. We used the shapiro.test function in R to test log2 transformed read counts for 

normality. 

 

Data compilation of vertebrate viruses 

Vertebrate virus sequences were retrieved from the Virosaurus database (Virosaurus databases 

2020_4.1, Release April 2020, file: Virosaurus90v 2020_4.1)(Gleizes, et al. 2020) [accessed 07 May 

2020].  In this database, complete sequences were clustered at 90% to remove redundancy. Since 

in this database, herpesviridae and poxviridae are split in genes rather than full genomes, complete 

sequences for these viruses were retrieved from NCBI (refseq sequences). The same was also done 

for segmented viruses to allow calculation of sequence parameters per species. Genome 

classification was retrieved from ICTV (Master Species List #34 version 2, release May 

2019)(Walker, et al. 2019).  Annotation for replication compartments was assigned according to 

ICTV (Walker, et al. 2019) and ViralZone (Hulo, et al. 2011) CpG and UpA enrichment were 

calculated as above. For virus sequences obtained from the Virosaurus database, the mean was 

derived to obtain one value per species. For segmented viruses, segments were first concatenated 

before calculating sequence parameters. Species information and sequence parameters can be 

found in Supplementary Table 2. 

 

Genome sources 

We acknowledge the sources of the genomes that we employed in Supplementary Table 3 (for 

SARS-CoV-2), Supplementary table 4 (for H1N1) and Supplementary table 5 (for Ebola). 

 

Comparing mutational matrixes 

We sought to test whether the predicted equilibria solutions were different between the matrixes 

reflecting mutational profiles at 4-fold degenerate sites and all mutations at other sites (i.e. not 4 

fold degenerate), as might be predicted were there contemporaneous selection against mutations 

that are non-synonymous. We partitioned all CDS mutations into those at 4-fold redundant sites 

(n=972) and all others (n=4672). Using these two datasets we calculated observed equilibrium 

frequencies for each nucleotide (4* for 4-folds and n4* for non 4-folds0, representing each as a 

vector of length four.  We then determined the Euclidean distance between the two vectors.  To 

test for significance, we compare the magnitude of this Euclidean distance to that expected by 

chance employing a non-parametric Monte Carlo simulation. To this end, we randomly extracted 

without replacement 972 mutations from the full set of mutations so as to create a subsample of 
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pseudo ‘4-folds’. The remaining 4672 mutations we then considered a sample of pseudo ‘non 4-

fold’ mutations. For each randomization, we assembled the corresponding mutational matrix, 

solved for equilibria and calculated the Euclidean distance between the resulting vectors of 

predicted equilibrium for the four nucleotides. We repeated this procedure 10,000 times to 

generate a null distribution of Euclidean distances that controls for sample sizes differences. 

Significance was given a P = n/m, where n is the number of simulations in which the Euclidean 

distance is as great or greater than observed in the real data and m is the number of simulations 

(i.e. 10,000).  To check for robustness we considered an alternative distance metric, namely sum 

of modular differences (Euclidean distance considers square root of sum of squares of difference).  

 

To consider each nucleotide individually, from the same Monte Carlo sampling, we calculated the 

difference between predicted equilibria at sampled pseudo ‘four-folds’ and pseudo ‘non four-folds’ 

for the 10,000 repeats. This generates four distributions, one for each nucleotide.  For each 

nucleotide we calculate the mean (approximately zero) and standard deviation of these 

randomizations.  The observed difference seen for each nucleotide between the equilibria 

predicted using mutations at four-fold sites (their predicted neutral equilibria) compared to that 

calculated using mutations at non four-fold site, may then be represented as a Z-score 

(Z=(observed – mean of simulations)/sd of simulations), Z >|1.96| indicating significant 

deviation. 

 

RESULTS 

SARS-COV2 mutations are heavily GC->AT biased 

From the 11,687 genomes we can identify spontaneous mutations. From these we derive a 

mutational matrix and from this we solve for mutational equilibrium. From 972 mutations at four-

fold degenerate third sites we find a heavily GC->AT biased mutational profile (Table 1). From 

this we deduce that equilibrium GC (termed GC*) should be 16.47% (95% bootstrap estimates 

16.19-16.60). The corresponding number is 16.6% on removing 10 homoplasies. Specifically, we 

find: T4*=64.7%; A4* = 18.93; C4* =12.28%; G4* = 4.19%.). The striking bias towards T has 

been recently commented on and considered to be consistent with APOBEC editing (Simmonds 

2020).  
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 Derived allele 
Reference 
allele 

 A T C G 
A - 0.05041 

0.02043 
 

0.01707 
0.01504 
 

0.09350 
0.07771 
 

T 0.02269 
0.01668 
 

- 0.09398 
0.07340 
 

0.01343 
0.01126 
 

C 0.05842 
0.03265 
 

0.45704 
0.35280 
 

- 0.01375 
0.00970 
 

G 0.20652 
0.10434 
 

0.43841 
0.15373 
 

0.02536 
0.01867 
 

- 

 

Table 1 The 4 x 4 mutational matrix for 972 mutations at four-fold synonymous sites (in bold) 

and from 5644 mutations observed anywhere in codons (not bold). Rates are defined as the 

number of observed changes per incidence of the nucleotide in the reference genome at four-fold 

third sites (bold) or in codons. Note that because of different normalizations, the two sets of 

numbers are not directly comparable in absolute terms. 

 

Cognisant that there might be dinucleotide based mutation biases we extend the mononucleotide 

matrix to a 16 x 16 dinucleotide matrix with 240 parameter estimates derived across the coding 

sequences (Fig 1, Supplementary table 6). With 11073 dinucleotide switches this represents an 

average of 46.1 mutations per parameter estimate which is liable to be noisy and potentially weakly 

influence by selection on non-synonymous mutations. With this we determine equilibrium content 

for all dinucleotides and in turn all nucleotides (A*=0.187, C*=0.112, T*=0.620, G*=0.0812). We 

thus estimate from this GC* of 19.3% (95% bootstraps 0.193-195) more or less in line with 

mononucleotide calculations.  
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Figure 1 Chord diagram displaying the rate of flux from one dinucleotide to another in the coding 

sequence of SARS-CoV-2. For each node, the direction of flux is indicated by the indentation of 

the connecting links: the outer most layer represents flux into the node and the inner layer 

represents flux out. The frequency of the flux exchange is represented by the width of any given 

link where it meets the outer axis. Dinucleotide nodes are coloured according to their GC-content. 

Hence, it is evident that there is high flux away from GC-rich dinucleotides whereas AT-rich 

dinucleotides are largely conserved. 

  

 

 

Evidence for selection acting to counter a large mutation bias towards T 

If selection favours reduced G+C content owing to selection for reduced CpG content, we expect 

that the observed GC3 should be lower than that predicted under neutrality (16.5%). We find the 

opposite to be true, observed GC3 being 28% (GC3 at 4-fold sites = 20.2%). All numbers are 

beyond 95% bootstrap bounds of the predicted equilibrium frequency derived from analysis of 

mononucleotide profiles at 4-fold degenerate sites (bounds: 16.19-16.60). More specifically, at four 

fold synonymous sites, observed T4 (50.8%) is less than predicted under neutral equilibrium T4* 

(64.6%) while all other bases are higher than expected (A4 = 28.95%, A4* = 18.93; C4 = 13.70%, 
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C4* =12.28%; G4 = 6.50%, G4* = 4.19%.).  A parsimonious explanation is that the sizeable 

mutation bias towards T generates deleterious mutations, non-optimal even at synonymous sites, 

and selection therefore favours reduced T content.  However, increasing C or G potentially comes 

at a cost of increased CpG, so the base most in excess of its equilibrium is A.   

 

GC of coding sequence is even more removed from the neutral equilibrium at 38%.  This suggests 

selection in favour of non-synonymous mutations that increase G+C content. Examination of 

non-equilibrium status by dinucleotide content supports this. It shows one striking effect, namely 

that TT’s predicted equilibrium frequency greatly exceeds what is observed (Figure 2). More 

generally, T content whether derived from mononucleotides at 4-fold third sites (predicted 64.6%) 

or mononucleotides across the genes (predicted 59%) or from dinucleotides (62%) is greatly in 

excess of T content this being 32% for the complete viral sequence. The mutational matrix, 

whether through mono or dinucleotide analysis, predicts a great enrichment of T which we infer 

is being opposed by selection at third sites and in gene bodies (unweighted gene body means: T1% 

= 25.7%, T2%=36.3%, T3%=41%). We notice that CpG content is above that expected under 

neutrality (Figure 2).  However, this we suggest is not so much evidence against selection towards 

high CpG so much as selection against TT which by necessity increases the observed relative 

frequency of CpG and most other dinucleotides as frequencies must sum to one.  

 

 
Figure 2. Comparison of dinucleotide content across SARS-CoV2 compared with neutral 

expectations. Error bars represent bootstrapped 95% upper and lower confidence bounds. 

 

 

Evidence for contemporaneous selection against T at non-four-fold redundant sites 

Possibly consistent with a role for selection, using 5644 mutations that occur anywhere in the 

coding sequence (Table 1), we observe that the G->T flux at 4-fold degenerate sites is much greater 
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than that observed throughout the sequence.  Assuming the flux rate at 4-fold degenerate sites is 

more indicative of the true mutational flux, this is consistent with non-synonymous T mutations 

being under strong enough selection to be eliminated prior to sequencing.  The predicted bias 

from this matrix is thus slightly more GC rich than that determined from 4-fold redundant sites 

(GC* at 20.65%: 95% bootstrap estimates 20.60-20.78, 20.65% also after excluding homoplasies).   

 

This difference is perhaps a surprising result as classically when considering very recent mutations 

we presume an absence of bias in the profile of mutations.  The skew would be consistent with 

contemporary selection on non-4-fold sites opposing mutations towards T, consistent also with 

the different between T4*, T4 and T content overall. To ask whether the difference between the 

two equilibria solutions is significantly different, we developed a non-parametric Monte Carlo 

simulation (Methods). We find that the Euclidean distances from the random sampling are the 

same as, or greater than, the Euclidean distance between four-folds and non-four fold sites in just 

390/10,000 cases (hence P = 0.039) (repeating using an alternative distance metric, sum of modular 

difference between equilibria, make no meaningful difference, P=0.4). Thus, not only do we detect 

deviation away from the predicted neutral equilibrium (at 4-fold sites, third sites generally and 

through the gene body), we even can detect a signal consistent with selection on SARS-CoV2 that 

skews the mutational matrix prior to sequencing.  

 

To clarify that it was selection against T, we considered each nucleotide individually (see Methods). 

Such analysis indeed provides evidence for significant counter selection of T at non-4-fold sites 

(Z = -2.01).   Commensurably, predicted G equilibrium content derived from mutations at non-

4-fold sites is higher than that derived from mutations at 4-fold degenerate sites (Z = 4.92), while 

A and C content are less affected (Z for A = 0.47, Z for C = -0.50). Contemporaneous selection 

opposing G->T mutations at non-4-fold sites is a parsimonious explanation.  As N->T mutations 

at codons NAA, NGA and NAG will generate stop codons (where N can be A, C or G), part of 

the selection at non-our-fold sites against mutations generating T may be selection against 

nonsense mutations.  The nine codons should be at a frequency of 9/61 =14.75% under unbiased 

nucleotide content but are at 17.05% with AAA (3.76%) being the second most common codon 

after GTT (3.9%).  

 

Significant heterogeneity in the degree of CpG avoidance between genes 

While selection against T or TT provides a viable model for GC3>GC3*, might there be other 

explanations that would be consistent with selection against CpG, to avoid ZAP, but in favour of 
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G+C? One possibility is that we may be witnessing between-gene heterogeneity (Digard, et al. 

2020). Imagine that some genes are indeed under selection for low CpG and hence for low GC3, 

but others are not under selection for low CpG and thus are more free to have selection favouring 

higher GC3 (for unspecified reasons, but possibly to enable efficient expression (Mordstein, et al. 

2020)). When then considered en masse we see both selection for CpG and more raised GC3. 

Recent reports suggest that not all genes are equally subject to selection for low CpG to avoid 

ZAP, with only “immediate early” genes under such selection (Lin, et al. 2020).  

 

Were this the explanation, or part thereof, we would predict that CpG enrichment would be 

heterogeneous between genes (see also Digard, et al. 2020) and that those with relatively high CpG 

enrichment will also be those genes contributing to raised GC3 (i.e. a positive correlation between 

CpG enrichment and GC3). Note that while CpG counts are likely to be necessarily higher as GC3 

goes up, CpG enrichment is normalised to underlying GC content and so CpG enrichment and 

high GC3 are not logically coupled (e.g. if at the limit 50% of residues are C and 50% G, so long 

as CpG usage is random, CpG = 0.5*0.5, CpG enrichment will not be seen).  

 

To assay this, we calculated CpG enrichment at codon sites 12, 23 and 31, these providing three 

measures of CpG enrichment for each gene. We can then perform a Kruskal-Wallis test for 

heterogeneity. Even with such limited data, we find that the three measures for the same gene are 

more similar than expected by chance (KW, P=0.019, df=11: mean E(CG) =0.61 +/- 0.4 sd; Fig 

3a). This implies that at all sites CpG is avoided or preferred to the same degree within any given 

gene. We see however only marginal evidence that genes released from CpG constraint are those 

with higher GC3 (CpG enrichment v GC3, rho =0.41, P=0.19, Spearman’s test, Fig 3b). Thus, 

while there is evidence for differential CpG usage between genes, we don’t find that this predicts 

GC3, although trends are in the expected direction and the tests underpowered.  
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Figure 3. a) CpG enrichment across the genes of SARS-CoV2. Grey line = no enrichment b) 

relationship between CpG enrichment and GC3 

 

More generally we can ask whether gene body G+C content behaves the same as gene body CpG 

content with each gene having its own characteristic profile. We assay this by considering GC1, 

GC2 and GC3 in a manner as above. We find no evidence that genes are more similar in these 

three measures than expected by chance (KW P=0.49, df=11: Fig 4). Similarly, we see no 

correlation between GC3 and GC12 although the trend is positive (rho = 0.15, P=0.63, 

Spearman’s rank). However, we do observe some regularities. First, GC3 is consistently lower than 

GC12 (Wilcoxon signed-rank test, P=0.007), the mean GC3 being 28%, while that of GC12 is 

40%, consistent with selection on amino acid content.  
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Figure 4. GC content across genes of SARS-CoV2 at codon sites 1, 2 3 and averaged across the 

gene 

 

The most striking feature of third site nucleotide usage is that all genes have a preponderance of 

T (Figure 5). As noted above, this we can attribute only in some part to mutation as the predicted 

levels while in the rank order as observed (T>A>C>G) are highly deviant from null. Specifically, 

the predicted numbers are 0.65>0.19>0.12>0.04 while the observed are 0.44>0.28>0.16>0.13. 

Approximately the same predicted equilibrium values are seen employing all mutations 

(0.59>0.20>0.12>0.08). Selection against T seems strong, despite this being the most common 

nucleotide, as it is heavily reduced from its predicted equilibrium content.  
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Figure 5. Base composition at codon third sites across genes of SARS-CoV2. 

 

Genes avoiding CpG also avoid TpA 

Prior analysis suggests that viruses lacking CpG also tend not to have TpA and that engineering 

increased CpG and TpA attenuates viruses, possibly because both are under-represented in human 

transcripts (Simmonds, et al. 2013). We also observe that TpA enrichment and CpG enrichment 

tend to positively correlate across viruses (N=1344, rho=0.17, P=2.34 x 10-10: data in 

Supplementary Table 2). More particularly, this is seen only (or more profoundly) within the class 

of viruses, like SARS-CoV2, that cytoplasmically replicate (cytoplasmic: rho=0.12, P=0.0016, 

N=654; nuclear: rho=0.069, P=0.07, N=690). To understanding whether increasing CpG and 

TpA might be a useful attenuation strategy, we ask whether TpA is also avoided in genes of SARS-

CoV2 and whether it is avoided in the same genes that avoid CpG.  We consider not just the CpG 

enrichment predicting TpA enrichment but also, to control for mononucleotide effects, the two 

other symmetric nucleotide pairings (ApT and GpC). 
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Table 2 Between-gene correlations in dinucleotide enrichment scores (Pearson product moment 

correlation r values). Significant correlations in bold: ** = P <0.005. 

 

On the average TpA is, like CpG, avoided although not to the same extent as CpG (mean TpA 

enrichment =0.83 +/- 0.2 sd) (Figure 6b).  TpA also shows between gene heterogeneity (KW test 

P=0.04). We find that exclusively for CpG enrichment and TpA enrichment do we see a 

correlation between genes (Table 2, Fig 6a). ApT is also avoided (mean enrichment = 0.83 +/- 

0.14 sd), but there is no evidence for within gene homogeneity (KT test P=0.14) (Fig 7). By 

contrast, there is no evidence for GpC avoidance: mean GpC enrichment =1.13, +/- 0.34 sd, Fig 

7) and genes do not show gene-specific GpC enrichment (KW, P=0.11, comparing GpC 

enrichment at sites 12, 23 and 31). We conclude that if CpG enrichment is a viable strategy to 

attenuate a gene, increasing TpA may also (although for reasons unknown). 

Figure 6. a) TpA enrichment across genes of SARS-CoV2 b) correlation with CpG enrichment. 

Grey line is the line of slope 1 through the origin. 
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Figure 7 a) GpC and b) ApT enrichment across the genes of SARS-CoV2.  

 

Evidence for T content predicting expression level. 

The results above are consistent with a model in which CpG content is under selection in some 

genes to be reduced, while GC3 content is above the level expected under neutrality, in no small 

part because the T mutation bias is so extreme that equilibrium T content (especially TT content) 

would render the virus much less fit. There are several possible mechanistic explanations for the 

GC3 > GC3* effect. With our recent evidence that intronless low GC genes barely express in 

human cell lines (Mordstein, et al. 2020), selection for raised GC3 (reduced T3) to enable more 

effective gene expression is a strong contender. In this context, while we do not see a GC3 

expression correlation (r=0.09, P=0.82), we do observe a GC expression correlation (r=0.79, 

p=0.01 and figure 8). Breaking this down by nucleotide we see that this is owing to a negative 

correlation with T content and a positive correlation with both C and G content (A freq: r= 0.33, 

P=0.83; C freq: r=0.64, P=0.06; G freq r=0.81, P=0.009; T freq r=-0.88, P=0.0017).  Why this is 

will require considerable experimental manipulation of sequences to understand. It is notable that 

we observe such an effect with such an underpowered test. 
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Figure 8 Correlation between expression level and CpG enrichment, GC content and GC3 

 

A more broad-brush approach is to consider viral sequences more generally. As part of the 

mechanism by which GC enrichment boosts expression is thought to be intranuclear (e.g nuclear 

export) (Mordstein, et al. 2020), if selection is operating on gene expression of viruses, we might 

predict that nuclear viruses might have a higher GC content than cytoplasmic viruses. Using mean 

GC of all viruses within a taxonomic grouping we observe this to be the case (Mann Whitney U 

test P=1.6 10-20, Fig 9). CpG enrichment and TpA enrichment is similarly lower in cytoplasmic 

viruses (Fig 9).  This is a very arms-length result and requires due caution in its interpretation (it 

could just as well be evidence of different mutational biases). Nonetheless, within the context of 

our prior result we suggest that this merits further scrutiny.  

 
Figure 9.  GC content of cytoplasmic and nuclear viruses. Cytoplasmic viruses have significantly 

lower values for all three measures (MWU test: GC: p = 1.63e-20, CpG enrichment  p = 2.57e-15, 

[U/T]pA enrichment: p = 3.2e-36) 
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Designing the optimally attenuated SARS-COV2 

With the above evidence for selection for G+C at third sites and for heterogeneity between genes 

in enrichment of CpG and TpA, we suggest that simply increasing CpG by manipulation of 

synonymous sites need not be the optimal strategy. It may enable recognition by ZAP, but may 

also favour increased fitness by increasing G+C/reducing T (although we see no expression 

correlation employing just 4-fold degenerate sites although a negative T4 expression correlation is 

observed, but not significant: r=-0.38, p=0.32).  

 

As not all genes are under selection for reduced CpG/TpA, reducing their G+C content by 

increasing T content seems a relatively safe and robust strategy. We thus suggest to classify genes 

according to the CpG enrichment: >1, 0.5-1 and <0.5. For those in the first category, likely not 

affected by ZAP (E and ORF10, (see also Digard, et al. 2020)) we suggest deceasing their 

synonymous G+C by increasing where possible T content and forcing them closer to their 

mutational equilibrium. For those with especially low CpG enrichment and most likely strong 

targets of ZAP (ORF1a, ORF1b, ORF6, ORF7b and S) we suggest, raising their CpG, even at the 

cost of increased G+C. Where possible TpA should also be increased. For the remainder we 

suggest maximizing CpG content while holding GC3 content static or decreasing if possible. 

However, with the possibility of synonymous sites also being parts of key motifs, e.g. for RNA 

binding proteins (Savisaar and Hurst 2017), a simplistic strategy, even if gene-tailored, may have 

deleterious undesirable side consequences. 

 

GC3*>GC3 is not a general property of viruses 

We observed that GC content at third sites was both higher than expected given selection against 

CpG and higher than expected given the underlying mutational profile. Is a deviation from 

mutational equilibrium a general property of human viruses? Were this so, this too could have 

implications for engineering of attenuated forms. To address this, we consider other viruses with 

rich sequencing from epidemics.  

 

For H1N1 using the same mode of analysis we observe both a less extreme GC->AT mutation 

bias (Table 3) and an observed GC3 content very close to that predicted. From analysis of 3rd 

sites the predicted value is GC3*=41.8% (bootstrap 95% intervals 41.45-42.04), from all sites the 

prediction is GC*=42.8% (bootstrap 95% 42.56-42.96). The observed GC3 is 41.8%, within the 

bounds of the prediction based on 3rd site mutations. For Ebola (Table 4) we find observed GC3 
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is all but identical to predicted (observed GC3=46.4%, expected=46.7%). We conclude that 

analysis of SARS-CoV2 and its non-mutational equilibrium status at synonymous sites does not 

necessarily hold lessons for other viruses. In contrast to others (Kames, et al. 2020), we suggest 

caution in generalizing vaccine strategies. 

 

 Derived allele 
Reference 
allele 

 A T C G 
A - 0.0871 

0.04597 
 

0.065 
0.0451 
 

0.4291 
0.25542 
 

T 0.0803 
0.05143 
 

- 0.4945 
0.24889 
 

0.0529 
0.03429 
 

C 0.1691 
0.11426 
 

0.5699 
0.30675 
 

- 0.0251 
0.02607 
 

G 0.6089 
0.32052 
 

0.0948 
0.05027 
 

0.0323 
0.0207 
 

- 

 

Table 3 The 4 x 4 mutational matrix for 1522 mutations at synonymous sites (in bold) and from 

2571 mutations observed anywhere in codons (not bold) for H1N1. Rates are defined as the 

number of observed changes per incidence of the nucleotide in the reference genome at 3rd sites 

(bold) or in codons.  

 

 Derived allele 
Reference 
allele 

 A T C G 
A - 0.0739 

0.05077 
 

0.0964 
0.06722 
 

0.2123 
0.14803 
 

T 0.0594 
0.05152 
 

- 0.2145 
0.13429 
 

0.0536 
0.04786 
 

C 0.0845 
0.08086 
 

0.2639 
0.14868 
 

- 0.0394 
0.04845 
 

G 0.2639 
0.16051 
 

0.0751 
0.05139 
 

0.0694 
0.05139 
 

- 

 

Table 4 The 4 x 4 mutational matrix for 1682 mutations at synonymous sites (in bold) and from 

3523 mutations observed anywhere in codons (not bold) for Ebola. Rates are defined as the 

number of observed changes per incidence of the nucleotide in the reference genome at 3rd sites 

(bold) or in codons.  
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DISCUSSION 

Mutation bias across all taxa is typically GC->AT biased (Hershberg and Petrov 2010; Hildebrand, 

et al. 2010; Liu, et al. 2018) and neutral predicted equilibrium frequencies below GC of 20% (as 

observed here) are not without precedent (see e.g. (Long, et al. 2018)). Broadly the T enrichment 

at third sites within the genome is then compatible with a large role for mutation bias, possibly 

mediated by APOBEC (Simmonds 2020).  However, we have shown that nucleotide usage, while 

skewed in the direction imposed by mutation bias, is nonetheless deviant from it. The difference 

between observed and expected T3 and TT (Fig 2) proportions are noteworthy. At four fold 

degenerate sites while C and G usage are close to equilibrium, A is far above and T is far below 

(T4=50.8%, T4*=64.6%; A4 = 28.95%, A4* = 18.93; C4 = 13.70%, C4* =12.28; G4 = 6.50%, 

G4* = 4.19%.).  We propose that a parsimonious explanation is that the sizeable mutation bias 

towards T generates deleterious mutations, even at synonymous sites, and selection therefore 

favours reduced T content.  However, increasing C or G potentially comes at a cost of increased 

CpG, so the base most in excess of its equilibrium is A.  As a consequence, while CpG avoidance 

is real in some genes, GC3 is a little higher than predicted from the underlying mutational profile. 

This thus presents an unusual case in which the most common synonymous codons (those ending 

in T) are not the selectively advantageous ones.  

 

There are, however, at least four problems with our mode of analysis. First, a theoretical alternative 

explanation for the difference between predicted and observed values is that the virus was at 

neutral mutational equilibrium in its prior host (cf. H1N1, Ebola), but since the transfer to humans 

the mutational profile has altered. Were this so we may just have identified a lag in viral evolution 

from one neutral equilibrium to another.  In this context deviation from equilibrium has little if 

anything to say about either selection or optimal vaccine design. While evidence for GC->AT 

biased mutation in related viruses (Simmonds 2020) renders this less parsimonious an explanation, 

direct examination of mutational profiles of the virus in its ancestral host (whatever that may be) 

would be valuable. The evidence for subtly but significantly different mutational matrixes 

dependent on the class of site employed provides more direct evidence for contemporary selection 

on T content throughout gene bodies that cannot be accounted for by a temporal shift in 

mutational profile. 

 

Second, assuming no change to the mutational matrix, sensu stricto, we have observed a fixation bias 

(Lercher, et al. 2002). Evidence for a fixation bias need not necessarily indicate the direction of 
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selection, as selection bias is only one class of fixation bias. In biased gene conversion, for example, 

the mismatch repair machinery recognises, during double strand break repair, heteroduplex 

GC:AT mismatches and corrects these in favour of GC residues (Brown and Jiricny 1988). This 

causes a meiotic drive like process in which deleterious mutations can be driven to higher 

frequencies (for further consideration see Hurst 2019). Given that single strand RNA cytoplasmic 

viruses, such as SARS-CoV2, are unlikely to be exposed to the nuclear mismatch repair machinery 

or need double strand break repair, biased gene conversion is unlikely to explain GC3>GC3*, 

T3<T3* etc.. We cannot with our data, however, rule out unknown mechanisms causing similar 

non-selective fixation biases. It is then valuable to provide more direct evidence for an 

advantageous effect of reduced T3/increased GC3, as suggested by our preliminary analysis on 

expression level. Experimental manipulation of GC3 content (cf. Kudla, et al. 2006; Mordstein, et 

al. 2020) is a high priority.    

 

Third, we have presumed that the mutational spectrum observed at 4-fold degenerate sites is a 

good reflection of the true mutational profile. Typically, when applying methodology like this we 

presume that the temporal proximity between occurrence and observation of mutations is so small 

that there has been no time for selection to filter in a manner that distorts the mutational matrix.  

Unusually, however, we found that although slight, there is a difference between the mutational 

profile observed at CDS sites that are not 4-fold degenerate and those that are.  While this 

difference is so slight it cannot explain why T is so deviant from equilibrium levels, and doesn’t 

question our overall findings, we do nonetheless presume that the 4-fold site matrix itself is 

unbiased.  If sequencing strains hours apart in time and applying only mutations at 4-fold 

degenerate sites is biased, this would require so strong selection at 4-fold redundant sites.  While 

not obviously plausible we have no means to disprove this (and strong selection, albeit associated 

with splicing, has been identified at synonymous sites in human genes (Savisaar and Hurst 2018)).  

 

Fourth, we have presumed that, after filtering (see Methods), all sequences are error free.  While 

sequencing errors cannot explain a bias as strong as the difference between excess and expected 

TT or T3, nor can they obviously explain the evidence for contemporary selection against T, it 

may possibly explain the small difference between predicted and observed nucleotide content at 

4-fold sites for G and C (the deviations of A and T from predicted equilibria are relatively large).  

One suggested means to avoid this is to only employ mutations that have been sequenced more 

than once (Hildebrand, et al. 2010).  However, this has been shown to introduce its own bias 

(Charneski, et al. 2011). Using high quality sequence, it was shown that using mutations that appear 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2020. ; https://doi.org/10.1101/2020.05.11.088112doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.088112
http://creativecommons.org/licenses/by-nd/4.0/


 28 

once and those that appear twice or more makes a significant difference to the matrix and estimates 

of equilibria (Charneski, et al. 2011).  The cause of this is likely to be a selection filter: mutations 

that persist longer to be sequenced twice or more will be skewed towards milder effect mutations. 

This accords with our observation of a slight difference between matrixes that restrict just to 4-

fold degenerate sites and those that do not.  The ideal then is to filter not be regularity of 

appearance but by sequencing quality (hence our decisions on which sequences to employ: see 

Methods).  Nonetheless, to err on the side of caution we considered mutations at 4-fold degenerate 

third sites that appear more than once (i.e. excluding singletons) and found that GC* is now even 

lower than previously predicted (GC*=10.3%, 95% bounds 10.11 -10.61).  Thus, we are confident 

that we can exclude sequencing error as an explanation for observed GC3 > GC3* and T4<T4* 

(singleton excluded prediction of T4*=79.5%). Nonetheless, owing to observation bias and low 

sample size we caution against over-interpretation of this result. 

 

Assuming we have identified the direction of selection (against T, against CpG in some genes) this 

can inform vaccine design. Unusually, even though T is the most common nucleotide at third sites 

(by a considerable margin), we propose increasing this even more thereby forcing the viruses 

against the direction of purifying selection.  We predict that raising CpG in the genes that are CpG 

deficient would be a viable strategy even at a cost of raising GC3/lowering T. By contrast for those 

few genes with E(CpG)>1 (i.e. gene E, ORF10, see also Digard et al. (2020)) CpG manipulation 

increasing GC3 would be a dangerous strategy, potentially achieving little more than an increase 

in expression. Increasing their AT content would appear to be the anti-selection direction. We 

note however that ORF10’s function, if any remains, unclear there being no evidence of transcripts 

from it, despite it looking like a well formed ORF (starts ATG stops TAG, multiple of 3 long).  Its 

GC3 content is also far from neutral equilibrium (GC3=36%). In this context gene E may be a 

good one to alter synonymous site usage as it appears not to be under selection for CpG or TpA 

avoidance.  

 

Genes ORF1a, ORF1b, ORF6, ORF7b and S are good candidates for the raising of CpG content.  

Gene N is noteworthy in being very highly expressed, long (1260 bp), GC rich (GC3=38%) and 

with moderate CpG enrichment (E(CpG)=0.56).  Given these characteristics it should be possible 

to increase CpG by manipulating some third sites (those with C at codon position 2 or G at codon 

position +1) while reducing GC and increasing T content at other sites. For smaller genes there is 

less leeway. In this context S, ORF1a and ORF1b are also very strong candidates being long, with 

moderate GC3 and low CpG enrichment. 
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Supplementary files: 

S Table 1: Ligand binding by antiviral proteins 

S Table 2: Data on nucleotide content of viruses 

S Table 3 SARS-CoV2 genomes used and acknowledgement 
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S Table 6 The dinucleotide mutational matrix for SARS-CoV2 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2020. ; https://doi.org/10.1101/2020.05.11.088112doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.088112
http://creativecommons.org/licenses/by-nd/4.0/

