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Abstract
UniRep is a recurrent neural network model trained on 24 million pro-

tein sequences, and has shown utility in protein engineering. The original
model, however, has rough spots in its implementation, and a convenient
API is not available for certain tasks. To rectify this, we reimplemented
the model in JAX/NumPy, achieving near-100X speedups in forward pass
performance, and implemented a convenient API for specialized tasks. In
this article, we wish to document our model reimplementation process
with the goal of educating others interested in learning how to dissect a
deep learning model, and engineer it for robustness and ease of use.

Introduction

UniRep is a recurrent neural network, trained using self-supervision on 24 million
protein sequences to predict the next amino acid in a sequence (Alley et al.
2019). Its most powerful model allows for embedding arbitrary length sequences
in a 1900-long feature vector that can be used as the input to a “top model” for
unsupervised clustering or supervised prediction of protein properties.

The original model was implemented in TensorFlow 1.13 (Abadi et al. 2016), and
its original API only allowed for one sequence to be transformed at once. While
test-driving the model, we observed two problems with it. The first is that that
the original implementation took an abnormally long amount of time to process
multiple sequences, requiring on the order of dozens of seconds to process single
sequences. The second was that its API was not sufficiently flexible to handle
multiple sequences passed in at once; to get reps of multiple sequences, one
needed to write a manual for-loop, re-using a function inside which returns the
reps for a single sequence. When fine-tuning model weights, sequences needed
to be batched and padded to equal lengths before being able to be passed in to
the model. Neither appeared to be user-friendly.
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Thus, while the model itself holds great potential for the protein engineering
field, the API prevents us from using it conveniently and productively. We thus
sought to reimplement and package the model in a way that brings a robust yet
easy-to-use experience to protein modellers and engineers.

In particular, our engineering goals were to provide:

• A function that can process multiple sequences of arbitrary lengths,
• Vectorizing the inputs to make it fast.
• A single function call to “evotune” the global weights.

Profiling tf-unirep and jax-unirep

To investigate the performance of the original and our reimplementation, we
used Python’s cProfile facility to identify where the majority of time was spent
in the respective codebases. The functions used for profiling were:

# assume babbler is imported from tf-unirep
def profile_tf_unirep(seqs):

with tf.variable_scope("embed_matrix", reuse=tf.AUTO_REUSE):
b = babbler(batch_size=batch_size, model_path=MODEL_WEIGHT_PATH)
for seq in seqs:

avg, final, cell = b.get_rep(seq)

# assume get_reps is imported from jax-unirep
def profile_jax_unirep(seqs):

get_reps(seqs)

We then used SnakeViz to visualize the code execution profile results.

As is visible from the code execution flamegraph, the unreasonably long time
that it takes to process ten sequences was probably due to the time spent
in TensorFlow’s session. Because of TensorFlow’s compiled nature, we thus
deduced that the majority of the execution time was most likely in the graph
compilation phase. Unfortunately, cProfile could not give us any further detail
beyond the _pywrap_tensorflow_internal.TF_SessionRun_wrapper in the
call graph, meaning we were unable to conveniently peer into the internals of
TF execution without digging further.

On the basis of this profiling, we hypothesized that the cause of speed problems
was graph compilation in TF1.x, and that we could obtain speedups by using a
non-graph-compiled tensor library. There were three choices for us at this point:
TF2.x, PyTorch and JAX, and we chose the latter. Our choice was motivated
by the following reasons:

1. JAX uses the NumPy API, which is idiomatic in the Python scientific
computing community.
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Figure 1: Flame graph of the original UniRep’s implementation, down to 10
levels deep from the profiling function that was called.

Figure 2: Flame graph of the jax-unirep reimplementation, down to 10 levels
deep from the profiling function that was called.
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2. JAX provides automatic differentiation, which would enable us to reimple-
ment weights fine-tuning.

3. JAX encourages functional programming, which makes implementation of
neural network layers different from class-based implementations (e.g. Py-
Torch and Keras). This was an intellectual curiosity point for us.

4. JAX is “eagerly” executable like PyTorch and TF2, which aids debugging.

Besides these a priori motivating reasons, we also uncovered other reasons to
use JAX midway:

1. JAX’s compiled and automatically differentiable primitives (e.g. lax.scan)
allowed us to write performant RNN code.

2. jit and vmap helped with writing performant training loops.

We thus reimplemented the model in JAX/NumPy. (See “Reimplementation
Main Points” section for details.) As is visible from the code profiling APIs that
we used, we designed a cleaner and more expressive API that could be faster and
handle multiple sequences of variable lengths, without introducing the mental
overhead of TensorFlow’s complex scoping syntax. An expressive and clean API
was something that we would expect a computational protein engineer would
desire, as having this API form would lower mental overhead while also hopefully
being faster to execute and write.

A formal speed comparison using the same CPU is available below.

Figure 3: Speed comparison between the original implementation (UniRep) and
our re-implementation (Jax-UniRep). Both one and ten random sequences of
length ten were transformed by both implementations. Our re-implementation
could make use of vectorization in the multi-sequence case, whereas in the original
implementation the sequences were transformed one at a time.

We also needed to check that our reimplementation correctly embeds sequences.
To do so, we ran a dummy sequence through the original and through our
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reimplementation, and compared the computed representations. Because it is
1900-long, a visual check for correctness is a trace of 1900-long embedding.

Figure 4: Comparison of the average hidden state between the implementations
when transforming the same sequence. Because the two traces of the hidden
state dimensions overlapped almost perfectly, a small constant was added to the
UniRep values, such that both traces become visible. The inset shows 50 out of
the total 1900 dimensions.

We also verified that the embeddings calculated using the pre-trained weights
were informative for top models, and trained a model to predict the brightness
of around 50’000 avGFP variants (as the authors did). avGFP is a green-
fluorescent protein that has been extensively studied in the literature. Many
studies generated mutants of this protein, measuring the changes in brightness
for each mutant, to try to understand how protein sequence links to function or
simply to increase brightness.

We binarized brightness values into a “dark” and a “bright” class, and used
scikit-learn’s implementation of logistic regression for classification. Average
performance across 5-fold cross-validation is shown in Figure 3. (avGFP data
came from (Sarkisyan et al. 2016).)

Reimplementation Main Points

Choice of JAX

JAX was our library choice to reimplement it in, because it provides automatic
differentiation machinery (Bradbury et al. 2018) on top of the highly idiomatic
and widely-used NumPy API (Oliphant 2006). JAX uses a number of components
shared with TensorFlow, in particular the use of the XLA (Accelerated Linear
Algebra) library to provide automatic compilation from the NumPy API to GPU
and TPU.
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Figure 5: GFP brightness classification using a logistic regression top model
taking in the 1900-long average hidden state representations of the GFP protein
sequences. Left: Distribution of GFP brightness values in the dataset. Red
dotted line indicates classification breakpoint. Points to the left get labeled as
“Dark”, while points to the right get labeled “Bright”. Right: Confusion matrix
showing the classification accuracy of the model.

Part of the exercise was also pedagogical: by reimplementing the model in a
pure NumPy API, we are forced to become familiar with the mechanics of the
model, and learn the translation between NumPy and TensorFlow operations.
This helps us be flexible in moving between frameworks.

Because JAX provides automatic differentiation and a number of optimization
routines as utility functions, we are thus not prohibited from fine-tuning UniRep
weights through gradient descent.

During the reimplementation, we also discovered that JAX provided convenient
utilities (lax.scan, vmap, and jit) to convert loops into fast, vectorized opera-
tions on tensors. This had a pleasant effect of helping us write more performant
code. We were also forced to reason clearly about the semantic meaning of our
tensor dimensions, to make sure that vecotrization happened over the correct
axes. We commented at every tensor operation step how the shapes of our
input(s) and output(s) should look like. One example from our source:

# layers.py

# Shape annotation
# (:, 10) @ (10, 1900) * (:, 1900) @ (1900, 1900) => (:, 1900)
m = np.matmul(x_t, params["wmx"]) * np.matmul(h_t, params["wmh"])

# (:, 10) @ (10, 7600) * (:, 1900) @ (1900, 7600) + (7600, ) => (:, 7600)
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z = np.matmul(x_t, params["wx"]) + np.matmul(m, params["wh"]) + params["b"]

# ...

Tensor Ops Reimplementation

The process of tensor ops reimplementation were as follows.

Firstly, we started from the RNN cell (mLSTM1900_step), which sequentially
walks down the protein sequence and generates the single step embedding. We
thus end up with a “unit cell” function:

def mlstm1900_step(params, carry, x_t):
h_t, c_t = carry
# Unit cell implementation goes here.
return (h_t, c_t), h_t

Secondly, we wrapped the RNN cell using lax.scan to scan over a single sequence.
This is the mlstm1900_batch function:

def mlstm1900_batch(params, batch):
# code setup goes here.
step_func = partial(mlstm1900_step, params)

# use of lax.scan below:
(h_final, c_final), outputs = lax.scan(

step_func, init=(h_t, c_t), xs=batch
)
return h_final, c_final, outputs

Thirdly, we then used jax.vmap to vectorize the operation over multiple se-
quences, thus generating mlstm1900:

def mlstm1900(params, x):
def mlstm1900_vmappable(x):

return mlstm1900_batch(params=params, batch=x)

h_final, c_final, outputs = vmap(mlstm1900_vmappable)(x)
return h_final, c_final, outputs

Effectively, jax.vmap and lax.scan replace for-loops that we would otherwise
write, which would incur Python type-checking overhead that would accumulate.
lax.scan being effectively a pre-compiled for-loop enables pre-allocation of the
necessary memory needed for backpropagation, which also contributes to a speed-
up. As the for-loop type checking penalty is well-known in Python, a detailed
comparison between jax.vmap, lax.scan, and a vanilla for loop is out of scope
for this paper. The full source code is available in jax_unirep/layers.py.
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Besides reimplementation, we also took care to document the semantic meaning
of tensor dimensions. This had the pleasant side effect of forcing us to order our
tensor dimensions in a sane fashion, such that the “batch” or “sample” dimension
was always the first one, with explicit documentation written to guide a new
user on this convention.

While reimplementing the model, we also generated a test suite for it. Most of
our tests check that the shapes of returned tensors were correct. For the unit
RNN cell, we provided an example-based test with random matrices. The same
applied to the batch function. However, for the full forward model, we provided
a property-based test, which checked that tensor dimensions were correct given
different numbers of samples. These are available in the source tests/ directory.
As a known benefit with software testing, our tests allowed us to rebuild the
full model piece by piece, while always making sure that each new piece did not
break the existing pieces.

Utility Reimplementation

For the get_reps() functionality, we copied quite a bit of source code from the
original, including the original authors’ implementation of embedding a sequence
into an l-by-10 embedding matrix first. However, we added tests to guarantee
that they were robust, as well as technical documentation to clarify how it works.

We did this because one way that deep learning models can be fragile is that the
input tensors can be generated incorrectly but still have the expected shapes.
Thus, though the structure of input tensors might be correct, their semantic
meaning would be completely wrong. (Adversarial examples can be generated
this way.) Thus, the input to the model has to be carefully controlled. Moreover,
input tensors are not the raw-est form of data; for a protein engineer, the protein
sequence is. Thus, having robustly tested functions that generate the input
tensors with correct semantic meaning is crucial to having confidence that the
model works correctly end-to-end.

APIs

Because we expect the model to be used as a Python library, the model source
and weights are packaged together. This makes it much more convenient for
end-users, as the cognitive load of downloading starter weights is eliminated.

The get_reps() function is designed such that it is flexible enough to accept
a single sequence or an iterable of sequences. This also reduces cognitive load
for end-users, some of whom might want to process only a single sequence,
while others might be operating in batch mode. get_reps() also correctly
handles sequences of multiple lengths, further simplifying usage for end-users. In
particular, we spent time ensuring that get_reps() correctly batches sequences
of the same size together before calculating their reps, while returning the reps in
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the same order as the sequences passed in. As usual, tests are provided, bringing
the same degree of confidence as we would expect from tested software.

Lessons Learned

We found the reimplementation exercise to be highly educational. In particular,
we gained a mechanical understanding of the model, and through documenting
the model functions thoroughly with the semantic meaning of tensor dimensions,
we were able to greatly reduce our own confusion when debugging why the model
would fail.

During the reimplementation, we found the “sigmoid” function to be an over-
loaded term. We initially used a sigmoid that had an incorrect slope, yielding
incorrect reps. Switching to the correct sigmoid slope rectified the problem. A
similar lesson was learned while reimplementing the L2 norm of our weights.

Writing automated tests for the model functions, in basically the same way as
we would test software, gave us the confidence that our code changes would
not inadvertently break existing functionality that was also already tested. We
also could then more easily narrow down where failures were happening when
developing new code that interacted with the model (such as providing input
tensors).

Through reimplementation, we took the opportunity to document the semantic
meaning of tensor axes and their order, thus enabling ourselves to better under-
stand the model’s semantic structure, while also enabling others to more easily
participate in the model’s improvement and development.

Competing tensor libraries that do not interoperate seamlessly means data
scientists are forced to learn one (and be mentally locked in). To break free of
framework lock-in, being able to translate between frameworks is highly valuable.
Model reimplementation was highly beneficial for this.

UniRep was implemented in Tensorflow 1.13. It is well-known that TF1’s
computation graph-oriented API does not promote ease of debugging in native
Python. Hence, it may sometimes be difficult to find spots in a TF model where
one could speed up computations. By instead treating neural network layers as
functions that are eagerly evaluated, we could more easily debug model problems,
in particular, the pernicious tensor shape issues.

We believe that the speedup that we observed by reimplementing in JAX came
primarily from eliminating graph compilation overhead and an enhanced version
of the original API design. In anecdotal tests, graph compilation would take
on the order of seconds before any computation occurred. Because the original
implementation’s get_reps function did not accept multiple sequences, one had
to use a for-loop to pass sequence strings through the model. If a user were
not careful, in a worst-case scenario, they would end up essentially paying the
compilation penalty on every loop iteration.
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By preprocessing strings in batches of the same size, and by keeping track of
the original ordering, then we could (1) avoid compilation penalty, and (2)
vectorize much of the tensor operations over the sample axis, before returning
the representation vectors in the original order of the sequences. In ensuring
that the enhanced get_reps API accepted multiple sequences, we also reduced
cognitive load for a Python-speaking protein data scientist who might be seeking
to use the model, as the function safely handles a single string and an iterable
of strings.

An overarching lesson we derive from this experience is as follows. If “models
are software 2.0” (Karpathy 2017), then data science teams might do well to
treat fitted model weights as software artefacts that are shipped to end-users,
and take care to design sane APIs that enable other developers to use it in ways
that minimize cognitive load.

Future Work

As we have, at this point, only implemented the 1900-cell model. Going forth,
we aim to work on implementing the 256- and 64-cell model.

Evotuning is an important task when using UniRep (Alley et al. 2019), and we
aim to provide a convenient API through the evotune() function. Here, we plan
to use Optuna to automatically find the right hyperparameters for finetuning
weights, using the protocol that the original authors describe. This would enable
end-users to “set and forget” the model fitting protocol rather than needing to
babysit a deep learning optimization routine. Like get_reps(), evotune() and
its associated utility functions will have at least an example-based test, if not
also a property-based test associated with them.

Community contributions and enhancements are welcome as well.

Software Repository

jax-unirep is available on GitHub at https://github.com/ElArkk/jax-unirep.
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