1	Genome-scale phylogeny and contrasting modes of genome evolution in the fungal
2	phylum Ascomycota
3	Xing-Xing Shen ^{1,*} , Jacob L. Steenwyk ² , Abigail L. LaBella ² , Dana A. Opulente ³ , Xiaofan
4	Zhou ⁴ , Jacek Kominek ³ , Yuanning Li ² , Marizeth Groenewald ⁵ , Chris Todd Hittinger ³ , and
5	Antonis Rokas ^{2,*}
6	
7	¹ Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop
8	Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou
9	310058, China
10	² Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
11	³ Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, DOE
12	Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, University of
13	Wisconsin-Madison, Madison, WI 53706, USA
14	⁴ Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of
15	Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China
16	Agricultural University, Guangzhou 510642, China
17	⁵ Westerdijk Fungal Biodiversity Institute, 3584 CT, The Netherlands
18	
19	*Correspondence: xingxingshen@zju.edu.cn (XXS) and antonis.rokas@vanderbilt.edu (AR)
20	Keywords: Fungi, evolutionary rate, GC content, phylogenomics, molecular dating, ancestral
21	state reconstruction, genome evolution, budding yeasts, genome size

22 Abstract

23	Ascomycota, the largest and best-studied phylum of fungi, contains three subphyla:
24	Saccharomycotina (budding yeasts), Pezizomycotina (filamentous fungi), and
25	Taphrinomycotina (fission yeasts); organisms from all three subphyla have been invaluable as
26	models in diverse fields (e.g., biotechnology, cell biology, genetics, and medicine). Despite
27	its importance, we still lack a comprehensive genome-scale phylogeny or understanding of
28	the similarities and differences in the mode of genome evolution within this phylum. To
29	address these gaps, we examined 1,107 genomes from Saccharomycotina (332),
30	Pezizomycotina (761), and Taphrinomycotina (14) species to infer the Ascomycota
31	phylogeny, estimate its timetree, and examine the evolution of key genomic properties. We
32	inferred a robust genome-wide phylogeny that resolves several contentious relationships and
33	estimated that the Ascomycota last common ancestor likely originated in the Ediacaran (~563
34	\pm 68 million years ago). Comparisons of genomic properties revealed that Saccharomycotina
35	and Pezizomycotina, the two taxon-rich subphyla, differed greatly in their genome properties.
36	Saccharomycotina typically have smaller genomes, lower GC contents, lower numbers of
37	genes, and higher rates of molecular sequence evolution compared to Pezizomycotina.
38	Ancestral state reconstruction showed that the genome properties of the Saccharomycotina
39	and Pezizomycotina last common ancestors were very similar, enabling inference of the
40	direction of evolutionary change. For example, we found that a lineage-specific acceleration
41	led to a 1.6-fold higher evolutionary rate in Saccharomycotina, whereas the 10% difference in
42	GC content between Saccharomycotina and Pezizomycotina genomes stems from a trend
43	toward AT bases within budding yeasts and toward GC bases within filamentous fungi. These

- 44 results provide a robust evolutionary framework for understanding the diversification of the
- 45 largest fungal phylum.

46 Main

47	The fungal phylum Ascomycota is one of most diverse phyla of eukaryotes with ~65,000
48	known species that represent approximately three quarters of all known species of fungi ¹ . The
49	Ascomycota is divided in three subphyla. The Saccharomycotina subphylum is a lineage of
50	more than 1,000 known species and 12 major clades ² ; commonly referred to as budding
51	yeasts. Species in this lineage include the model organism Saccharomyces cerevisiae ³ and
52	several notable pathogens, such as the human commensal Candida albicans ⁴ and the
53	multidrug-resistant emerging pathogen Candida auris ⁵ . The Pezizomycotina subphylum
54	contains more than 63,000 described species in 13 classes ⁶ ; commonly referred to as
55	filamentous fungi. This subphylum contains several major plant and animal pathogens
56	belonging to diverse genera, such as Fusarium, Aspergillus, Zymoseptoria, and
57	$Magnaporthe^{7-10}$. Finally, the Taphrinomycotina subphylum contains ~140 described species
58	in 5 classes ⁶ ; commonly referred to as fission yeasts. This subphylum contains the model
59	organism <i>Schizosaccharomyces pombe</i> and the human pathogen <i>Pneumocystis jirovecii</i> ^{11,12} .
60	
61	To better understand the evolution of species diversity and ecological lifestyles in
62	Ascomycota fungi, a robust framework of phylogenetic relationships and divergence time
63	estimates is essential. In the last two decades, several studies have aimed to infer the
64	Ascomycota phylogeny, either using a handful of gene markers from hundreds of taxa ^{13–17} or
65	using hundreds of gene markers from tens of taxa ^{18–21} . To date, the most comprehensive
66	"few-markers-from-many-taxa" phylogeny used a 6-gene, 420-taxon (8 Taphrinomycotina,
67	16 Saccharomycotina, and 396 Pezizomycotina) data matrix ¹³ , whereas the most

68	comprehensive genome-scale phylogeny used an 238-gene, 496-taxon (12 Taphrinomycotina,
69	76 Saccharomycotina, and 408 Pezizomycotina) data matrix ²² but was inferred using
70	FastTree, a program that is faster but typically yields phylogenies that have much lower
71	likelihood scores than those obtained by IQ-TREE and RAxML/RAxML-NG ²³ . Key
72	relationships supported by these studies include the monophyly of each subphylum and class
73	and the sister group relationship of subphyla Saccharomycotina and Pezizomycotina. In
74	contrast, relationships among classes are contentious between studies, particularly with
75	respect to relationships between the 13 classes in Pezizomycotina ⁶ . For example, there is
76	disagreement whether the sister group to the rest of classes in the Pezizomycotina is class
77	Pezizomycetes ¹⁴ , class Orbiliomycetes ¹⁷ , or a clade comprised of both ¹⁹ .
78	
79	Previous molecular clock-based estimates of divergence times for Ascomycota have all been
80	based on few-markers-from-many-taxa data matrices ^{14,15,24–26} , resulting in age estimates for
81	key events in Ascomycota evolution that have wide intervals. For example, analysis of a 6-
82	gene, 121-taxon (1 Saccharomycotina, 118 Pezizomycotina, and 2 Taphrinomycotina) data
83	matrix inferred that the origin of the phylum Ascomycota took place 531 million years ago
84	(mya) (95% credibility interval (CI): 671-410 mya) (see their Scenario 4 in Table 3) ¹⁵ , while
85	analysis of a 4-gene, 145-taxon (12 Saccharomycotina, 129 Pezizomycotina, and 4
86	Taphrinomycotina) data matrix inferred that the phylum originated 588 mya (95% CI: 773-
87	487 mya) ¹⁴ . More importantly, the sparser taxon sampling of previous studies has prevented
88	estimation of divergence times of several key divergence events of higher taxonomic ranks ²⁴⁻

89	²⁶ and stymied our understanding of their evolutionary pace. While these studies have
90	significantly advanced our understanding of Ascomycota evolution, a comprehensive,
91	genome-scale phylogeny and timetree stemming from the sampling of hundreds of genes
92	from thousands of taxa from the phylum are still lacking.
93	
94	A robust phylogenomic framework would also facilitate comparisons of genome evolution
95	across the subphyla of Ascomycota. For example, the three subphyla differ in their genome
96	sizes, with the genomes of Pezizomycotina species being notably larger (~42 Mb) than those
97	of Saccharomycotina (~13 Mb) and Taphrinomycotina (~14 Mb) ²⁷ . While several recent
98	studies have analyzed major lineages within the two taxon-rich subphyla,
99	Saccharomycotina ^{2,20,28} and Pezizomycotina ^{29–31} , comparisons of genome evolution across
100	the two subphyla are lacking. For example, a recent analysis of the tempo and mode of
101	genome evolution in 332 Saccharomycotina found evidence of high evolutionary rates and
102	reductive evolution across this subphylum ² , but whether budding yeasts are faster evolving
103	than filamentous fungi remains unknown. However, a recent analysis of 71 Ascomycota
104	genomes showed that Pezizomycotina have much higher levels of gene order divergence than
105	Saccharomycotina ²¹ . Similarly, genome-wide examinations of horizontal gene transfer events
106	in dozens to more than a hundred Ascomycota genomes have revealed that Pezizomycotina
107	acquired significantly higher numbers of genes from prokaryotic donors than
108	Saccharomycotina ^{32,33} . Although these studies have contributed to our understanding of
109	certain evolutionary processes in the phylum, we still know relatively little about the

110 evolution of Ascomycota genomes and their properties.

111

- 112 There are currently more than one thousand genomes from Ascomycota species that are
- 113 publicly available, which span the diversity of Saccharomycotina (332 genomes representing
- all 12 major clades), Pezizomycotina (761 genomes representing 9 / 13 classes), and
- 115 Taphrinomycotina (14 genomes representing 4 / 5 classes) (1,107 genomes as of December
- 116 14, 2018). These 1,107 genomes represent a much larger and representative source of
- 117 genomic data across the entire Ascomycota phylum than previously available, providing a
- 118 unique opportunity to infer a genome-scale phylogeny and timetree for the entire subphylum
- and compare the mode of genome evolution across its subphyla.
- 120

121 **Results and Discussion**

122 A genome-scale phylogeny of the fungal phylum Ascomycota

- 123 To infer a genome-scale phylogeny of Ascomycota fungi, we employed 1,107 publicly
- 124 available genomes from species belonging to Ascomycota (Saccharomycotina: 332;
- 125 Pezizomycotina: 761; Taphrinomycotina: 14) and six outgroups from the sister fungal phylum
- 126 Basidiomycota. All genomes were retrieved from the NCBI GenBank database, ensuring that
- 127 only one genome per species was included (Supplementary Tables 1 and 2). Analysis of
- 128 genome assembly completeness reveals that 1,021/1,113 (~92%) genomes have more than
- 129 90% of the 1,315 full-length BUSCO genes³⁴ (Supplementary Fig. 1).
- 130

131	1,315 BUSCO genes from 1,107 Ascomycota fungi and six outgroups were used to construct
132	a phylogenomic data matrix (see Methods). After constructing the multiple amino acid
133	sequence alignment and trimming ambiguous regions for each of these 1,315 BUSCO genes,
134	we kept only the 815 BUSCO genes that had taxon occupancy of \geq 50% for each subphylum
135	(i.e., \geq 7 Taphrinomycotina, \geq 166 Saccharomycotina, and \geq 381 Pezizomycotina) and whose
136	amino acid sequence alignments were \geq 300 sites in length. In the final set of 815 BUSCO
137	genes, alignment lengths range from 300 to $4,585$ amino acid sites (average = 690) and
138	numbers of taxa range from 851 to $1,098$ (average = $1,051$) (Supplementary Table 3). The
139	final data matrix contains 1,107 taxa, 815 genes, and 562,376 amino acid sites.
140	
141	Inference using concatenation- and coalescent-based approaches yielded a robust,
142	comprehensive phylogeny of the Ascomycota phylum (Fig. 1). The vast majority of
143	internodes in both the concatenation-based (1,103 / 1,110; 99%) and the coalescent-based
144	phylogeny (1,076 / 1,110; 97%) received strong ($\geq 95\%$) support and were congruent
145	between the phylogenies inferred using the two approaches; only 46 / 1,110 (4%) internodes
146	were incongruent between the two phylogenies (Supplementary Figs. 2 and 3).
147	
148	Our higher-level phylogeny of Ascomycota is generally more congruent with previous
149	genome-scale phylogenies ^{2,18,19,35} than with few-genes-from-many-taxa phylogenies ^{13–16} ,
150	particularly with respect to relationships among the nine classes in the subphylum
151	Pezizomycotina. For example, genome-scale studies, including ours, consistently favor a

152	clade consisting of Pezizomycetes and Orbiliomycetes as the sister group to the rest of the
153	Pezizomycotina ^{18,19} , while studies based on a few genes recovered either Orbiliomycetes ^{15–17}
154	or Pezizomycetes ¹⁴ as the sister class to the rest of the Pezizomycotina (Fig. 2a). Our
155	phylogeny also strongly supported the placement of the class Schizosaccharomycetes, which
156	includes the model organism Schizosaccharomyces pombe, as the sister group to the class
157	Pneumocystidomycetes, which contains the human pathogen Pneumocystis jirovecii (Fig.
158	2b). Interestingly, a recent genome-scale study of 84 fungal genomes showed that our result is
159	consistent with the phylogeny inferred using an alignment-free composition vector approach
160	but not with the phylogeny inferred using maximum likelihood, which instead recovered
161	Schizosaccharomycetes as the sister group to Taphrinomycetes ¹⁸ . Finally, both concatenation-
162	and coalescent-based approaches supported the placement of the subphylum
163	Saccharomycotina as the sister group to the subphylum Pezizomycotina (Figs. 1 and 2c). This
164	result is consistent with most previous studies that analyze multiple sequence alignment
165	data ^{16,18,20,36–38} , but not with a recent study that analyzed genomic data with an alignment-free
166	method and placed the subphylum Saccharomycotina as the sister group to the subphylum
167	Taphrinomycotina ³⁹ .
168	

169 To evaluate whether our genome-scale data matrix robustly resolved the three historically 170 contentious branches discussed in the previous paragraph, we quantified the distribution of 171 phylogenetic signal for alternative topologies of these three phylogenetic hypotheses at the 172 level of genes and sites using a maximum likelihood framework presented by Shen et al.⁴⁰.

173	First, we found that phylogenetic support for each of the three branches stemmed from many
174	genes, i.e., it was not dominated by a small number of genes with highly disproportionate
175	influence (Supplementary Table 4). Second, we found that the topology recovered by both
176	concatenation- and coalescent-based approaches in our study had significantly the highest
177	frequencies of supporting genes and supporting sites (G -test), ranging from 0.45 to 0.65, in
178	all three branches examined (Fig. 2a-c, Supplementary Tables 4 and 5). Importantly, none of
179	two alternative conflicting phylogenetic hypotheses for each of the three branches received
180	frequencies of supporting genes and supporting sites that were equal or greater than 1/3
181	(0.33), the value expected if the relationships among the taxa were represented by a
182	polytomy. The very small fraction of branches where concatenation- and coalescent-based
183	inference conflicted (<5%) and the robust support of individual genes and sites for specific
184	historically contentious branches (Fig. 2a-c) suggest that the coupling of genome-scale
185	amounts of data and comprehensive taxon sampling will provide robust resolution to major
186	lineages of the tree of life ^{2,41} .
187	
188	A genome-scale evolutionary timetree of the fungal phylum Ascomycota
189	We next used the robust phylogeny, a relaxed molecular clock approach, and six widely
190	accepted time calibration nodes (see Methods), to infer the timescale of evolution of
191	Ascomycota. We inferred the origin of the phylum to have taken place 563 million years ago
192	(mya) (95% credibility interval (CI): 631–495 mya); the origin of the subphylum
193	Saccharomycotina 438.4 mya (CI: 590–304 mya); the origin of the subphylum

194	Pezizomycotina 407.7 mya (CI: 631–405 mya); and the origin of Taphrinomycotina crown
195	group 530.5 mya (CI: 620–417 mya). Notably, the taxonomic placement of all budding yeasts
196	into a single class, Saccharomycetes, whose origin coincides with the origin of the
197	subphylum Saccharomycotina, means that the last common ancestor of this sole class of
198	budding yeasts is much more ancient than those of any of the 9 classes (based on current
199	taxon sampling) in the subphylum Pezizomycotina (Supplementary Fig. 4 and Supplementary
200	Table 6). For example, the most ancient class in Pezizomycotina is Pezizomycetes, whose
201	origin is dated 247.7 mya (CI: 475-193 mya) (Supplementary Fig. 4 and Supplementary Table
202	6). The other outlier, albeit with much larger confidence intervals, is class Neolectomycetes
203	in Taphrinomycotina, which we estimate to have originated 480.4 mya (CI: 607-191 mya)
204	(Supplementary Fig. 4 and Supplementary Table 6).
205	
206	Comparison of our inferred dates of divergence to those of a recent study using a 4-gene,
207	145-taxon data matrix ¹⁴ shows that our estimates are younger (563 vs 588 mya for
208	Ascomycota and 408 vs 458 mya for Pezizomycotina; sparser taxon sampling in the previous
209	study prevents comparison of dates for Saccharomycotina and Taphrinomycotina). This result
210	is consistent with findings of previous studies ^{42,43} , where inclusion of large numbers of genes
211	was found to also result in younger estimates of divergence times, perhaps because of the
212	influence of larger amounts of data in decreasing the stochastic error involved in date

- estimation. In summary, generation of a genome-scale timetree for more than 1,000
- ascomycete species spanning the diversity of the phylum provides a robust temporal

215 framework for understanding and exploring the origin and diversity of Ascomycota

- 216 lifestyles⁴⁴.
- 217

218 Contrasting modes of genome evolution in fungal phylum Ascomycota

- 219 To begin understanding the similarities and differences in the modes of genome evolution
- 220 between subphyla, we focused on examining the evolution of seven different genomic
- 221 properties between Saccharomycotina (332 taxa) and Pezizomycotina (761 taxa), the two
- 222 most taxon-rich subphyla in Ascomycota (Fig. 3). Specifically, we found that
- 223 Saccharomycotina exhibited a 1.6-fold higher evolutionary rate (on average, 1.80
- substitutions per site in Saccharomycotina vs. 1.12 substitutions per site in Pezizomycotina),
- 1.24-fold lower GC content (40% vs. 50%), 3-fold smaller genome size (13 Mb vs. 39 Mb),
- 1.9-fold lower number of protein-coding genes (5,734 vs. 10,847), 1.3-fold lower number of
- 227 DNA repair genes (41 vs. 54), 1.2-fold higher number of tRNA genes (179 vs. 146), and 1.3-
- fold smaller estimates of non-synonymous to synonymous substitution rate ratio (d_N/d_S)
- 229 (0.053 vs. 0.063), compared to Pezizomycotina (Fig. 3a, Table 1, and Supplementary Table
- 230 7).
- 231

Analysis of standard Pearson's correlations among the seven genomic properties revealed that
two pairs exhibited statistically significant contrasting patterns between Saccharomycotina
and Pezizomycotina. Specifically, evolutionary rate shows negative correlation with GC
content in Saccharomycotina but positive correlation in Pezizomycotina and GC content

236	shows negative correlation with number of DNA repair genes in Saccharomycotina but
237	positive correlation in Pezizomycotina (Fig. 3b). These correlations are largely consistent
238	before (i.e., standard Pearson's correlations) and after (i.e., phylogenetically independent
239	contrasts) accounting for correlations due to phylogeny (Supplementary Table 8).
240	
241	For each of the seven properties, we used our genome-scale phylogeny (Fig. 1) to infer the
242	ancestral character states and reconstruct their evolution in the Saccharomycotina ancestor
243	and the Pezizomycotina ancestor. Comparison of ancestral states along branches on the
244	Saccharomycotina part of the phylogeny to those on the Pezizomycotina part of the
245	phylogeny shown that all genomic properties, except the number of tRNA genes, exhibited
246	different modes of evolution (Fig. 4 and Table 1). For example, most Saccharomycotina
247	branches exhibit evolutionary rates of at least 1.0 amino acid substitutions / site, whereas
248	those of Pezizomycotina exhibit evolutionary rates between 0.7 and 1.4 substitutions / site
249	(Fig. 4a). However, the inferred values for these properties in the Saccharomycotina last
250	common ancestor and in the Pezizomycotina last common ancestor nodes are quite similar.
251	For example, the inferred state values for the Saccharomycotina last common ancestor and
252	the Pezizomycotina last common ancestor are 1.1 and 0.9 substitutions / site for evolutionary
253	rate and 43% and 47% for GC content (Table 1), respectively. Interestingly, the same trends
254	are also observed across lineages, such as Lipomycetaceae, which is the sister group to the
255	rest of the Saccharomycotina, and the clade consisting of Pezizomycetes and Orbiliomycetes,
256	which is the sister group to the rest of the Pezizomycotina (Fig. 4a and b).

257

258	Comparison of the trait values for the seven genome properties between extant
259	Saccharomycotina and Pezizomycotina branches to those of the Saccharomycotina and
260	Pezizomycotina last common ancestors showed that evolutionary rate, GC content, genome
261	size, and number of protein-coding genes were the properties with the highest amounts of
262	evolutionary change (Figs. 3 and 4, Table 1). Ancestral state reconstruction also enabled
263	inference of the direction of evolutionary change for each of the evolutionary properties. For
264	example, the Saccharomycotina and Pezizomycotina last common ancestors, as well as
265	branches in Lipomycetaceae and branches across Pezizomycotina, exhibit similar
266	evolutionary rates, whereas the rest of the nodes and branches in the Saccharomycotina part
267	of the phylogeny exhibit much higher evolutionary rates. This pattern suggests that the higher
268	levels of genomic diversity in Saccharomycotina stem from an acceleration of evolutionary
269	rate that occurred within the subphylum, after the divergence of Lipomycetaceae from the
270	rest of the Saccharomycotina (Fig. 4a and b).
271	
272	Why do Saccharomycotina exhibit higher evolutionary rates compared to Pezizomycotina?
273	Studies in other lineages, such as vertebrate ⁴⁵ and invertebrate ⁴⁶ animals, have previously
274	shown that evolutionary rate is positively associated with generation time. Assuming that
275	mutation rates are equal, species with shorter generation times will replicate their genomes
276	more frequently, accruing more mutations per unit time. While the generation times of most

277 fungi in our phylogeny are unknown, the generation times of model organisms in

278	Saccharomycotina are thought to be shorter than those in Pezizomycotina. For example, the
279	doubling time of the budding yeasts S. cerevisiae and C. albicans under optimal conditions is
280	90 min ^{47,48} , while that of the filamentous fungi <i>Aspergillus nidulans</i> and <i>Neurospora crassa</i> is
281	between 2-3 hours ^{49,50} . An alternative but not mutually exclusive explanation may be that
282	Saccharomycotina have, on average, 13 fewer DNA repair genes (41) than Pezizomycotina
283	(54) (Fig. 3 and Table 1), since it is well established that absence or loss of DNA repair genes
284	increase mutation rates ^{51–53} . The lower numbers of DNA repair genes in budding yeasts, but
285	not their higher evolutionary rate, was also recently reported in a recent analysis of 328
286	ascomycete proteomes by Milo et al. ⁵⁴ . Finally, other life-history traits (e.g., smaller cell size,
287	faster metabolism, and larger population size) that have been associated with variation in the
288	rate of molecular evolution ⁵⁵ might also contribute to higher evolutionary rates of the
289	Saccharomycotina.
290	
291	
	variation in genomic GC content has historically been of broad interest in biology ²⁰ . Average
292	GC content values of different genomic regions (e.g., intergenic regions, protein-coding
292 293	GC content values of different genomic regions (e.g., intergenic regions, protein-coding regions) in Saccharomycotina are consistently lower than those in Pezizomycotina
292 293 294	GC content values of different genomic regions (e.g., intergenic regions, protein-coding regions) in Saccharomycotina are consistently lower than those in Pezizomycotina (Supplementary Fig. 5). Similarly, gene-wise average estimates of GC content showed that all
292 293 294 295	GC content values of different genomic regions (e.g., intergenic regions, protein-coding regions) in Saccharomycotina are consistently lower than those in Pezizomycotina (Supplementary Fig. 5). Similarly, gene-wise average estimates of GC content showed that all 815 BUSCO genes in Saccharomycotina have lower GC content values than those in
292 293 294 295 296	GC content values of different genomic regions (e.g., intergenic regions, protein-coding regions) in Saccharomycotina are consistently lower than those in Pezizomycotina (Supplementary Fig. 5). Similarly, gene-wise average estimates of GC content showed that all 815 BUSCO genes in Saccharomycotina have lower GC content values than those in Pezizomycotina (Supplementary Fig. 6). Moreover, we found that the frequencies of amino
292 293 294 295 296 297	GC content values of different genomic regions (e.g., intergenic regions, protein-coding regions) in Saccharomycotina are consistently lower than those in Pezizomycotina (Supplementary Fig. 5). Similarly, gene-wise average estimates of GC content showed that all 815 BUSCO genes in Saccharomycotina have lower GC content values than those in Pezizomycotina (Supplementary Fig. 6). Moreover, we found that the frequencies of amino acids encoded by GC-rich codons in Saccharomycotina are much lower than those of amino

299	reconstruction of genomic GC content along branches on the phylogeny shows that the
300	Saccharomycotina and Pezizomycotina last common ancestors, as well as branches in
301	Lipomycetaceae and branches in classes Pezizomycetes and Orbiliomycetes, exhibit
302	intermediate GC content around 45%. In contrast, GC content of most branches within the
303	rest of Saccharomycotina (i.e., all major clades of Saccharomycotina, including extant taxa,
304	except Lipomycetaceae) evolved toward 40%, while GC content within the rest of
305	Pezizomycotina (i.e., all classes, including extant taxa, except Pezizomycetes and
306	Orbiliomycetes) evolved toward 50%. This pattern suggests that the evolution of lower levels
307	of GC content in Saccharomycotina occurred after the divergence of Lipomycetaceae from
308	the rest of Saccharomycotina and that the evolution of higher levels of GC content in
309	Pezizomycotina occurred after the divergence of the clade consisting of Pezizomycetes and
310	Orbiliomycetes from the rest of Pezizomycotina (Fig. 4a and b).
311	
312	Why are Pezizomycotina genomes more GC-rich compared to Saccharomycotina genomes?
313	There are two possible explanations. The first one is that mutational biases have skewed the
314	composition of Saccharomycotina genomes toward AT content ⁵⁷ . For example, Steenwyk et
315	al. showed that Hanseniaspora budding yeasts with higher AT content lost a greater number
316	of DNA repair genes than those with lower AT content ⁵³ , suggesting that the loss of DNA
317	repair genes is associated with AT richness. Consistent with these results, we found that
318	Pezizomycotina genomes contain a higher number of DNA repair genes than
319	Saccharomycotina (Fig. 3 and Table 1). The second potential, not necessarily mutually

320	exclusive, explanation is that mutational biases have skewed Pezizomycotina genomes
321	toward GC richness. It was recently shown that increasing GC-biased gene conversion
322	(gBGC), a process associated with recombination that favors the transmission of GC alleles
323	over AT alleles ⁵⁸ , can result in a systematic underestimate of d_N/d_S in birds ⁵⁹ . If this is true for
324	Ascomycota, due to the higher GC content of Pezizomycotina genomes, we would expect
325	that their d_N/d_S would be underestimated due to the higher levels of gBGC compared to
326	Saccharomycotina. Consistent with this expectation, by calculating differences in d_N/d_S
327	before and after accounting for gBGC across 815 codon-based BUSCO genes, we found that
328	the underestimate of d_N/d_S in Pezizomycotina is 2-fold higher than that in Saccharomycotina
329	(Pezizomycotina: average of differences in $d_N/d_S = 0.004$; Saccharomycotina: average of
330	differences in $d_N/d_S = 0.002$) (Supplementary Fig. 8).

331

332 Concluding Remarks

333 In this study, we took advantage of the recent availability of the genome sequences of 1,107

334 Ascomycota species from Saccharomycotina (332), Pezizomycotina (761), and

335 Taphrinomycotina (14) to infer a genome-scale phylogeny and timetree for the entire phylum

- and compare the mode of genome evolution across its subphyla. Leveraging genome-scale
- amounts of data from the most comprehensive taxon set to date enabled us to test the
- 338 robustness of our inference for several contentious branches, potentially resolving
- 339 controversies surrounding key higher-level relationships within the Ascomycota phylum. For
- 340 example, our study robustly supported Saccharomycotina as the sister group to

341	Pezizomycotina and a clade comprised of classes Pezizomycetes and Orbiliomycetes as the
342	sister group to the rest of the Pezizomycotina. Our first genome-scale timetree suggests the
343	last common ancestor of Ascomycota likely originated in the Ediacaran period. Examination
344	of mode of genome evolution revealed that Saccharomycotina, which contains the single
345	currently described class Saccharomycetes, and Pezizomycotina, which contains 13 classes,
346	exhibited greatly contrasting evolutionary processes for seven genomic properties, in
347	particular for evolutionary rate, GC content, and genome size. Our results provide a robust
348	evolutionary framework for understanding the diversification of the largest fungal phylum.

349

350 Methods

351 Data collection

- 352 To collect the greatest possible set of genome representatives of the phylum Ascomycota as
- of 14 December, 2018, we first retrieved the 332 publicly available Saccharomycotina yeast
- 354 genomes (<u>https://doi.org/10.6084/m9.figshare.5854692</u>) from a recent comprehensive
- 355 genomic study of the Saccharomycotina yeasts². We then used "Pezizomycotina" and
- 356 "Taphrinomycotina" as search terms in NCBI's Genome Browser
- 357 (<u>https://www.ncbi.nlm.nih.gov/genome/browse#!/eukaryotes/Ascomycota</u>) to obtain the basic
- 358 information of strain name, assembly accession number, assembly release date, assembly
- 359 level (e.g., contig, scaffold, etc.), and GenBank FTP access number for draft genomes from
- 360 the subphyla Pezizomycotina and Taphrinomycotina, respectively. For species with multiple
- 361 isolates sequenced, we only included the genome of the isolate with the highest assembly
- 362 level and the latest release date. We next downloaded genome assemblies from GenBank data
- 363 via FTP access number (<u>ftp://ftp.ncbi.nlm.nih.gov/genomes/</u>). Collectively, we included 332
- 364 species representing all 12 major clades of the subphylum Saccharomycotina², 761 species
- representing 9 / 13 classes of the subphylum Pezizomycotina^{1,6}, and 14 species representing 4
- 366 / 5 classes of the subphylum Taphrinomycotina^{1,6}. Finally, we used the genomes of six
- 367 representatives of the phylum Basidiomycota as outgroups. Detailed information of
- taxonomy and source of the 1,113 genomes in our study is provided in Supplementary Tables
- 369 1 and 2.

370

371 Assessment of genome assemblies and phylogenomic data matrix construction

372	To assess the quality of each of the 1,113 genome assemblies, we used the Benchmarking
373	Universal Single-Copy Orthologs (BUSCO), version 3.0.2 ³⁴ . Each assembly's completeness
374	was assessed based on the presence / absence of a set of 1,315 predefined orthologs (referred
375	to as BUSCO genes) from 75 genomes in the OrthoDB Version 9 database ⁶⁰ from the
376	Ascomycota database, as described previously ^{28,61} . In brief, for each BUSCO gene, its
377	consensus orthologous protein sequence among the 75 reference genomes was used as query
378	in a tBLASTn search against each genome to identify up to three putative genomic regions,
379	and the gene structure of each putative genomic region was predicted by AUGUSTUS v
380	$3.2.2^{62}$. Next, the sequences of these predicted genes were aligned to the HMM-profile of the
381	BUSCO gene. BUSCO genes in a given genome assembly were considered as single-copy,
382	"full-length" if there was only one complete predicted gene present in the genome,
383	duplicated, "full-length" if there were two or more complete predicted genes present in the
384	genome, "fragmented" if the predicted gene was shorter than 95% of the aligned sequence
385	lengths from the 75 reference species, and "missing" if there was no predicted gene present in
386	the genome.

387

388 To construct the phylogenomic data matrix, we started with the set of 1,315 single-copy, full-389 length BUSCO genes from 1,107 representatives of the phylum Ascomycota and six 390 outgroups. For each BUSCO gene, we first translated nucleotide sequences into amino acid 391 sequences, taking into account the different usage of the CUG codon in Saccharomycotina^{2,63}.

392	Next, we aligned the amino acid sequences using MAFFT v7.299b ⁶⁴ with the options "
393	thread 4automaxiterate 1000" and trimmed amino acid alignments using the trimAl
394	v1.4.rev1565 with the options "-gappyout -colnumbering". We mapped the nucleotide
395	sequences on the trimmed amino acid alignment based on the column numbers in the original
396	alignment and to generate the trimmed codon-based nucleotide alignment. Finally, we
397	removed BUSCO gene alignments whose taxon occupancy (i.e., percentage of taxa whose
398	sequences were present in the trimmed amino acid alignment) was $< 50\%$ for each
399	subphylum (i.e., < 7 Taphrinomycotina, < 166 Saccharomycotina, and < 381 Pezizomycotina)
400	or whose trimmed alignment length was < 300 amino acid sites. These filters resulted in the
401	retention of 815 BUSCO gene alignments, each of which had \geq 50% taxon occupancy for
402	each subphylum and alignment length \geq 300 amino acid sites.
403	
403 404	Phylogenetic analysis
403 404 405	Phylogenetic analysis For each of 815 BUSCO genes, we first inferred its best-fitting amino acid substitution model
403 404 405 406	Phylogenetic analysis For each of 815 BUSCO genes, we first inferred its best-fitting amino acid substitution model using IQ-TREE multi-thread version 1.6.8 ⁶⁶ with options "-m TEST -mrate G4" with the
403 404 405 406 407	Phylogenetic analysis For each of 815 BUSCO genes, we first inferred its best-fitting amino acid substitution model using IQ-TREE multi-thread version 1.6.8 ⁶⁶ with options "-m TEST -mrate G4" with the Bayesian information criterion (BIC). We then inferred best-scoring maximum likelihood
403 404 405 406 407 408	Phylogenetic analysis For each of 815 BUSCO genes, we first inferred its best-fitting amino acid substitution model using IQ-TREE multi-thread version 1.6.8 ⁶⁶ with options "-m TEST -mrate G4" with the Bayesian information criterion (BIC). We then inferred best-scoring maximum likelihood (ML) gene tree under 10 independent tree searches using IQ-TREE. The detailed parameters
403 404 405 406 407 408 409	Phylogenetic analysisFor each of 815 BUSCO genes, we first inferred its best-fitting amino acid substitution modelusing IQ-TREE multi-thread version 1.6.8 66 with options "-m TEST -mrate G4" with theBayesian information criterion (BIC). We then inferred best-scoring maximum likelihood(ML) gene tree under 10 independent tree searches using IQ-TREE. The detailed parametersfor running each gene were kept in log files (see the Figshare repository). We inferred the
403 404 405 406 407 408 409 410	Phylogenetic analysis For each of 815 BUSCO genes, we first inferred its best-fitting amino acid substitution model using IQ-TREE multi-thread version 1.6.8 ⁶⁶ with options "-m TEST -mrate G4" with the Bayesian information criterion (BIC). We then inferred best-scoring maximum likelihood (ML) gene tree under 10 independent tree searches using IQ-TREE. The detailed parameters for running each gene were kept in log files (see the Figshare repository). We inferred the concatenation-based ML tree using IQ-TREE on a single node with 32 logical cores under a
 403 404 405 406 407 408 409 410 411 	Phylogenetic analysisFor each of 815 BUSCO genes, we first inferred its best-fitting amino acid substitution modelusing IQ-TREE multi-thread version 1.6.8 ⁶⁶ with options "-m TEST -mrate G4" with theBayesian information criterion (BIC). We then inferred best-scoring maximum likelihood(ML) gene tree under 10 independent tree searches using IQ-TREE. The detailed parametersfor running each gene were kept in log files (see the Figshare repository). We inferred theconcatenation-based ML tree using IQ-TREE on a single node with 32 logical cores under asingle "LG +G4" model with the options "-seed 668688 -nt 32 -mem 220G -m LG+G4 -bb
 403 404 405 406 407 408 409 410 411 412 	Phylogenetic analysisFor each of 815 BUSCO genes, we first inferred its best-fitting amino acid substitution modelusing IQ-TREE multi-thread version 1.6.8 ⁶⁶ with options "-m TEST -mrate G4" with theBayesian information criterion (BIC). We then inferred best-scoring maximum likelihood(ML) gene tree under 10 independent tree searches using IQ-TREE. The detailed parametersfor running each gene were kept in log files (see the Figshare repository). We inferred theconcatenation-based ML tree using IQ-TREE on a single node with 32 logical cores under asingle "LG +G4" model with the options "-seed 668688 -nt 32 -mem 220G -m LG+G4 -bb1000", as 404 out of 815 genes favored "LG +G4" ^{67,68} as best-fitting model (see

414	ASTRAL-III version 4.10.2 ^{69,70} using the set of 815 individual ML gene trees. The reliability
415	of each internal branch was evaluated using 1,000 ultrafast bootstrap replicates ⁷¹ and local
416	posterior probability ⁷² , in the concatenation- and coalescence-based species trees,
417	respectively. We visualized phylogenetic trees using the R package ggtree v1.10.5 ⁷³ .
418	
419	We used the non-Bayesian RelTime method, as implemented in the command line version of
420	MEGA7 ⁷⁴ to estimate divergence times. The very large size of our data matrix, both in terms
421	of genes as well as in terms of taxa, prohibited the use of computationally much more
422	demanding methods, such as the Bayesian MCMCTree method ^{75,76} . The concatenation-based
423	ML tree with branch lengths was used as the input tree. Six time calibration nodes, which
424	were retrieved from the TimeTree database ⁷⁷ , were used for molecular dating analyses: the
425	Saccharomyces cerevisiae – Saccharomyces uvarum split (14.3 mya – 17.94 mya), the
426	Saccharomyces cerevisiae - Kluyveromyces lactis split (103 mya – 126 mya), the
427	Saccharomyces cerevisiae - Candida albicans split (161 mya – 447 mya), the origin of the
428	subphylum Saccharomycotina (304 mya – 590 mya), the Saccharomyces cerevisiae –
429	Saitoella complicata split (444 mya – 631 mya), and the origin of the subphylum
430	Pezizomycotina (at least 400 mya) based on the <i>Paleopyrenomycites devonicus</i> fossil ⁷⁸ .
431	
432	Examination of seven genome properties
433	As the subphylum Taphrinomycotina (No. species = 14) has a much smaller number of
434	species than the subphylum Saccharomycotina (No. species = 332) and the subphylum
435	Pezizomycotina (No. species = 761) in our dataset, we focused our analyses on the

436	comparisons of seven genome properties (evolutionary rate, GC content, genome size,
437	number of genes, number of DNA repair genes, number of tRNA genes, and d_N/d_S) between
438	Saccharomycotina and Pezizomycotina. Specifically, for a given taxon, 1) evolutionary rate is
439	a sum of path distances from the most common ancestor of the subphyla Saccharomycotina
440	and Pezizomycotina to its tip on the concatenation-based ML tree (Fig. 1); 2) GC content is
441	the percentage of guanine-cytosine nucleotides in genome; 3) genome size is the total number
442	of base pairs in genome in megabases (Mb); 4) number of genes is the number of protein-
443	coding genes in genome. The gene structure was predicted with AUGUSTUS v3.3.1 79 on
444	Aspergillus fumigatus and Saccharomyces cerevisiae S288C trained models for
445	Pezizomycotina and Saccharomycotina, respectively; 5) number of DNA repair genes was
446	estimated by counting the number of unique protein-coding genes with GO terms related to
447	DNA repair using InterProscan version 5 ⁸⁰ ; 6) number of tRNA genes is the number of tRNA
448	genes inferred to be present using the tRNAscan-SE 2.0 program ⁸¹ ; and 7) d_N/d_S was
449	estimated by calculating the average of the ratio of the expected numbers of non-synonymous
450	(d_N) and synonymous substitutions (d_S) across 815 trimmed codon-based BUSCO gene
451	alignments under the YN98 (F3X4) ⁸² codon model and the free ratio model using bppml and
452	MapNH in the bio++ libraries ⁸³ , following the study by Bolívar et al. ⁵⁹ .
453	
454	Statistical analyses

All statistical analyses were performed in R v. 3.4.2 (R core team 2017). Pearson's correlation
coefficient was used to test for correlations among seven variables. To account for phylogenetic
relationships of species in correlation analysis, we used the R package ape v5.1⁸⁴ in order to

458 compute phylogenetically independent contrasts following the method described by
459 Felsenstein⁸⁵.

460

461 Ancestral state reconstruction

- 462 To reconstruct ancestral character states for each of seven continuous properties, we used the
- 463 R package phytools v0.6.44 function *contMap* ⁸⁶ to infer ancestral character states across
- 464 internal nodes using the maximum likelihood method with the function *fastAnc* and to
- 465 interpolate the states along each edge using equation [2] of Felsenstein⁸⁵. The input tree was
- 466 derived from the concatenation-based ML with branch lengths, which was then pruned to

467 keep the 1,093 taxa from the subphyla Pezizomycotina and Saccharomycotina.

468

469 **Data availability**

- 470 All genome assemblies and proteomes are publicly available in the Zenodo repository:
- 471 https://doi.org/10.5281/zenodo.3783970. Multiple sequence alignments, phylogenetic trees,
- 472 trait ancestral character state reconstructions, log files, R codes, and custom Perl scripts are
- 473 available on the figshare repository (https://doi.org/10.6084/m9.figshare.12196149;
- 474 https://figshare.com/articles/
- 475 Phylogenomics_and_contrasting_modes_of_genome_evolution_in_Ascomycota/12196149 -
- 476 please note that this link will become active upon publication).

477 **References**

- 478 1. Heitman, J. et al. The Fungal Kingdom. (ASM Press, 2017).
- 479 2. Shen, X.-X. et al. Tempo and Mode of Genome Evolution in the Budding Yeast
- 480 Subphylum. *Cell* **175**, 1533–1545 (2018).
- 481 3. Peter, J. *et al.* Genome evolution across 1,011 *Saccharomyces cerevisiae* isolates.
- 482 *Nature* **556**, 339–344 (2018).
- 483 4. Odds, F. C., Brown, A. J. P. & Gow, N. A. R. Candida albicans genome sequence: a
- 484 platform for genomics in the absence of genetics. *Genome Biol.* **5**, 230 (2004).
- 485 5. Sharma, C., Kumar, N., Pandey, R., Meis, J. F. & Chowdhary, A. Whole genome
- 486 sequencing of emerging multidrug resistant *Candida auris* isolates in India
- 487 demonstrates low genetic variation. *New Microbes New Infect.* **13**, 77–82 (2016).
- 488 6. Spatafora, J. W. et al. The Fungal Tree of Life: from Molecular Systematics to
- 489 Genome-Scale Phylogenies. *Microbiol. Spectr.* 5, (2017).
- 490 7. Ma, L.-J. et al. Comparative genomics reveals mobile pathogenicity chromosomes in
- 491 *Fusarium. Nature* **464**, 367–373 (2010).
- 492 8. Plissonneau, C., Hartmann, F. E. & Croll, D. Pangenome analyses of the wheat
- 493 pathogen *Zymoseptoria tritici* reveal the structural basis of a highly plastic eukaryotic
- 494 genome. *BMC Biol.* **16**, 5 (2018).
- 495 9. Dean, R. A. *et al.* The genome sequence of the rice blast fungus *Magnaporthe grisea*.
 496 *Nature* 434, 980–986 (2005).
- 497 10. Rokas, A., Mead, M. E., Steenwyk, J. L., Oberlies, N. H. & Goldman, G. H. Evolving
- 498 moldy murderers: *Aspergillus* section *Fumigati* as a model for studying the repeated

499		evolution of fungal pathogenicity. PLOS Pathog. 16, e1008315 (2020).
500	11.	Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415,
501		871–880 (2002).
502	12.	Ma, L. et al. Genome analysis of three Pneumocystis species reveals adaptation
503		mechanisms to life exclusively in mammalian hosts. Nat. Commun. 7, 10740 (2016).
504	13.	Schoch, C. L. et al. The Ascomycota Tree of Life: A Phylum-wide Phylogeny
505		Clarifies the Origin and Evolution of Fundamental Reproductive and Ecological Traits.
506		Syst. Biol. 58, 224–239 (2009).
507	14.	Beimforde, C. et al. Estimating the Phanerozoic history of the Ascomycota lineages:
508		Combining fossil and molecular data. Mol. Phylogenet. Evol. 77, 307-319 (2014).
509	15.	Prieto, M. & Wedin, M. Dating the Diversification of the Major Lineages of
510		Ascomycota (Fungi). PLoS One 8, e65576 (2013).
511	16.	James, T. Y. et al. Reconstructing the early evolution of Fungi using a six-gene
512		phylogeny. Nature 443, 818-822 (2006).
513	17.	Spatafora, J. W. et al. A five-gene phylogeny of Pezizomycotina. Mycologia 98, 1018-
514		1028 (2006).
515	18.	McCarthy, C. G. P. & Fitzpatrick, D. A. Multiple Approaches to Phylogenomic
516		Reconstruction of the Fungal Kingdom. in Advances in Genetics 211-266 (Elsevier
517		Inc., 2017).
518	19.	Nagy, L. G. & Szöllősi, G. Fungal Phylogeny in the Age of Genomics: Insights Into
519		Phylogenetic Inference From Genome-Scale Datasets. in Advances in Genetics 49–72

- 520 (2017).
- 521 20. Riley, R. et al. Comparative genomics of biotechnologically important yeasts. Proc.
- 522 Natl. Acad. Sci. USA 113, 9882–9887 (2016).
- 523 21. Rajeh, A., Lv, J. & Lin, Z. Heterogeneous rates of genome rearrangement contributed
- 524 to the disparity of species richness in Ascomycota. *BMC Genomics* **19**, 282 (2018).
- 525 22. Higgins, S. A., Schadt, C. W., Matheny, P. B. & Löffler, F. E. Phylogenomics Reveal
- 526 the Dynamic Evolution of Fungal Nitric Oxide Reductases and Their Relationship to
- 527 Secondary Metabolism. *Genome Biol. Evol.* **10**, 2474–2489 (2018).
- 528 23. Zhou, X., Shen, X.-X., Hittinger, C. T. & Rokas, A. Evaluating Fast Maximum
- 529 Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets.
- 530 *Mol. Biol. Evol.* **35**, 486–503 (2018).
- 531 24. Taylor, J. W. & Berbee, M. L. Dating divergences in the Fungal Tree of Life: review

532 and new analyses. *Mycologia* **98**, 838–849 (2006).

- 533 25. Padovan, A. C. B., Sanson, G. F. O., Brunstein, A. & Briones, M. R. S. Fungi
- 534 Evolution Revisited: Application of the Penalized Likelihood Method to a Bayesian
- 535 Fungal Phylogeny Provides a New Perspective on Phylogenetic Relationships and
- 536 Divergence Dates of Ascomycota Groups. J. Mol. Evol. 60, 726–735 (2005).
- 537 26. Gueidan, C., Ruibal, C., de Hoog, G. S. & Schneider, H. Rock-inhabiting fungi
- 538 originated during periods of dry climate in the late Devonian and middle Triassic.
- 539 *Fungal Biol.* **115**, 987–996 (2011).
- 540 27. Stajich, J. E. Fungal Genomes and Insights into the Evolution of the Kingdom.

541 Microbiol.	Spectr. 5,	(2017).
----------------	------------	---------

542	28.	Shen, XX. et al. Reconstructing the Backbone of the Saccharomycotina Yeast
543		Phylogeny Using Genome-Scale Data. G3 Genes Genomes Genetics 6, 3927–3939
544		(2016).
545	29.	Kjærbølling, I. et al. A comparative genomics study of 23 Aspergillus species from
546		section Flavi. Nat. Commun. 11, 1106 (2020).
547	30.	Haridas, S. et al. 101 Dothideomycetes genomes: A test case for predicting lifestyles
548		and emergence of pathogens. Stud. Mycol. 96, 141-153 (2020).
549	31.	Okagaki, L. H., Sailsbery, J. K., Eyre, A. W. & Dean, R. A. Comparative genome
550		analysis and genome evolution of members of the magnaporthaceae family of fungi.
551		BMC Genomics 17, 135 (2016).
552	32.	Marcet-Houben, M. & Gabaldón, T. Acquisition of prokaryotic genes by fungal
553		genomes. Trends Genet. 26, 5-8 (2010).
554	33.	Wisecaver, J. H., Slot, J. C. & Rokas, A. The Evolution of Fungal Metabolic
555		Pathways. PLoS Genet. 10, e1004816 (2014).
556	34.	Waterhouse, R. M. et al. BUSCO Applications from Quality Assessments to Gene
557		Prediction and Phylogenomics. Mol. Biol. Evol. 35, 543-548 (2018).
558	35.	Wang, H., Xu, Z., Gao, L. & Hao, B. A fungal phylogeny based on 82 complete
559		genomes using the composition vector method. BMC Evol. Biol. 9, 195 (2009).
560	36.	Naranjo-Ortiz, M. A. & Gabaldón, T. Fungal evolution: diversity, taxonomy and
561		phylogeny of the Fungi. Biol. Rev. 94, 2101–2137 (2019).

562	37.	Floudas, D. et al. The Paleozoic Origin of Enzymatic Lignin Decomposition
563		Reconstructed from 31 Fungal Genomes. Science 336, 1715–1719 (2012).
564	38.	Robbertse, B., Reeves, J. B., Schoch, C. L. & Spatafora, J. W. A phylogenomic
565		analysis of the Ascomycota. Fungal Genet. Biol. 43, 715–725 (2006).
566	39.	Choi, J. & Kim, SH. A genome Tree of Life for the Fungi kingdom. Proc. Natl.
567		Acad. Sci. USA 201711939 (2017).
568	40.	Shen, XX., Hittinger, C. T. & Rokas, A. Contentious relationships in phylogenomic
569		studies can be driven by a handful of genes. Nat. Ecol. Evol. 1, 0126 (2017).
570	41.	One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and
571		the phylogenomics of green plants. Nature 574, 679-685 (2019).
572	42.	Shen, XX. et al. Enlarged Multilocus Data set Provides Surprisingly Younger Time
573		of Origin for the Plethodontidae, the Largest Family of Salamanders. Syst. Biol. 65,
574		66–81 (2016).
575	43.	Liu, L. et al. Genomic evidence reveals a radiation of placental mammals
576		uninterrupted by the KPg boundary. Proc. Natl. Acad. Sci. USA 114, E7282-E7290
577		(2017).
578	44.	Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals
579		clock-like speciation and diversification. Mol. Biol. Evol. 32, 835-845 (2015).
580	45.	Welch, J. J., Bininda-Emonds, O. R. & Bromham, L. Correlates of substitution rate
581		variation in mammalian protein-coding sequences. BMC Evol. Biol. 8, 53 (2008).
582	46.	Thomas, J. A., Welch, J. J., Lanfear, R. & Bromham, L. A Generation Time Effect on

583		the Rate of Molecular Evolution in Invertebrates. Mol. Biol. Evol. 27, 1173–1180
584		(2010).
585	47.	Salari, R. & Salari, R. Investigation of the Best Saccharomyces cerevisiae Growth
586		Condition. <i>Electron. physician</i> 9, 3592–3597 (2017).
587	48.	London, R. et al. An Automated System for Rapid Non-Destructive Enumeration of
588		Growing Microbes. PLoS One 5, e8609 (2010).
589	49.	TRINCI, A. P. J. A Kinetic Study of the Growth of Aspergillus nidulans and Other
590		Fungi. J. Gen. Microbiol. 57, 11–24 (1969).
591	50.	Gillie, O. J. Growth of Neurospora crassa in Unstirred Liquid Cultures. J. Gen.
592		<i>Microbiol.</i> 51 , 179–184 (1968).
593	51.	Tubbs, A. & Nussenzweig, A. Endogenous DNA Damage as a Source of Genomic
594		Instability in Cancer. Cell 168, 644–656 (2017).
595	52.	Lang, G. I., Parsons, L. & Gammie, A. E. Mutation Rates, Spectra, and Genome-Wide
596		Distribution of Spontaneous Mutations in Mismatch Repair Deficient Yeast. G3
597		<i>Genes</i> <i>Genetics</i> 3 , 1453–1465 (2013).
598	53.	Steenwyk, J. L. et al. Extensive loss of cell-cycle and DNA repair genes in an ancient
599		lineage of bipolar budding yeasts. PLOS Biol. 17, e3000255 (2019).
600	54.	Milo, S., Misgav, R. H., Hazkani-Covo, E. & Covo, S. Limited DNA repair gene
601		repertoire in Ascomycete yeast revealed by comparative genomics. Genome Biol. Evol.
602		11, 3409–3423 (2019).
603	55.	Bromham, L. The genome as a life-history character: why rate of molecular evolution

604		varies between mammal species. Philos. Trans. R. Soc. B Biol. Sci. 366, 2503-2513				
605		(2011).				
606	56.	Šmarda, P. et al. Ecological and evolutionary significance of genomic GC content				
607		diversity in monocots. Proc. Natl. Acad. Sci. USA 111, E4096-E4102 (2014).				
608	57.	Zhu, Y. O., Siegal, M. L., Hall, D. W. & Petrov, D. A. Precise estimates of mutation				
609		rate and spectrum in yeast. Proc. Natl. Acad. Sci. USA 111, E2310-E2318 (2014).				
610	58.	Liu, H. et al. Tetrad analysis in plants and fungi finds large differences in gene				
611		conversion rates but no GC bias. Nat. Ecol. Evol. 2, 164–173 (2018).				
612	59.	Bolívar, P., Guéguen, L., Duret, L., Ellegren, H. & Mugal, C. F. GC-biased gene				
613		conversion conceals the prediction of the nearly neutral theory in avian genomes.				
614		<i>Genome Biol.</i> 20 , 5 (2019).				
615	60.	Zdobnov, E. M. et al. OrthoDB v9.1: cataloging evolutionary and functional				
616		annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic				
617		Acids Res. 45, D744–D749 (2017).				
618	61.	Steenwyk, J. L., Shen, XX., Lind, A. L., Goldman, G. H. & Rokas, A. A Robust				
619		Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the				
620		Genera Aspergillus and Penicillium. MBio 10, 1–25 (2019).				
621	62.	Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new				
622		intron submodel. Bioinformatics 19 Suppl 2, ii215-ii225 (2003).				
623	63.	Krassowski, T. et al. Evolutionary instability of CUG-Leu in the genetic code of				
624		budding yeasts. Nat. Commun. 9, 1887 (2018).				

625	64.	Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:					
626		Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).					
627	65.	Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for					
628		automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics					
629		25 , 1972–1973 (2009).					
630	66.	Nguyen, LT., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and					
631		Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies.					
632		Mol. Biol. Evol. 32 , 268–274 (2015).					
633	67.	Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol.					
634		<i>Biol. Evol.</i> 25 , 1307–1320 (2008).					
635	68.	Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with					
636		variable rates over sites: Approximate methods. J. Mol. Evol. 39, 306-314 (1994).					
637	69.	Mirarab, S. et al. ASTRAL: genome-scale coalescent-based species tree estimation.					
638		<i>Bioinformatics</i> 30 , i541–i548 (2014).					
639	70.	Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time					
640		species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19,					
641		153 (2018).					
642	71.	Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast Approximation for					
643		Phylogenetic Bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).					
644	72.	Sayyari, E. & Mirarab, S. Fast Coalescent-Based Computation of Local Branch					
645		Support from Quartet Frequencies. Mol. Biol. Evol. 33, 1654–1668 (2016).					

646	73.	Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. TY. ggtree: an r package for
647		visualization and annotation of phylogenetic trees with their covariates and other
648		associated data. Methods Ecol. Evol. 8, 28-36 (2017).
649	74.	Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics
650		Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
651	75.	Mello, B., Tao, Q., Tamura, K. & Kumar, S. Fast and Accurate Estimates of
652		Divergence Times from Big Data. Mol. Biol. Evol. 34, 45-50 (2017).
653	76.	Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24,
654		1586–1591 (2007).
655	77.	Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: A Resource for
656		Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 34, 1812–1819 (2017).
657	78.	Taylor, T. N., Hass, H., Kerp, H., Krings, M. & Hanlin, R. T. Perithecial ascomycetes
658		from the 400 million year old Rhynie chert: an example of ancestral polymorphism.
659		<i>Mycologia</i> 97 , 269–285 (2005).
660	79.	Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically
661		mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637-
662		644 (2008).
663	80.	Jones, P. et al. InterProScan 5: genome-scale protein function classification.
664		<i>Bioinformatics</i> 30 , 1236–1240 (2014).
665	81.	Lowe, T. M. & Chan, P. P. tRNAscan-SE On-line: integrating search and context for
666		analysis of transfer RNA genes. Nucleic Acids Res. 44, W54-7 (2016).

667	82.	Yang, Z. & Nielsen,	, R. Synonymous	and nonsynonymous rate	variation in nuclear
-----	-----	---------------------	-----------------	------------------------	----------------------

- 668 genes of mammals. J. Mol. Evol. 46, 409–418 (1998).
- 669 83. Guéguen, L. et al. Bio++: Efficient Extensible Libraries and Tools for Computational
- 670 Molecular Evolution. *Mol. Biol. Evol.* **30**, 1745–1750 (2013).
- 671 84. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and
- evolutionary analyses in R. *Bioinformatics* **35**, 526–528 (2019).
- 673 85. Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
- 674 86. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other
- 675 things). *Methods Ecol. Evol.* **3**, 217–223 (2012).
- 676 87. Steenwyk, J. L. & Rokas, A. Treehouse: a user-friendly application to obtain subtrees
- 677 from large phylogenies. *BMC Res. Notes* **12**, 541 (2019).

678

679 Acknowledgments

- 680 We thank members of the Rokas and Hittinger labs, especially members of the Y1000+
- 681 Project for constructive feedback.
- 682

683 Funding Statement

- 684 This work was conducted in part using the resources of the Advanced Computing Center for
- 685 Research and Education (ACCRE) at Vanderbilt University. X.X.S. was supported by the
- 686 start-up grant from the "Hundred Talents Program" at Zhejiang University and the
- 687 Fundamental Research Funds for the Central Universities (No. is appending). X.Z. was
- 688 supported by the National Key Project for Basic Research of China
- 689 (973 Program, No. 2015CB150600) and the open fund from Key Laboratory of Ministry of
- 690 Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science,
- 691 Fujian Agriculture and Forestry University (GBMUC-2018-005). M.G. was supported by the
- 692 Royal Netherlands Academy of Arts and Sciences. C.T.H. was supported by the National
- 693 Science Foundation (DEB-1442148), the USDA National Institute of Food and Agriculture
- 694 (Hatch Project No. 1020204), in part by the DOE Great Lakes Bioenergy Research Center
- 695 (DOE BER Office of Science No. DE-SC0018409), the Pew Charitable Trusts (Pew Scholar
- 696 in the Biomedical Sciences), and the Office of the Vice Chancellor for Research and Graduate
- 697 Education with funding from the Wisconsin Alumni Research Foundation (H. I. Romnes
- 698 Faculty Fellow). J.L.S. and A.R. were supported by the Howard Hughes Medical Institute
- 699 through the James H. Gilliam Fellowships for Advanced Study program. A.R. was supported
- 700 by the National Science Foundation (DEB-1442113), the Guggenheim Foundation, and the

- 701 Burroughs Wellcome Fund.
- 702

703 Author contributions

- 704 Study conception and design: X.X.S., C.T.H., A.R., Acquisition of data: X.X.S.; Analysis
- and interpretation of data: X.X.S., J.L.S., A.L.L., D.A.O., X.Z., J.K., Y.L., M.G., C.T.H.,
- 706 A.R.; Drafting of manuscript: X.X.S., A.R.; Critical revision: all authors.
- 707

708 Competing interests

709 The authors declare no competing financial interests.

710 Figure Legends

Fig. 1 Maximum likelihood (ML) phylogeny of 1,107 taxa in the fungal phylum

- 712 Ascomycota. The concatenation-based ML phylogeny (lnL= -269043834.145) was inferred
- from a set of 815 BUSCO amino acid genes (total 56, 2376 sites) under a single LG + G4
- substitution model using IQ-TREE multicore version 1.5.1. The number of species sampled
- in each subphylum is given in parentheses. Internal branch labels are acronyms for 12 major
- clades in the subphylum Saccharomycotina and 9 classes in the subphylum Pezizomycotina.
- 717 The bar next to each species indicates the guanine-cytosine (GC) content. On average,
- 718 lineages in the subphylum Saccharomycotina have significantly lower GC content (49.6% vs.

719 40.6%; Wilcoxon rank-sum test; *P*-value = 3.07×10^{-103}) but higher evolutionary rate (1.80

- substitutions per site vs. 1.12 substitutions per site; Wilcoxon rank-sum test; P-value = 6.57 x
- 10⁻¹²⁶) compared to lineages in the subphylum Pezizomycotina. The complete phylogenetic
- relationships of 1,107 taxa are given in Supplementary Fig. 2 and in the Figshare repository.
- For easy determination of the relationships among any subset of taxa, the phylogeny is also
- 724 available through Treehouse⁸⁷.
- 725

Fig. 2 Distribution of phylogenetic signal for three historically contentious relationships within Ascomycota. For each relationship / internal branch (a: which class(es) is the sister group to the rest of the Pezizomycotina?; b: what is the relationship among three classes Schizosaccharomycetes, Pneumocystidomycetes, and Taphrinomycetes in the subphylum Taphrinomycotina?; c: what is the relationship among three subphyla Pezizomycotina, Saccharomycotina, and Taphrinomycotina in the phylum Ascomycota?), we applied the

732	framework presented by Shen et al.40 to examine proportions of genes (left panel) and sites
733	(right panel) supporting each of three competing hypotheses (topology 1 or T1 in red,
734	topology 2 or T2 in green, and topology 3 or T3 in yellow). Note that both concatenation- and
735	coalescent-based approaches supported T1 in our study. Dashed horizontal lines on 1/3 y-axis
736	value denote expectation of proportion of genes / sites under a polytomy scenario. The G -test
737	was used to test if the sets of three values are significantly different (***: <i>P</i> -value ≤ 0.001).
738	All values are given in Supplementary Tables 4 and 5. Input and output files associated with
739	phylogenetic signal estimation are also deposited in the Figshare repository.
740	
741	Fig. 3 Contrasting patterns for seven genomic properties between Pezizomycotina and
742	Saccharomycotina. a, For each species in Pezizomycotina (colored in red, n=761) and
743	Saccharomycotina (colored in green, n=332), we calculated evolutionary rate, GC content,
744	genome size, number of protein-coding genes, number of DNA repair genes, number of tRNA
745	genes, and d_N/d_S (see the Methods section for details). The Wilcoxon rank-sum test was used
746	to test if the sets of values in two subphyla are significantly different. b , Pairwise standard
747	Pearson's correlation coefficient among pairs of the seven genomic properties were
748	conducted using R 3.4.2 for Pezizomycotina (lower diagonal) and Saccharomycotina (upper
749	diagonal), respectively. For each cell, the top value corresponds to P-value (NS: P-
750	value >0.05; *: <i>P</i> -value ≤ 0.05 ; **: <i>P</i> -value ≤ 0.01 ; ***: <i>P</i> -value ≤ 0.001), whereas the
751	bottom value corresponds to Pearson's coefficient value. Orange cells denote instances where
752	correlation trends in Pezizomycotina and Saccharomycotina are in opposite directions,

753	whereas blue cells denote instances where the trends are in the same direction. The detailed
754	values of all seven properties in Pezizomycotina and Saccharomycotina are given in
755	Supplementary Table 7. The correlations among these seven properties are largely consistent
756	before (i.e., standard Pearson's correlations) and after (i.e., phylogenetically independent
757	contrasts) accounting for correlations due to phylogeny (see Supplementary Table 8).
758	
759	
760	Fig. 4 Contrasting modes of genome evolution in Pezizomycotina and
761	Saccharomycotina. a, For each of the seven genomic properties examined (see the Methods
762	section for details), we reconstructed them as continuous traits on the species phylogeny
763	(Fig. 1) and visualized their ancestral states with the R package phytools v0.6.44 86 . Heatmap
764	bars denote ancestral state values from small (blue) to large (red). Three ancestral state values
765	next to three red dots are shown for the ancestor of the subphyla Pezizomycotina and
766	Saccharomycotina, the ancestor of the subphylum Pezizomycotina, and the ancestor of the
767	subphylum Saccharomycotina, respectively. b, Phylogeny key showing the placement of the
768	21 nodes representing the last common ancestors of the 12 major clades in the subphylum
769	Saccharomycotina and of the 9 classes in the subphylum Pezizomycotina; the 21 nodes are
770	indicated by the red dots. The orders of branches in a are identical to those in b .
771	

Duonoutz	Extant Saccharomycotina*	Extant Pezizomycotina*	Saccharomycotina	Pezizomycotina	Difference between	Difference between
Property	(n=332)	(n=761)	ancestor	ancestor	two extant lineages	two ancestors
Evolutionary rate (amino acid substitutions/ site)	1.80	1.12	1.1	0.9	0.68	0.2
GC content (%)	40	50	43	47	10	4
Genome size (Mb)	13	39	23	42	26	19
No. of genes	5,734	10,847	7,000	9,400	5,113	2,400
No. of DNA repair genes	41	54	44	52	13	8
No. of tRNA genes	179	146	160	170	33	10
$d_{\rm N}/d_{\rm S}$	0.053	0.063	0.052	0.058	0.01	0.006

Table 1. Summary of values for seven genomic properties in extant Saccharomycotina and Pezizomycotina and in the last common ancestors of Saccharomycotina and Pezizomycotina.

* denote average values.

Figure 4

 $d_{\rm N}/d_{\rm S}$