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 2 

Abstract 14 

Learning effectively from errors requires using them in a context-dependent manner, for example 15 

adjusting to errors that result from unpredicted environmental changes but ignoring errors that 16 

result from environmental stochasticity. Where and how the brain represents errors in a context-17 

dependent manner and uses them to guide behavior are not well understood. We imaged the 18 

brains of human participants performing a predictive-inference task with two conditions that had 19 

different sources of errors. Their performance was sensitive to this difference, including more 20 

choice switches after fundamental changes versus stochastic fluctuations in reward contingencies. 21 

Using multi-voxel pattern classification, we identified context-dependent representations of error 22 

magnitude and past errors in posterior parietal cortex. These representations were distinct from 23 

representations of the resulting context-dependent behavioral adjustments in dorsomedial frontal, 24 

anterior cingulate, and orbitofrontal cortex. The results provide new insights into human brain 25 

that represent and use errors in a context-dependent manner to support adaptive behavior. 26 

  27 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.11.089094doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.089094
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 3 

Introduction 28 

Errors often drive adaptive adjustments in beliefs that inform behaviors that maximize 29 

positive outcomes and minimize negative ones (Sutton & Barto, 1998). A major challenge to 30 

error-driven learning in uncertain and dynamic environments is that errors can arise from 31 

different sources that have different implications for learning. For example, a bad experience at a 32 

restaurant that recently hired a new chef might lead you to update your belief about the quality of 33 

the restaurant, whereas a similar experience at a well-known restaurant with a chef that has long 34 

been your favorite might be written off as a one-time bad night. That is, the same errors should 35 

be interpreted differently in different contexts. In general, errors that represent fundamental 36 

changes in the environment or that occur during periods of uncertainty should probably lead you 37 

to update your beliefs and change your behavior, whereas those that result from environmental 38 

stochasticity are likely better ignored (d'Acremont & Bossaerts, 2016; Li, Nassar, Kable, & Gold, 39 

2019; Nassar, Bruckner, & Frank, 2019; O’Reilly et al., 2013). 40 

Neural representations of key features of these kinds of dynamic, error-driven learning 41 

processes have been identified in several brain regions. For example, several studies focused on 42 

variables derived from normative models that describe the degree to which individuals should 43 

dynamically adjust their beliefs in response to error feedback under different task conditions, 44 

including the probability that a fundamental change in the environment just occurred (change-45 

point probability, or CPP, which is a form of surprise) and the reducible uncertainty associated 46 

with estimates of environmental features (relative uncertainty, or RU). Correlates of these 47 

variables have been identified in dorsomedial frontal (DMFC) and dorsolateral prefrontal 48 

(DLPFC) cortex and medial and lateral posterior parietal cortex (PPC) (Behrens, Woolrich, 49 

Walton, & Rushworth, 2007; McGuire, Nassar, Gold, & Kable, 2014; Nassar, McGuire, Ritz, & 50 

Kable, 2019). These and other studies also suggest specific roles for these different brain regions 51 

in error-driving learning, including representations of surprise induced by either state changes or 52 

outliers (irrelevant to state changes) in the PPC that suggest a role in error monitoring (Nassar, 53 

Bruckner, et al., 2019; O’Reilly et al., 2013), and representations of variables more closely 54 

related to belief and behavior updating in the prefrontal cortex (PFC) (McGuire et al., 2014; 55 

O’Reilly et al., 2013). However, these previous studies, which typically used continuous rather 56 

than discrete feedback, were not designed to identify neural signals related to a key aspect of 57 
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flexible learning in uncertain and dynamic environments: responding to the same exact errors 58 

differently in different contexts.  59 

To identify such context-dependent neural responses to errors, we adapted a paradigm 60 

from our previous single-unit recording study (Li et al., 2019). In this paradigm, we generated 61 

two different dynamic environments by varying the amount of noise and the frequency that 62 

change-points occur (i.e., hazard rate; Behrens et al., 2007; Glaze, Kable, & Gold, 2015; Nassar 63 

et al., 2012; Nassar, Wilson, Heasly, & Gold, 2010). In the unstable environment, noise was 64 

absent and the hazard rate was high, and thus errors unambiguously signaled a change in state. In 65 

the high-noise environment, noise was high and the hazard rate was low, and thus small errors 66 

were ambiguous and could indicate either a change in state or noise. Thus, effective learning 67 

requires treating errors in the two conditions differently, including adjusting immediately to 68 

errors in the unstable environment but using the size of errors and recent error history as cues to 69 

aid interpretation of ambiguous errors in the high-noise condition.  70 

In our previous study, we found many single neurons in the anterior cingulate cortex 71 

(ACC) or posterior cingulate cortex (PCC) that responded to errors or the current context, but we 72 

found little evidence that single neurons in these regions combined this information in a context-73 

dependent manner to discriminate the source of errors or drive behavior. In the current study, we 74 

used whole-brain fMRI and multi-voxel pattern classification to identify context-dependent 75 

neural responses to errors and activity predictive of context-dependent behavioral updating in the 76 

human brain. The results show context-dependent encoding of error magnitude and past errors in 77 

PPC and encoding of behavioral shifts in a large array of frontal regions including ACC, DMFC, 78 

DLPFC and orbitofrontal cortex (OFC), which provide new insights into the distinct roles these 79 

brain regions play in representing and using, respectively, errors in a context-dependent manner 80 

to guide adaptive behavior. 81 

 82 

Results 83 

Sixteen human participants performed a predictive-inference task (Figure 1A) while 84 

fMRI was used to measure their blood-oxygenation-level-dependent (BOLD) brain activity. The 85 

task required them to predict the location of a single rewarded target from a circular array of ten 86 

targets. The location of the rewarded target was sampled from a distribution based on the 87 

location of the current best target and the noise level in the current condition. In addition, the 88 
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location of the best target could change according to a particular, fixed hazard rate (H). Two 89 

conditions with different noise levels and hazard rates were conducted in separate runs. In the 90 

high-noise condition (Figure 1B–C), the rewarded target would appear in one of the five 91 

locations relative to the location of the current best target, and the hazard rate was low (H = 0.02). 92 

In the unstable condition (Figure 1D–E), the rewarded target always appeared at the location of 93 

the best target, and the hazard rate was high (H = 0.35). On each trial, participants made a 94 

prediction by looking at a particular target, and then were given explicit, visual feedback about 95 

their chosen target and the rewarded target. Effective performance required them to use this 96 

feedback in a flexible and context-dependent manner, including typically ignoring small errors in 97 

the high-noise condition but responding to small errors in the unstable condition by updating 98 

their beliefs about the best-target location. 99 

 100 

Behavior 101 

 Nearly all of the participants’ choice patterns were consistent with a flexible, context-102 

dependent learning process (closed symbols in Figure 2). On average, they learned the location 103 

of the best target after a change in its location more quickly and reliably in the unstable versus 104 

high-noise condition (Figure 2A). This flexible learning process had two key signatures. First, 105 

target switches (i.e., predicting a different target than on the previous trial) tended to follow 106 

errors of any magnitude in the unstable condition but only errors of high magnitude (i.e., when 107 

the chosen target was 3, 4, or 5 targets away from the rewarded target) in the high-noise 108 

condition (sign test for H0: equal probability of switching for the two conditions; error magnitude 109 

of 1: median = -0.35, interquartile range (IQR) = [-0.62, -0.25], p<0.001; error magnitude of 2: 110 

median = -0.30, IQR = [-0.70, -0.11], p<0.001; Figure 2B–C). Second, target switches depended 111 

on error history only for low-magnitude errors (i.e., when the chosen target was 1 or 2 targets 112 

away from the rewarded target) in the high-noise condition but not otherwise (sign test for H0: 113 

switching was unaffected when recent history contained fewer errors; error magnitude of 1: 114 

median = -0.29, IQR = [-0.42, -0.10], p=0.004; error magnitude of 2: median = -0.25, IQR = [-115 

0.38, -0.14], p<0.001; Figure 2D–F). 116 

We accounted for these behavioral patterns with a reduced Bayesian model that is similar 117 

to ones we have used previously to model belief updating in a dynamic environment (open 118 

symbols in Figure 2; Tables 1 and 2). According to this model, the decision-maker’s trial-by-trial 119 
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choices are governed by ongoing estimates of the probability that the best target changed 120 

(change-point probability, or CPP) and reducible uncertainty about the best target’s location 121 

(relative uncertainty, or RU). Both quantities are influenced by the two free parameters in the 122 

model, subjective hazard rate and noise level, which were fitted separately in each condition for 123 

each participant. As expected, the fitted hazard rates were higher in the unstable condition than 124 

in the high-noise condition, although both tended to be higher than the objective values, as we 125 

have observed previously (Nassar et al., 2010). The fitted noise estimates were not reliably 126 

different between the high-noise versus unstable condition (Table 2). 127 

In the reduced Bayesian model, both CPP and RU contribute to processing errors in a 128 

context-dependent manner. CPP increases as the current error magnitude increases and achieves 129 

high values more quickly in the unstable condition because of the higher hazard rate (Figure 3A). 130 

These dynamics lead to a greater probability of switching targets after smaller errors in the 131 

unstable condition. RU increases on the next trial after the participant makes an error and does so 132 

more in the high-noise condition because of the lower hazard rate (Figure 3B). These dynamics 133 

lead to a greater probability of target switches when the last trial was an error, which is most 134 

prominent for small errors in the high noise condition. Thus, CPP and RU each account for one 135 

of the two key signatures of context-dependent learning that we identified in participants’ 136 

behavior, with CPP driving a context-dependent influence of error magnitude and RU driving a 137 

context-dependent influence of error history on target switches (Figure 3C).  138 

We also tested several alternative models but they did not provide as parsimonious 139 

descriptions of the data (Figure 2 – figure supplement 1, and Tables 1 and 2). Notably, an 140 

alternative model that assumed a condition-specific fixed learning rate also assumed errors were 141 

treated differently for the two conditions but did not include trial-by-trial adjustments of learning 142 

rates used by the reduced Bayesian model. Thus, although this model performed better than the 143 

reduced Bayesian model in the unstable condition, it cannot capture participants’ behaviors in the 144 

high-noise condition, where dynamically integrating both current and past errors is required for 145 

adapting trial-by-trial behavior. Other hybrid models performed worse than the reduced Bayesian 146 

model under both conditions. 147 

 148 

Neural representation of CPP and RU  149 
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 7 

 To compare our current data directly to our previously identified neural representations of 150 

CPP and RU (McGuire et al., 2014), the two key quantities in the reduced Bayesian model, we 151 

conducted univariate analyses of our imaging data using those behaviorally derived variables as 152 

regressors. This comparison also allowed us to better isolate representations of these variables 153 

from those related to visual and motor processing demands that differed considerably for the two 154 

tasks (the other task included a more complex visual scene and used hand, not eye, movements). 155 

Similar to our previous findings, we found activity that was positively correlated with the levels 156 

of CPP and RU across DLPFC and PPC (Figure 3D). We identified these joint neural 157 

representations of CPP and RU in the high-noise condition, because both CPP and RU varied 158 

across trials in this condition, in contrast to the unstable condition in which RU did not vary. The 159 

regions of DLPFC and PPC that were responsive to both CPP and RU were a subset of those 160 

identified as showing this conjunction in our previous study (Figure 3E, Figure 3 – figure 161 

supplement 1).  162 

 Because CPP and RU both contribute to responding to errors in a context-dependent 163 

manner, we considered the brain regions that responded to both variables as good candidates for 164 

encoding errors in a context-dependent manner that is linked to subsequent behavioral shifts. In 165 

the following analyses, we aimed to directly identify context-dependent neural representations of 166 

error magnitude and error history, as well as activity that predicts subsequent shifts in behavior, 167 

in these and other brain regions.  168 

 169 

Context-dependent neural representation of errors 170 

We used multi-voxel pattern analysis (MVPA) to identify error-related neural signals that 171 

were similar and different for the two task conditions. Given the two key signatures of flexible 172 

learning that we identified in behavior, we were especially interested in identifying neural 173 

representations of error magnitude and past errors that were stronger in the high-noise than the 174 

unstable condition.  175 

We found robust, context-dependent representations of the magnitude of the error on the 176 

current trial in PPC. Consistent with the context-dependent behavioral effects, this representation 177 

of error magnitude was stronger in the high-noise than the unstable condition (Figure 4 and 178 

Table 3). Specifically, we could classify correct versus error feedback on the current trial across 179 

almost the entire cortex, in both the unstable and noisy conditions. However, for error trials, we 180 
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could classify error magnitude (in three bins: 1, 2, 3+ targets away from the rewarded target) 181 

only for the high-noise condition and most strongly in the lateral and medial parietal cortex and 182 

in the occipital pole. In a parallel set of analyses, we found that univariate activity in PPC also 183 

varied in a context-dependent way, responding more strongly to error magnitude in the high-184 

noise than the unstable condition (Figure 4 – figure supplement 1).  185 

We also found robust, context-dependent representations of past errors in PPC. These 186 

representations also were stronger in the high-noise than the unstable condition, particularly on 187 

trials for which past errors had the strongest influence on behavior. Specifically, we could 188 

classify correct versus error on the previous trial in PPC for both task conditions (Figure 5). This 189 

classification of past errors depended on the outcome of the current trial. We separated trials 190 

according to whether the current feedback was correct or an error, or whether the error 191 

magnitude provided ambiguous (error magnitudes of 1 or 2) or unambiguous (error magnitudes 192 

of 0 or 3+) feedback in the high-noise condition (Figure 5). We found reliable classifications of 193 

past errors in the lateral and medial parietal cortex in both conditions for correct trials and 194 

unambiguous feedback. Moreover, these representations depended on the current context, and, 195 

consistent with behavioral effects of error history, were stronger for error trials and ambiguous 196 

feedback in the high-noise than in the unstable condition (Table 3). These context-dependent 197 

signals for past errors were not clearly present in univariate activity (Figure 5 – figure 198 

supplement 1). An additional conjunction analysis across MVPA results showed that PPC 199 

uniquely encoded context-dependent error signals for both error magnitude of the current trials 200 

and past errors when the current trial provided ambiguous feedback (Table 3). 201 

 202 

Neural prediction of subsequent changes in behavior 203 

 Although PPC responds to errors in a context-dependent manner that could be used for 204 

determining behavioral updates, we did not find that activity in this region was predictive of the 205 

participants’ future behavior. Instead, we found such predictive activity more anteriorly 206 

throughout the frontal lobe. Specifically, we investigated whether multi-voxel neural patterns 207 

could predict participants’ target switches on the subsequent trial. We focused on the trials with 208 

small error magnitudes (1 or 2) in the high-noise condition, because these were the only trial 209 

types that participants consistently exhibited an intermediate probability of switching (20–80%, 210 

Figure 2). We found that activity patterns in widespread regions in OFC, ACC, DMFC, and 211 
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DLPFC could predict subsequent stay/switch decisions (Figure 6, Table 4). We did not find any 212 

regions where univariate activity reliably predicted participants’ subsequent behavior (Figure 6 – 213 

figure supplement 1).  214 

 215 

Discussion 216 

 We identified context-dependent neural representations of errors in humans performing a 217 

dynamic learning task. The task required participants to learn in two different dynamic 218 

environments. In the unstable condition (high hazard rate and low noise), errors unambiguously 219 

indicated a change in the state of the environment, and participants reliably updated their 220 

behavior in response to errors. In contrast, in the high-noise condition (low hazard rate and high 221 

noise), small errors were ambiguous, and participants used both the current error magnitude and 222 

recent error history to distinguish between those errors that likely signal change-points and those 223 

likely arising from environmental noise. Using MVPA, we showed complementary roles of PPC 224 

and prefrontal regions (including OFC, ACC, DMFC and DLPFC) in the outcome-monitoring 225 

and action-selection processes underlying these flexible, context-dependent behavioral responses 226 

to errors. Neural patterns in PPC encoded the magnitude of errors and past errors, more strongly 227 

in the high-noise than the unstable condition. These context-dependent neural responses to errors 228 

in PPC were not reliably linked to subsequent changes in behavior. In contrast, neural patterns in 229 

prefrontal regions could predict subsequent changes in behavior (whether participants switch 230 

their choice on the next trial or not) in response to ambiguous errors in the high-noise condition. 231 

 232 

Context-dependent behavior adaptation 233 

Consistent with previous studies of ours and others (d'Acremont & Bossaerts, 2016; 234 

McGuire et al., 2014; Nassar, Bruckner, et al., 2019; Nassar et al., 2012; Nassar et al., 2010; 235 

O’Reilly et al., 2013; Purcell & Kiani, 2016), human participants adapted their response to errors 236 

differently in different contexts. In the unstable condition, participants almost always switched 237 

their choice after errors and quickly learned the new state after change-points. In contrast, in the 238 

high-noise condition, participants ignored many errors and only slowly learned the new state 239 

after change-points. In this condition, participants had to distinguish true change-points from 240 

environmental noise, and they used error magnitude and recent error history as a cue for whether 241 

the state had recently changed or not. These flexible and context-dependent responses to errors 242 
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could be accounted for by a reduced Bayesian model (McGuire et al., 2014; Nassar et al., 2012; 243 

Nassar et al., 2010). In this model, beliefs and behavior are dynamically updated according to 244 

two key quantities, CPP and RU. 245 

 246 

Neural representation of change-point probability and relative uncertainty 247 

Replicating our previous work (McGuire et al., 2014), we identified neural activity 248 

correlated with both CPP and RU in PPC and DLPFC. This replication shows the robustness of 249 

these neural representations of CPP and RU across experimental designs that differ dramatically 250 

in their visual stimuli and motor demands, yet share the need to learn in dynamic environments 251 

with similar statistics. In addition, given that CPP and RU account for the context-dependent 252 

behavioral responses to error magnitude and recent error history, respectively, the regions 253 

responding to both CPP and RU are strong candidates for neural representations of errors and 254 

subsequent behavioral updates that are context dependent.  255 

 256 

Context-dependent neural representation of errors 257 

Advancing beyond previous work, we identified context-dependent encoding of errors in 258 

neural activity in the PPC. Mirroring the context dependence of behavior, the multivariate neural 259 

pattern in PPC encoded current error magnitude more strongly in the high-noise condition than in 260 

the unstable condition and encoded past errors more strongly on trials that provided ambiguous 261 

feedback in the high-noise condition. That is, the multivariate pattern in PPC could distinguish 262 

between the same exact error stimuli depending on the context. These same regions of PPC have 263 

been shown previously to represent errors, error magnitudes, surprise and salience (Fischer & 264 

Ullsperger, 2013; Gläscher, Daw, Dayan, & O'Doherty, 2010; McGuire et al., 2014; Nassar, 265 

Bruckner, et al., 2019; Nassar, McGuire, et al., 2019; O’Reilly et al., 2013; Payzan-LeNestour, 266 

Dunne, Bossaerts, & O’Doherty, 2013). In addition, these regions have been shown to integrate 267 

recent outcome or stimulus history in human fMRI studies (FitzGerald, Moran, Friston, & Dolan, 268 

2015; Furl & Averbeck, 2011) and in animal single neuron recording studies (Akrami, Kopec, 269 

Diamond, & Brody, 2018; Brody & Hanks, 2016; Hanks et al., 2015; Hayden, Nair, McCoy, & 270 

Platt, 2008; Hwang, Dahlen, Mukundan, & Komiyama, 2017). Our results extend on these past 271 

findings by demonstrating that the neural encoding of errors in PPC is modulated across different 272 

contexts in precisely the manner that could drive adaptive behavior. 273 
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 These whole-brain fMRI results complement our previous results recording from single 274 

neurons in ACC and PCC in the same task (Li et al., 2019). In that study, we identified single 275 

neurons in both ACC and PCC that encoded information relevant to interpreting errors, such as 276 

the magnitude of the error or the current context. However, we did not find any neurons that 277 

combined this information in a manner that could drive adaptive behavioral adjustments. Our 278 

whole-brain fMRI results suggest that PPC would be a good place to look for context-dependent 279 

error representations in single neurons, including a region of medial parietal cortex slightly 280 

dorsal to the PCC area we recorded from previously.  281 

 282 

Neural representations of context-dependent behavioral updating 283 

 Also advancing beyond previous work, we identified neural activity predictive of 284 

context-dependent behavioral updates in DLPFC and across the frontal cortex. In the high-noise 285 

condition, small errors provided ambiguous feedback that could reflect either a change in state or 286 

environmental noise. Accordingly, after small errors in the high-noise condition, participants 287 

exhibited variability across trials in whether they switched from their current choice on the 288 

subsequent trial or not. In these ambiguous situations, the multivariate neural pattern across 289 

frontal regions, including OFC, ACC, DMFC and DLPFC, predicted whether people switched or 290 

stayed on the subsequent trial. That is, the multivariate pattern in frontal regions could 291 

distinguish whether people would update their behavior or not in response to the same exact 292 

error stimuli. These results suggest a dissociation between PPC regions that monitor error 293 

information in a context-dependent manner and frontal regions that may use this information to 294 

update beliefs and select subsequent actions. 295 

 This ability to decode subsequent choices might arise from different kinds of 296 

representations in different areas of frontal cortex. Activity in DMFC reflects the extent of belief 297 

updating in dynamic environments (Behrens et al., 2007; Hampton, Bossaerts, & O’Doherty, 298 

2006; McGuire et al., 2014; O’Reilly et al., 2013), and the multivariate pattern in this region can 299 

decode subsequent switching versus staying in a reversal learning task (Hampton & O'Doherty, 300 

2007). OFC and DMFC encode the identity of the current latent state in a mental model of the 301 

task environment and neural representations in these regions changes as the state changes (Chan, 302 

Niv, & Norman, 2016; Hunt et al., 2018; Karlsson, Tervo, & Karpova, 2012; Nassar, McGuire, 303 

et al., 2019; Schuck, Cai, Wilson, & Niv, 2016; Wilson, Takahashi, Schoenbaum, & Niv, 2014). 304 
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Neural activity in frontopolar cortex (Daw, O'Doherty, Dayan, Seymour, & Dolan, 2006) and 305 

DMFC (Blanchard & Gershman, 2018; Kolling, Behrens, Mars, & Rushworth, 2012; Kolling et 306 

al., 2016; Muller, Mars, Behrens, & O'Reilly, 2019) increases during exploratory choices, which 307 

occur more frequently during periods of uncertainty about the most beneficial option. In a recent 308 

study, we identified distinct representations of latent states, uncertainty, and behavioral policy in 309 

distinct areas of frontal cortex during learning in a dynamic environment (Nassar et al., 2019). 310 

Our results extend these past findings and demonstrate the role of these frontal regions in 311 

adjusting behavior in response to ambiguous errors. 312 

 313 

Conclusion 314 

People adapt their behavior in response to errors in a context-dependent manner, 315 

distinguishing between errors that indicate change-points in the environment versus noise. Here 316 

we used MVPA to identify two distinct kinds of neural signals contributing to these adaptive 317 

behavioral adjustments. In PPC, neural patterns encoded error information in a context-318 

dependent manner, depending on error magnitude and past errors only under conditions where 319 

these were informative of the source of error. In contrast, activity in frontal cortex could predict 320 

subsequent choices that could be based on this information. These findings suggest a broad 321 

distinction between outcome monitoring in parietal regions and action selection in frontal regions 322 

when learning in dynamic and uncertain environments. 323 

 324 

Materials and Methods 325 

Participants 326 

 All procedures were approved by University of Pennsylvania Internal Review Board. We 327 

analyzed data from sixteen participants (9 female, mean age = 23.5, SD = 4.3, range = 18–33 328 

years) recruited for the current study. One additional participant was excluded from analyses 329 

because of large head movements during MRI scanning (>10% of timepoint-to-timepoint 330 

displacements were >0.5 mm). All participants provided informed consent before the experiment. 331 

Participants received a participation fee of $15, as well as extra incentives based on their 332 

performance (mean = $15.09, SD = $2.26, range = $8.5–17.5). 333 

 334 

Task 335 
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Participants performed a predictive-inference task during MRI scanning. On each trial, 336 

participants saw a noisy observation sampled from an unobserved state. The participants’ goal 337 

was to predict the location of the noisy observation. To perform this task well, however, they 338 

should infer the location of the current state. 339 

 In this task (Li et al., 2019), there were 10 targets aligned in a circle on the screen (Figure 340 

1A). At the start of each trial, participants had to fixate a central cross for 0.5 seconds to 341 

initialize the trial. After the cross disappeared, participants could choose one of 10 targets (red) 342 

by looking at it within 1.5 seconds and keeping fixation on the chosen target for 0.3 seconds. 343 

Then, an outcome would be shown for 1 second. During the outcome phase, a green dot 344 

indicated the chosen target. A purple or cyan target indicated the rewarded target, with color 345 

denoting 10 or 20 points of reward value, respectively. At the end of experiment, every 75 points 346 

were converted to $0.25 as participants’ extra incentives. 347 

 Participants performed this task in two dynamic conditions separated into two different 348 

runs: a high-noise condition and an unstable condition. In the high-noise condition, the rewarded 349 

target could be one of five targets, given the underlying state (Figure 1B). The rewarded target 350 

probabilities for the relative locations ([-2, -1, 0, 1, 2]) of the current state were [0.05, 0.15, 0.6, 351 

0.15, 0.05]. Thus, the location of the current state was most likely rewarded, but nearby targets 352 

could also be rewarded. Occasionally, the state would change its location with a hazard rate of 353 

0.02 (Figure 1C). When a change-point happens, the new state would be selected among the ten 354 

targets based on a uniform distribution. In the unstable condition, there was no noise (Figure 1D). 355 

That is, the location of the state would be always rewarded. However, the state was unstable, as 356 

the hazard rate in this condition was 0.35 (Figure 1E). There were 300 trials in each run. 357 

 358 

Behavior analysis 359 

 We investigated how participants’ used error feedback flexibly across different contexts. 360 

Before the behavioral analysis, we removed two different kinds of trials. First, we removed trials 361 

in which participants did not make a choice within the time limit (Unstable: median number of 362 

trials = 10.5, range = 1–83; High-noise: median = 10, range = 2–88). Second, we also removed 363 

trials in which the location of the chosen target was not on the shortest distance between the 364 

previously chosen and previously rewarded targets (Unstable: median = 3, range = 0–24; High-365 

noise: median = 17, range = 5–37). These trials implied that participants might have lost track of 366 
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the most recently rewarded target and cannot be captured by any of the belief updating models 367 

we tested. 368 

First, we investigated how fast participants learned the location of the current state. For 369 

each condition and participant, we binned trials from trial 0 to trial 20 after change-points. Then, 370 

we calculated the probability of choosing the location of the current state for each bin. 371 

 Second, we examined how different magnitudes of errors lead to shifts in behavior. For 372 

each condition and participant, we binned trials based on the current error magnitude (from 0 to 373 

5). Then, for each bin, we calculated the probability that participants switch their choice to 374 

another target on the subsequent trial. We hypothesized participants would have a lower 375 

probability of switching after small error magnitudes (1 or 2) in the high-noise condition than in 376 

the unstable condition since such errors could be due to environment noise in the high-noise 377 

condition but would signal a state change in the unstable condition. 378 

 Third, we further investigated how error history influenced participants’ behavioral shifts. 379 

Similarly, we binned trials based on the current error magnitude and the error history of the last 380 

three trials. Here, we used four bins of error magnitudes (0, 1, 2, 3+). Based on the outcome of 381 

correct or error on the last three trials, there were 8 types of error history. For each error 382 

magnitude, we calculated the probability of switching for each type of error history. We 383 

hypothesized that participants in the high-noise condition would tend to switch their choice after 384 

small errors more if they had made more errors recently. To test this hypothesis, we ordered the 385 

8 types of error history based on the number of recent errors and calculated the slope of 386 

probability of switching against the order of error history. A negative slope means that 387 

participants tend to switch as they receive more recent errors. 388 

 389 

Behavior modeling 390 

 We fit several different computational models to participants’ choices to evaluate which 391 

ones could best account for their behavior in the task.  392 

 393 

Reduced Bayesian (RB) model 394 

 Previous studies have shown that a reduced Bayesian model, which approximates the full 395 

Bayesian ideal observer, could account well for participants’ behavior in dynamic environments 396 
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similar to the current task (McGuire et al., 2014; Nassar et al., 2012; Nassar et al., 2010). In this 397 

model, belief is updated by a delta rule: 398 

 399 

𝛿" = 𝑥" − 𝐵"      (1) 400 

 𝐵"'( = 𝐵" + 𝛼"𝛿"                      (2) 401 

 402 

where 𝐵" is the current belief and 𝑥" is the current observation. The new belief (𝐵"'() is formed 403 

by updating the old belief according to the prediction error (𝑥" − 𝐵") and a learning rate (𝛼"). 404 

The learning rate controls how much a participant revises their belief based on the prediction 405 

error. In this model, the learning rate is adjusted on a trial-by-trial basis according to: 406 

 407 

𝛼" = Ω" + (1 − Ω")𝜏"            (3) 408 

 409 

where Ω" is the change-point probability and 𝜏" is the relative uncertainty. That is, 𝛼" is high as 410 

either Ω" or 𝜏" is high. The change-point probability is the relative likelihood that the new 411 

observation represents a change-point as opposed to a sample from the currently inferred state 412 

(Nassar et al., 2010): 413 

 414 

Ω" =
0 𝑥" 1, 10 3

0 𝑥" 1, 10 3'45 𝑥" 𝛾", 𝐵" (73
         (4) 415 

 416 

where 𝐻 is the hazard rate, 𝑈(𝑥"|1, 10) is the probability of outcome derived from a uniform 417 

distribution, and 𝑓<(𝑥"|𝛾", 𝐵") is the probability of outcome derived from the current predictive 418 

distribution. That is, 𝑈(𝑥"|1, 10) reflects the probability of outcome when a change-point has 419 

occurred while 𝑓<(𝑥"|𝛾", 𝐵") reflects the probability of outcome when the state has not changed. 420 

The predictive distribution is an integration of the state distribution and the noise distribution: 421 

 422 

𝑓< 𝑋 𝛾", 𝐵" = 𝐶×𝑃 𝑋 𝐵" AB×	𝑃 𝑋 𝐵"                                        (5) 423 

 424 

where 𝑋 is a random variable determining the locations of target, 𝑃 𝑋 𝐵"  is the noise 425 

distribution in the current condition, 𝑃 𝑋 𝐵" AB is the state distribution, 𝛾" is the expected run 426 
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length after the change-point, and 𝐶 is a normalizing constant to make the sum of probabilities in 427 

the predictive distribution equal one. Thus, the uncertainty of this predictive distribution comes 428 

from two sources: the uncertainty of the state distribution (𝜎EF) and the uncertainty of the noise 429 

distribution (𝜎GF). The uncertainty of the state distribution would decrease as the expected run 430 

length increases. 431 

The expected run length reflects the expected number of trials that a state remains stable, 432 

and thus is updated on each trial based on the change-point probability (Nassar et al., 2010): 433 

 434 

𝛾"'( = (𝛾" + 1) 1 − Ω" + Ω"      (6) 435 

 436 

where the expected run length is a weighted average conditional on the change-point probability. 437 

If no change-point occurs (i.e., change-point probability is low), the expected run length would 438 

increase, leading the uncertainty of the state distribution to decrease. That is, as more 439 

observations from the current state are received, participants are more certain about the location 440 

of the current state. However, if the change-point probability is high, which signals a likely 441 

change in the state, the expected run length would be reset to 1. Thus, the uncertainty of the state 442 

distribution becomes large. Participants are more uncertain about the current state after a change-443 

point. 444 

 The other factor influencing the learning rate is the relative uncertainty, which is the 445 

uncertainty regarding the current state relative to the irreducible uncertainty or noise (McGuire et 446 

al., 2014; Nassar et al., 2012): 447 

 448 

𝜏"'( =
HBIJ

K' (7HB ILK'HB (7HB MB (7NB K

HBIJ
K' (7HB ILK'HB (7HB MB (7NB K'IJ

K               (7) 449 

 450 

The three terms in the numerator contribute to the uncertainty about the current state. The first 451 

term reflects the uncertainty conditional on the change-point distribution; the second term 452 

reflects the uncertainty conditional on the non-change-point distribution; and the third term 453 

reflects the uncertainty due to the difference between the two distributions. The denominator 454 

shows the total variance which is the summation of the uncertainty about the current state and the 455 
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noise. As more precise observations are received in a given state, this relative uncertainty would 456 

decrease. 457 

 During model fitting, the noise distribution was approximated by the von Mises 458 

distribution, which is a circular Gaussian distribution: 459 

 460 

𝑃 𝑥" 𝐵", 𝐾 = PQRST(UBVWB)

PQRST(UXVWB)YZ
X[Y

          (8) 461 

 462 

where 𝐵" is the location of the current belief, 𝑥\ is the location of target, and 𝐾 controls the 463 

uncertainty of this distribution. When 𝐾 is 0, this is a uniform distribution. As 𝐾 increases, the 464 

uncertainty decreases. The denominator is used as a normalization term to make sure the sum of 465 

all the probabilities equals one. Thus, there are two free parameters in this model: hazard rate (H) 466 

and noise level (K). The range of hazard rate is between 0 and 1 and the noise level is greater 467 

than or equal to zero. 468 

 469 

Fixed learning rate (fixedLR) model 470 

 We also consider an alternative model in which participants used a fixed learning rate in 471 

each of the two dynamic conditions. That is, the learning rate is the same over all trials in a 472 

condition. This model has one free parameter, the fixed learning rate (𝛼4\]P^), for each condition 473 

(Eq. 2). The fixed learning rate is between 0 and 1. 474 

 475 

Hybrid of RB model and fixedLR model 476 

 Furthermore, we consider a hybrid model, in which the learning rate on each trial is a 477 

mixture of the learning rates from the RB model and the fixedLR model: 478 

 479 

𝛼" = 𝑤𝛼`a + (1 − 𝑤)𝛼4\]P^               (9) 480 

 481 

where 𝛼`a is the learning rate from the RB model and is varied trial by trial according to Ω" and 482 

𝜏", 𝛼4\]P^ is the learning rate from the fixedLR model and 𝑤 reflects the weight to integrate these 483 

two learning rates. In this model, there are four free parameters: hazard rate, noise level, fixed 484 

learning rate and weight. The weight is between 0 and 1. 485 
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 486 

Hybrid of RB model and Pstay 487 

 Finally, we consider a hybrid model, which combines the RB model with a fixed 488 

tendency to stay on the current target regardless of the current observation. Such a fixed 489 

tendency to stay was observed in monkeys in our previous study (Li et al., 2019). Here the belief 490 

is updated by:  491 

 492 

𝐵"'( = 𝐵" + [(1 − 𝑃E"cd)×𝛼"(𝑋" − 𝐵") 	+ 𝑃E"cd×0]          (10) 493 

 494 

where 𝑃E"cd is the probability that participants stay on the current target. This model has three 495 

free parameters: hazard rate, noise level and the probability of stay. The probability of stay is 496 

between 0 and 1. 497 

 498 

Model fitting and comparison 499 

 Each model was fitted within each participant and within each condition separately. 500 

Optimal parameters were estimated by minimizing the mean of the squared error (MSE) between 501 

a participant’s prediction and the model prediction.  502 

 503 

𝑀𝑆𝐸 = (aB7aB)Ki
B[Y

j
        (11) 504 

 505 

where t is the trial, n is the total number of included trials, 𝐵" is a participant’s prediction on trial 506 

t, and 𝐵" is the model prediction on trial t. 507 

 Since each model used a different number of parameters and each participant had a 508 

different number of included trials, we used Bayesian Information Criterion (BIC) to compare 509 

the performance of different models: 510 

 511 

𝐵𝐼𝐶 = 𝑛 ln 𝑀𝑆𝐸 +𝑘 ln(𝑛)               (12) 512 

 513 

where 𝑛 is the number of included trials and 𝑘 is the number of free parameters in a model. A 514 

model with lower BIC performs better.  515 
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 516 

MRI Data Acquisition and Preprocessing 517 

 We acquired MRI data on a 3T Siemens Prisma with a 64-channel head coil. Before the 518 

task, we acquired a T1-weighted MPRAGE structural image (0.9375 X 0.9375 X 1 mm voxels, 519 

192 X 256 matrix, 160 axial slices, TI = 1,100 ms, TR = 1,810 ms, TE = 3.45 ms, flip angle = 9°). 520 

During each run of the task, we acquired functional data using a multiband gradient echo-planar 521 

imaging (EPI) sequence (1.9592 X 1.9592 X 2 mm voxels, 98 X 98 matrix, 72 axial slices tilted 522 

30° from the AC-PC plane, TR = 1,500 ms, TE = 30 ms, flip angle = 45°, multiband factor = 4). 523 

The scanning time (mean = 24.14 minutes, SD = 1.47, range = 21.85-30.00) for each run was 524 

dependent on the participants’ pace. After the task, fieldmap images (TR = 1,270 ms, TE = 5 ms 525 

and 7.46 ms, flip angle = 60°) were acquired. 526 

 Data were preprocessed using FMRIB’s Software Library (FSL) (Jenkinson, Beckmann, 527 

Behrens, Woolrich, & Smith, 2012; Smith et al., 2004). Functional data were motion corrected 528 

using MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002), high-pass filtered with a 529 

Gaussian-weighted least square straight line fitting of 𝜎 = 50	𝑠, undistorted and warped to MNI 530 

space. To map the data to MNI space, boundary-based registration was applied to align the 531 

functional data to the structural image (Greve & Fischl, 2009) and fieldmap-based geometric 532 

undistortion was also applied. In addition, the structural image was normalized to the MNI space 533 

(FLIRT). Then, these two transformations were applied to the functional data. 534 

 535 

fMRI analysis: univariate activity correlated with CPP and RU 536 

 Using similar procedures to our previous study (McGuire et al., 2014), we examined the 537 

effects of CPP and RU on univariate activity. Both the current study and the previous study 538 

investigate the computational process and neural mechanisms during learning in dynamic 539 

environments. The underlying task structures (which involved noisy observations and sudden 540 

change-points) are similar between the two studies, but the two studies used very different visual 541 

stimuli and motor demands. We specifically focused on the high-noise condition in the current 542 

study since it was more similar to the underlying structure, in terms of noisy observations and 543 

hazard rate of change-points, to our previous study. 544 

 We investigated the factors of CPP, RU, reward values and residual updates. The trial-by-545 

trial CPP and RU were estimated from the RB model with subjective estimates of hazard rate and 546 
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noise. The residual update reflects the difference between the participants’ update and the 547 

predicted update, and is estimated from a behavioral regression model in a similar manner as our 548 

previous study: 549 

 550 

𝑈𝑝𝑑𝑎𝑡𝑒" = 𝛽x + 𝛽(𝛿" + 𝛽F𝛿"Ω" + 𝛽y𝛿" 1 − Ω" 𝜏" + 𝛽z𝛿"𝑅𝑒𝑤𝑎𝑟𝑑 + 𝜀          (13) 551 

 552 

where 𝑈𝑝𝑑𝑎𝑡𝑒" is the difference between 𝐵"'( and 𝐵", 𝛿" is the error magnitude, both Ω" and 𝜏" 553 

were derived from the RB model with subjective estimates of hazard rate and noise, and the 554 

reward value indicated whether a correct response earned a large or a small value on that trial.  555 

Then, a general linear model using these four factors was implemented on the neural data. 556 

Here we further smoothed the preprocessed fMRI data with a 6 mm FWHM Gaussian kernel. We 557 

included several trial-by-trial regressors of interest in the GLM: onsets of outcome, CPP, RU, 558 

reward value, and residual update. Six motion parameters were also included as confounds. For 559 

statistical testing, we implemented one-sample cluster-mass permutation tests with 5,000 560 

iterations. The cluster-forming threshold was uncorrected voxel p<0.005. Statistical testing was 561 

then based on the corrected cluster p value. For the conjunction analyses, we used the same 562 

procedure as the previous study (McGuire et al., 2014). We kept regions that passed the 563 

corrected threshold and showed the same sign of effects. For these conjunction tests, we only 564 

kept regions that have at least 10 contiguous voxels. 565 

Since the number of participants was fewer in this study (n=16) than in the previous 566 

study (n=32), we might have lower power to detect effects in the whole-brain analyses. Thus, we 567 

also implemented ROI analyses. We selected seven ROIs that showed the conjunction effects of 568 

CPP, RU and reward value in the previous study (McGuire et al., 2014) and tested the effects of 569 

CPP and RU in these ROIs.  570 

 571 

fMRI analysis: multi-voxel pattern analysis (MVPA) 572 

 We implemented MVPA to understand the neural representation of error signals and 573 

subsequent choices. Our analyses focus on the multi-voxel pattern when participants received an 574 

outcome. Before implementing MVPA, we estimated trial-by-trial beta values using the 575 

unsmoothed preprocessed fMRI data. We used the general linear model (GLM) to estimate the 576 

beta weights for each trial (Mumford, Turner, Ashby, & Poldrack, 2012). In each GLM, the first 577 
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regressor is the trial of interest and the second combines the rest of trials in the same condition. 578 

These two regressors were then convolved with a gamma hemodynamic response function. In 579 

addition, six motion parameters were included as control regressors. We repeated this process 580 

(one GLM per trial) to estimate trial-by-trial beta values for all the trials in the two conditions. 581 

We then used these beta values as observations for MVPA. A whole-brain searchlight was 582 

implemented (Kriegeskorte, Goebel, & Bandettini, 2006). In each searchlight, a sphere with the 583 

diameter of 5 voxels (10 mm) was formed, and the pattern of activity across the voxels within the 584 

sphere were used to run MVPA.  585 

 A support vector machine (SVM) with a linear kernel was used to decode different error 586 

signals and choices in our whole-brain searchlight analysis. We implemented SVM through the 587 

LIBSVM toolbox (Chang & Lin, 2011). To avoid overfitting, we used 3-fold cross-validation, 588 

with one fold used as testing data and the other two as training data. Training data were used to 589 

train the classifier and then this classifier was used on testing data to examine the classification 590 

accuracy. In linear SVM, a free parameter c regularizes the trade-off between decreasing training 591 

error and increasing generalization. Thus, during the training of classifier, the training data were 592 

further split into 3-folds to select the optimal value of the parameter c through cross-validation. 593 

We pick the optimal value for c from [0.001, 0.01, 0.1, 1, 10, 100, 1000] and this optimal 594 

parameter should maximize the cross-validation accuracy. Then, we used the optimal parameter 595 

c to train the model again based on the entire training data and calculated the classification 596 

accuracy on the testing data. We repeated this procedure with each of the three folds held out as 597 

testing data and calculated the average of the classification accuracy. To minimized the influence 598 

of different number of trials for each category on the classification accuracy, we used balanced 599 

accuracy. 600 

We first examined how the multi-voxel neural pattern on the current trial could 601 

discriminate correct versus error on the current trial or error magnitudes on the current error trial. 602 

For the analysis of correct versus error, the baseline accuracy is 50%. For the analysis of error 603 

magnitudes, we split trials into three bins of error magnitude: 1, 2, and 3+. Thus, the baseline 604 

accuracy is 33%.  605 

We next examined how the multi-voxel neural pattern on the current trial could 606 

discriminate whether the previous trial was an error or not. We also investigated how the 607 

classification of past errors differs conditional on the type of the current trial. We classified trial 608 
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t-1 as correct or error separately for four different types of current trials: correct trials, error trials, 609 

unambiguous feedback trials and ambiguous feedback trials. Unambiguous feedback trials were 610 

trials with error magnitudes of 0 or 3+, while ambiguous feedback trials were trials with error 611 

magnitudes of 1 or 2, in which participants would be uncertain about the change of the state in 612 

the high-noise condition.  613 

Lastly, we examined how the multi-voxel neural pattern on the current trial could classify 614 

the choice on the next trial. In this analysis, we focused only on the trials with error magnitudes 615 

of 1 or 2 in the high-noise condition, since only under these conditions were participants 616 

similarly likely to switch versus stay. For these trials, we examined whether the multi-voxel 617 

pattern on the current trial predicted whether the participant stayed or switched on the next trial. 618 

The baseline accuracy was 50%. 619 

After obtaining the classification accuracy for each participant, we subtracted the baseline 620 

accuracy from the classification accuracy. Before conducting a group-level test, we smoothed 621 

these individual accuracy maps with a 6 mm FWHM Gaussian kernel. For statistical testing, one-622 

sample cluster-mass permutation was applied with 5,000 iterations. We used uncorrected voxel 623 

p<0.005 to form a cluster and estimated the corrected cluster p value for each cluster. For the 624 

conjunction analyses, we used the same procedure described above. 625 

  626 
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 756 
Figure 1 757 
Overview of task and experimental design. (A) Sequence of the task. At the start of the trial, participants 758 
look at a cross in the center of the screen and maintain fixation for 0.5 sec to initialize the trial. After the 759 
cross disappears, participants choose one of 10 targets (red) by looking at it within 1.5 sec and then 760 
holding fixation on the chosen target for 0.3 sec. During the outcome phase (1 sec), a green dot inside the 761 
target indicates the participants’ choice. The rewarded target is shown in purple or cyan to indicate the 762 
number of earnable points as 10 or 20, respectively. (B) Probability distribution of the rewarded target 763 
location in the high-noise condition. Target location is relative to the location of the state (generative 764 
mean). The rewarded target probabilities for the relative locations of [-2, -1, 0, 1, 2] are [0.05, 0.15, 0.6, 765 
0.15, 0.05]. (C) Example of trials in the high-noise condition. The states change occasionally with a 766 
hazard rate of 0.02. (D) Probability distribution of the rewarded target location in the unstable condition. 767 
Because there is no noise in this condition, the rewarded target is always at the location of the state. (E) 768 
Example of trials in the unstable condition. The states change frequently with a hazard rate of 0.35. 769 
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 771 
Figure 2 772 
Behavioral results. (A) Probability of choosing the best target after change-points. Symbols and error bars 773 
are mean±SEM across subjects (solid symbols) or simulations (open symbols). (B) Relationship between 774 
error magnitude and switch probability. Symbols and error bars are as in A. (C) The distribution of switch 775 
probabilities for small errors (magnitude of 1 or 2) in both conditions. Each data point represents one 776 
participant. (D) Probability of switch as a function of current error magnitude and error history in the 777 
unstable condition. Different colors represent different error histories for the past 3 trials. A correct trial is 778 
marked as O, and an error trial is marked as X. For example, XOO implies that trial t-1 was an error trial, 779 
and trial t-2 and trial t-3 were correct trials. Symbols and error bars are mean±SEM across subjects. (E) 780 
Probability of switch as a function of current error magnitude and error history in the high-noise condition. 781 
Symbols and error bars are as in D. (F) The distribution of the slopes of switch probability against error 782 
history for small errors (magnitude of 1 or 2) in both conditions. Each data point represents one 783 
participant. 784 
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 786 
Figure 3 787 
Reduced Bayesian model applied to behavioral and imaging data. (A) Model prediction for CPP. We 788 
calculated CPP from the reduced Bayesian model using subjective estimates of hazard rate and noise for 789 
each condition. The value of CPP increases as the current error magnitude increases in both conditions, 790 
but with a stronger dependence on the outcome of the previous trial in the high-noise condition. (B) 791 
Model prediction for RU. We calculated RU from the reduced Bayesian model using subjective estimates 792 
of hazard rate and noise for each condition. The value of RU is minimally affected by the current error 793 
magnitude. Instead, a past error tends to increase RU in the high-noise, but not the unstable, condition. (C) 794 
Model prediction for probability of switching choices. Increasing CPP causes the probability of switching 795 
to increase more steeply as the current error magnitude increases in the unstable condition versus in the 796 
high-noise condition. For small errors (error magnitude of 1 and 2) in the high-noise condition, the 797 
probability of switching is further influence by RU, which is affected by past errors. (D) Neural 798 
representation of CPP and RU. (E) ROI analysis for CPP and RU. These ROIs were selected based on the 799 
common regions of CPP, RU, and reward effects in McGuire et al. (2014). Significance was tested by a 800 
sign test. *p<0.05, **p<0.01, ***p<0.001. 801 
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 805 

Figure 4 806 
Representations of error and error magnitude. For error versus correct analyses, multi-voxel neural 807 
patterns were used to classify whether the response on the current trial was correct or an error. For error 808 
magnitude analyses, multi-voxel neural patterns were used to classify different error magnitudes (1, 2, 3+) 809 
conditional on the current trial being an error. Accuracies were calculated and compared with the baseline 810 
accuracy within each subject and then tested at the group level. The representation of current error 811 
magnitude is stronger in parietal cortex in the high-noise condition than the unstable condition.  812 
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 814 
Figure 5 815 
Representations of errors on the previous trial conditional on different types of current trials (columns). 816 
Multi-voxel neural patterns were used to classify correct responses versus errors on the previous trial. 817 
This analysis was repeated for different types of current trials: all feedback, correct feedback, error 818 
feedback, unambiguous feedback (error magnitudes are 0/3+), and ambiguous feedback (error magnitudes 819 
are 1/2). The representation of past errors is stronger in parietal cortex in the high-noise condition than the 820 
unstable condition when the current trial is an error or provides ambiguous feedback. 821 
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 823 

 824 
Figure 6 825 
Representations of subsequent behavioral choices (switch versus stay) after ambiguous small errors in the 826 
high-noise condition. (A) Overlap of results for switch versus stay on the next trial and error magnitude 827 
on the current trial. Multi-voxel neural patterns were used to classify whether participants switch their 828 
choice to another target or stay on the same target on the next trial. We focused on the most ambiguous 829 
errors (error magnitude of 1 or 2 in the high-noise condition). Above-chance classification performance 830 
was found throughout much of the frontal lobe. (B) Overlap of results for switch versus stay on the next 831 
trial and past error conditional on ambiguous feedback on the current trial. 832 
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 834 
Figure 2 - Figure supplement 1 835 
Behavioral data and predictions from different models. (A) Probability of choosing the best target after 836 
change-points. (RB: reduced Bayesian; fixedLR: fixed learning rate; Pstay: fixed tendency to stay) (B) The 837 
relationship between error magnitude and switch probability. (C) Probability of switch as a function of 838 
current error magnitude and error history in the unstable condition. (D) Probability of switch as a function 839 
of current error magnitude and error history in the high-noise condition. Symbols and colors are as in 840 
Figure 2.  841 
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 843 

 844 
Figure 3 - Figure supplement 1 845 
Reduced Bayesian model with true hazard rate and noise applied to behavioral and imaging data. (A) 846 
Model prediction for CPP. We calculated CPP from the reduced Bayesian model using the true hazard 847 
rate and noise for each condition. (B) Model prediction for RU. We calculated RU from the reduced 848 
Bayesian model using the true hazard rate and noise for each condition. (C) Model prediction for 849 
probability of switch. Probability of switch is influenced by both CPP and RU. (D) Neural representation 850 
of CPP and RU in the current study and in McGuire et al. (2014). CPP selective effect represents the 851 
conjunction of CPP>0 and CPP>RU. RU selective effect represents the conjunction of RU>0 and 852 
RU>CPP. (E) ROI analysis for CPP and RU. These ROIs were selected based on the common regions of 853 
CPP, RU and reward effects in McGuire et al. (2014). Significance was tested by a sign test. *p<0.05, 854 
**p<0.01, ***p<0.001. 855 
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 857 

Figure 4 - Figure supplement 1 858 
Univariate representations of error and error magnitude. A GLM was implemented on the preprocessed 859 
fMRI data (smoothed with 6 mm FWHM Gaussian kernel). The trial-by-trial regressors of interest that 860 
were included in the GLM were: onset of correct trials, earnable value on correct trials, onset of error 861 
trials, error magnitude on error trials, switch or stay on error trials and earnable value on error trials. We 862 
focused on the effects of error (which is the difference between the onset of error trials and the onset of 863 
correct trials) and error magnitude. Group t-values are shown. For statistical testing, we implemented one-864 
sample cluster-mass permutation tests with 5,000 iterations. The cluster-forming threshold was 865 
uncorrected voxel p<0.005.  866 
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 868 
Figure 5 - Figure supplement 1 869 
Univariate representations of error on the previous trial conditional on different types of current trials 870 
(columns). Several GLMs were implemented on the preprocessed fMRI data (smoothed with 6 mm 871 
FWHM Gaussian kernel). First, we examined errors on the previous trial across all trials. The trial-by-trial 872 
regressors of interest that were included in the GLM were: onset of trials, error on trial t, error on trial t-1, 873 
error on trial t-2, and error on trial t-3. We focused on the effect of error on trial t-1. Second, we separated 874 
the analysis of past errors conditional on the current trial being correct or an error. The trial-by-trial 875 
regressors of interest that were included in the GLM were: onset of current correct trials, errors on trial t-1, 876 
t-2, or t-3 conditional on the current trial being correct, onset of current error trials, errors on trial t-1, t-2, 877 
or t-3 conditional on the current trial being an error. We focused on the effects of error on trial t-1 878 
conditional on the current trial being correct or an error. Third, we separated errors conditional on 879 
unambiguous (error magnitudes are 0/3+) or ambiguous feedback (error magnitudes are 1/2). The trial-880 
by-trial regressors of interest that were included in the GLM were: onset of current trials with 881 
unambiguous feedback, errors on trial t-1, t-2 or t-3 conditional on the current trial providing 882 
unambiguous feedback, onset of current trials with ambiguous feedback, errors on trial t-1, t-2 or t-3 883 
conditional on the current trial providing ambiguous feedback. We focused on the effects of errors on trial 884 
t-1 conditional on the current trials providing unambiguous or ambiguous feedback. Group t-values are 885 
shown. For statistical testing, we implemented one-sample cluster-mass permutation tests with 5,000 886 
iterations. The cluster-forming threshold was uncorrected voxel p<0.005. 887 
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 889 
Figure 6 - Figure supplement 1 890 
Univariate GLM for switch versus stay on ambiguous feedback in the high-noise condition. A GLM was 891 
implemented with several trial-by-trial regressors of interest: onset of trials with error magnitude of 0, 892 
onset of trials with error magnitude of 3+, onset of ambiguous feedback (error magnitudes are 1/2) 893 
followed by switching, onset of ambiguous feedback followed by staying. We tested the effects of the 894 
difference between switch and stay after ambiguous feedback. Group t-values are shown. The results were 895 
thresholded based on uncorrected voxel p<0.01. 896 
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Table 1 903 

BIC of behavior models 904 

Model Condition BIC improvement by RB model 

Reduced Bayesian 

model (RB) 

Unstable  

High-noise  

Fixed learning rate 

model (fixedLR) 

Unstable 5.26 [3.97, 5.71]** 

High-noise -22.22 [-77.36, 0.03]† 

RB + fixedLR 
Unstable -9.85 [-10.97, -7.65]*** 

High-noise -4.60 [-9.93, 0.98] 

RB + Pstay 
Unstable -5.20 [-5.66, -3.76]** 

High-noise -5.57 [-5.68, -2.60]** 

The values were shown as median [IQR]. A negative value means that RB model performed 905 
better than the compared model. Significance was tested by a sign test. †p<0.08, **p<0.01, 906 
***p<0.001. 907 
  908 
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Table 2 909 

Parameters of behavior models 910 

Model Parameter Unstable High-noise	 Unstable > High-noise 

RB 
H 0.88 [0.68, 0.92] 0.33 [0.11, 0.50]	 0.46 [0.25, 0.72]*** 

K 0.59 [0.03, 2.22] 1.86 [1.22, 2.32]	 -0.35 [-1.98, 0.71] 

fixedLR 𝛼4\]P^ 0.96 [0.86, 0.97] 0.63 [0.37, 0.73]	 0.33 [0.19, 0.49]*** 

RB + fixedLR 

H 0.27 [0.00, 0.84] 0.02 [0.00, 0.13]	 0.14 [0.00, 0.64]† 

K 7.76 [2.18, 9.99] 3.83 [2.36, 9.02]	 0.26 [-0.68, 5.77] 

𝛼4\]P^ 0.97 [0.75, 1.00] 0.93 [0.23, 1.00]	 0.02 [-0.10, 0.56] 

w 0.41 [0.15, 0.79] 0.65 [0.40, 0.87]	 -0.23 [-0.57, 0.24] 

RB + Pstay 

H 0.86 [0.73, 0.94] 0.35 [0.11, 0.60]	 0.47 [0.18, 0.72]** 

K 4.54 [0.12, 9.99] 2.09 [1.51, 4.71]	 0.02 [-1.33, 6.41] 

𝑃E"cd 0.00 [0.00, 0.05] 0.01 [0.00, 0.13]	 0.00 [-0.11, 0.02] 

Parameter values were shown as median [IQR]. Difference of parameter values between the two 911 

conditions was tested by a sign test. †p<0.08, **p<0.01, ***p<0.001. 912 
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Table 3 914 

Summary of fMRI results: error magnitude and past error 915 

Cluster index #Voxels Region Peak t Peak x Peak y Peak z 

Error magnitude: high-noise versus unstable 

1 21032 R Precuneus 5.22 16 -56 12 

  R Angular gyrus 5.17 44 -70 32 

  L Precuneus 5.08 -18 -58 20 

  Occipital pole 5.07 2 -98 -2 

  L Superior parietal lobule 4.91 -10 -66 48 

  R Occipital cortex 4.69 26 -76 18 

  L Occipital cortex 4.54 -38 -86 26 

  R Superior parietal lobule 4.44 44 -44 54 

  Posterior cingulate cortex 4.43 2 -46 20 

Past error on ambiguous feedback: high-noise versus unstable 

1 1881 Posterior cingulate cortex 4.79 12 -24 52 

  R Superior parietal lobule 4.04 32 -38 54 

  R Precuneus 3.58 6 -54 70 

  L Superior parietal lobule 3.54 -16 -54 62 

Conjunction: Error magnitude & Past error on ambiguous feedback 

1 304 R Superior parietal lobule 3.41 38 -40 52 

2 103 R Precuneus 3.02 2 -58 70 

3 81 L Superior parietal lobule 3.23 -18 -56 72 

  916 
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Table 4 917 

Summary of fMRI results: behavior change 918 

Cluster index #Voxels Region Peak t Peak x Peak y Peak z 

Switch versus stay on ambiguous feedback in the high-noise condition 

1 12042 Middle cingulate cortex 4.35 14 -8 30 

  R Insula 4.33 38 4 2 

  Medial orbitofrontal cortex 4.24 -4 50 -10 

  R Frontal pole 4.11 40 46 0 

  R Inferior frontal gyrus 4.11 48 26 10 

  L Frontal pole 4.01 -24 52 -2 

  Dorsomedial frontal cortex 3.96 0 26 34 

  Posterior cingulate cortex 3.93 2 -28 50 

  R Precentral gyrus 3.91 48 -6 50 

  Anterior cingulate cortex 3.51 0 48 20 

2 3134 L Precentral gyrus 4.43 -62 2 24 

  L Superior temporal gyrus 4.28 -50 -32 12 

  L Postcentral gyrus 3.61 -50 -26 44 

 919 


