
 1

Title: SimBit: A high performance, flexible and easy-to-use population 1

genetic simulator 2

 3

Author: Remi Matthey-Doret1,2 4

1: Department of Zoology and Biodiversity Research Centre, University of British Columbia, 5

Vancouver, British Columbia V6T 1Z4, Canada 6

2: Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland 7

 8

Corresponding author: remi.matthey-doret@iee.unibe.ch 9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 2

Abstract 10

SimBit is a general purpose and high performance forward-in-time population genetics simulator. 11

SimBit has been designed to be able to model a wide diversity of complex scenarios from a simple 12

set of commands that are very flexible. SimBit also comes with a R wrapper that simplifies the 13

management of an entire research project from the creation of a grid of parameters and 14

corresponding inputs, running simulations and gathering outputs for analysis. Implementing 15

various representations of the individual’s genotype allows SimBit to sustain a high performance 16

in a wide diversity of simulation scenarios. SimBit’s performance was extensively benchmarked 17

in comparison to SLiM, Nemo and SFS_CODE. No single program systematically outperforms 18

the others but SimBit is most often the highest performing program and maintains high 19

performance in all scenarios considered. 20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 3

Introduction 21

Evolutionary genetics has always had a strong theoretical background. As our understanding of 22

ecological and evolutionary processes improves, we study more and more complex processes for 23

which mathematical modelling becomes very tedious if not impossible. For such processes, only 24

numerical simulations can allow us to perform realistic modelling. In fact, to my knowledge, the 25

first work in computational biology has been conducted by one of the fathers of population 26

genetics, Ronald A. Fisher (1950). 27

We are today in an uncanny valley in which we are almost able to perform realistic genome-wide 28

simulations of populations but not quite yet. Individual-based simulations are used to investigate 29

phenomena in evolutionary biology and ecology (e.g. Gilbert et al., 2017; Yeaman & Whitlock, 30

2011), to question conservation scenarios (e.g. Cowley, 2008; Halls & Welcomme, 2004) and are 31

also used in statistical settings such as with Approximate Bayesian Computation (reviewed in 32

Beaumont, 2010) or with a machine learning algorithm (e.g. Schrider & Kern, 2018). However, 33

such technics are often computationally very expensive and it can take a lot of time to parametrize 34

these simulations. As a consequence, many studies limit forward simulations to unrealistically low 35

number of individuals or loci. 36

Writing an algorithm to make efficient individual-based simulations is no easy task, and most 37

authors therefore rely on existing, flexible simulation programs. It is often difficult, however, to 38

choose a simulation program. There are no objective ways to compare and express how user-39

friendly a program is. Also, different program packages have drastically different performance for 40

different simulation scenarios. Learning how to use a new program can be a lengthy and difficult 41

task, therefore many users just use the program they already know or just pick one program that is 42

able to perform the simulations they need without questioning its performance. However, as shown 43

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 4

below, even under simple scenarios, a given program can be hundreds or thousands of times slower 44

than another one which will drastically affect the feasibility, or level of replication, of a study. 45

Here, I present SimBit, a general purpose forward-in-time population genetics simulator written 46

in C++. SimBit has been designed to have a high performance for a wide variety of simulation 47

scenarios. SimBit does so by using diverse representations of the genetic architecture for different 48

simulation scenarios. As a user of Nemo (Guillaume & Rougemont, 2006), SFS_CODE 49

(Hernandez, 2008; Hernandez & Uricchio, 2015) and SLiM (Haller et al., 2019; Haller & Messer, 50

2017, 2019), I gathered my experience to make SimBit a program that offers a fast learning curve 51

to new users. With a simple set of commands that are very flexible, users can quickly simulate a 52

great diversity of scenarios. SimBit can simulate a wide variety of selection scenarios (any 53

selection coefficient and dominance coefficient at any locus, any epistatic interaction with any 54

number of loci, any spatial and temporal changes of selection scenarios, etc.), demographic 55

scenarios (any number of discrete patches with specific migration scenario, hard vs. soft selection, 56

changes in patch size depending on fecundity, exponential vs logistic growth, gametic or zygotic 57

dispersion, etc.), mating systems (any cloning rate and selfing rate, hermaphrodites or males and 58

females), different types of representation of the genetic architecture (bi-allelic loci, QTLs, etc.) 59

and SimBit has a great diversity of tools to manipulate simulations and gather output. Finally, 60

SimBit comes with a R wrapper that is very handy for managing the creation of numerous input 61

commands. This article aims at presenting the general working of SimBit and compares its 62

performance to other similar programs. For detailed information about how to use SimBit, please 63

consult the manual. 64

 65

 66

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 5

Demography and species ecologies 67

In the current version, SimBit assumes non-overlapping generations (although different species 68

can have different generation times), diploidy (although one can mimic haploidy), and assumes 69

discrete patches (although patches can be made arbitrarily small, essentially mimicking continuous 70

space). Outside of these three assumptions, SimBit can simulate very diverse types of scenarios. 71

SimBit can simulate any number of patches with any migration matrix, carrying capacity, variation 72

of the patch size from the carrying capacity based on realized fecundity with exponential or logistic 73

growth model (the growth model can be set for each patch independently; see more on that below). 74

Each patch can be initialized at the desired size and all of the above parameters can vary over time. 75

Dispersal can happen at the gametic or at the zygotic phase and may be a function of the patch 76

mean fitness (hard versus soft selection). SimBit can also simulate multiple species and their 77

ecological interactions as explained below. 78

 79

SimBit can simulate realistic changes in population in response to patch mean fitnesses. Let’s 80

denote at time t the expected number of offspring of a species s produced in patch p as 𝑃!,#,$"""""". Let’s 81

also denote the patch growth rate 𝑟!,#,$ = 𝑓∑𝑤% as the product of f, the theoretical maximum 82

fecundity of an individual having a (relative) fitness of 1.0 (set by the user), and ∑𝑤%, the sum of 83

finesses in this patch. If the user allows the patch size to vary from the carrying capacity of this 84

species and that at time t, in patch p, for species s, the carrying capacity is set to Kt,s,p then the 85

expected number of offspring produced is 𝑃!,#,$"""""" = 𝑟𝑁!,#,$ for the exponential model and 𝑃!,#,$"""""" =86

𝑁!,#,$ + 𝑟𝑁!,#,$ *1 −
&!,#,$
'!,#,$

- for the logistic model, where 𝑁!,#,$ is the size of the patch p of species 87

s at time t. The actual number of offspring produced, 𝑃!,#,$	can then either be set deterministically 88

/𝑃!,#,$ = 𝑃!,#,$""""""0 or stochastically /𝑃!,#,$ = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑃!,#,$"""""")0. With more than one patch, these 89

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 6

offspring produced are then spread out through migration. With a single patch (or in absence of 90

immigration and emigration for the patch p), 𝑁!(),#,$ is simply set to 𝑃!,#,$. 91

 92

Into the above framework, we can add the fact that different species can affect each other’s through 93

their ecological relationships. This can be achieved through a “competition matrix” that 94

implements a Lotka-Volterra model of competition and/or through a “predation matrix” that 95

implements a consumer-resource model (or predator-prey model) with a linear rate of resource 96

consumption (introduction to these models in Otto & Day, 2007; discrete-time example of a 97

predator-prey model in Çelik & Duman, 2009). Let ⍺i,s be an element of the “competition matrix” 98

describing the competitive effect of species i on focal species s. The expected number of offspring 99

produced is then given by 𝑃!,#,$"""""" = 𝑁!,#,$ + 𝑟𝑁!,#,$ *1 −
∑ ⍺%,#% &!,%,$

'!,#,$
-. Note that competitive effects 100

can only be set on species and on patches having logistic growth. Let βi,s be an element of the 101

“predation matrix” describing the effect of species i on species s. The predation effect is added to 102

the expected number of offspring produced 𝑃′!,#,$""""""" = 𝑃!,#,$"""""" + ∑ β%,#% . In this last equation, I 103

assumed that all effects βi,s are independent of the patch sizes of both the causal and recipient 104

species but in practice a user can specify for each βi,s whether the effect should be multiplied by 105

the causal species patch size (𝑁!,%,$), by the recipient species patch size (𝑁!,#,$) or by both. SimBit 106

enforces that all the diagonal values ⍺#,# = 1.0	and that all the diagonal values β#,# = 0.0. SimBit 107

can also allow the patch size to overshoot the carrying capacity 𝐾!,#,$up to an arbitrary large value 108

allowing for oscillating or chaotic changes in patch sizes. 109

 110

 111

 112

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 7

Mating system 113

SimBit can simulate hermaphrodites or males and females with an arbitrary sex-ratio. At every 114

reproduction event, an organism will be cloned with probability C and self with probability S. By 115

default, the cloning rate is set at 0.0 and the selfing rate is set at 1/2N (Wright-Fisher model), but 116

these can be set by the user. 117

 118

Types of loci and selection 119

Different programs use different representations of the genetic variation. For example, Nemo 120

represents an individual’s haplotype with an array in which the nth element of the array indicates 121

the allelic value for the nth locus. In SLiM, each individual’s haplotype is represented with a 122

container of mutations (where each mutation is an object that stores its position and other 123

associated features as attributes). In SFS_CODE, a haplotype is represented with a linked list of 124

mutations. These different representations of the genetic variation have important consequences 125

for the performance of the software package. Nemo’s technique is expected to perform well at high 126

genetic diversity per locus, while SLiM and SFS_CODE are expected to perform better at low 127

genetic diversity per locus. Nemo also has QTLs and SLiM can mimick QTLs through Eidos (the 128

programming language used to parameterize SLiM simulations). These different representations 129

also have consequences on the flexibility and performance of a program. 130

 131

SimBit implements five different representations of the genetic variation called T1, T2, T3, T4 and 132

T5. I refer to these representations as types of loci. T1, T4 and T5 types of locus represent binary 133

loci. SimBit has multiple representations of binary loci in order to sustain flexibility and high 134

performance over a wide range of genetic diversity and of simulation scenarios. T2 type of locus 135

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 8

represents blocks that count mutations, T3 type of locus represent QTLs and all three types. More 136

information on these five types of representations is below. Loci of different types are integrated 137

on the same recombination map. The recombination rate can be specified between any pair of 138

adjacent loci (whether the two loci are of the same type or not) with any number of chromosomes. 139

Mutation rates can also be set independently for each locus. 140

For a number of types of loci (see below), SimBit can make use of an assumption about the 141

selection scenario that can provide substantial improvement in run time. I call this assumption the 142

“multiplicative fitness” assumption. The multiplicative fitness assumption assumes 1) 143

multiplicative fitness interactions among loci and 2) that the fitnesses of the three possible 144

genotypes at a given locus are 1, 1–s and (1–s)2. When a user makes this assumption, SimBit 145

partitions a haplotype into blocks and computes the fitness value for each block. If, during 146

reproduction, no recombination events happen within a given block, then SimBit will not need to 147

recompute the fitness for this specific block as the fitness of the block can simply be multiplied by 148

the fitness of the same block on the other haplotype. By default, SimBit attempts to estimate the 149

optimal size of these blocks, but a user can also explicitly specify the position and location of each 150

block. This technique yields substantial performance improvement in terms of CPU time especially 151

when the recombination rate within blocks is relatively low (see ‘Performance’ section below). 152

Therefore, unless the exact dominance relationship is of central importance, it is generally 153

recommended to make use of this assumption. 154

 155

The genetic architecture can be set independently for each species and all the selection scenarios 156

presented below can be set differentially for each species, habitat and time. By default, all of the 157

patches belong to the same habitat, but a user can assign each patch to a specific habitat and all the 158

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 9

selection pressures described below (including epistasis) can be specified for each habitat 159

independently. Also, selection can be applied on viability and/or on fertility. 160

 161

T1 loci 162

T1 loci track binary variables (e.g., mutated vs wildtype). SimBit has in memory for each 163

haplotype an array of bits of the length of the number of T1 loci simulated. The nth bit indicates 164

whether the nth T1 locus of this haplotype is mutated or not. As such, T1 loci are somewhat similar 165

to Nemo’s genetic representation. T1 loci have high performance for simulations with very high 166

per locus genetic diversity. 167

Selection scenarios on T1 loci are extremely flexible. A user can set the fitness values of each of 168

the three possible genotypes at each locus allowing for any kind of dominance scenario including 169

overdominance and underdominance. Any epistatic interactions between any number of loci can 170

also be specified. A user can also use the assumption of “multiplicative fitness” on T1 loci. 171

 172

T2 loci 173

T2 loci are meant to represent aggregate blocks of loci, and, SimBit counts the number of mutations 174

happening in this block. This type should be used only when 1) the genetic diversity per T2 locus 175

is very high, 2) when performance is a major concern, 3) the user is satisfied with the limited 176

selection scenario it can model, and 4) a simple count of the number of mutations happening per 177

T2 locus for each haplotype is a sufficient output. Selection on T2 is forced to have multiplicative 178

effect among haplotypes (therefore T2 loci always use the assumption of “multiplicative fitness”). 179

 180

 181

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 10

T3 loci 182

T3 loci are quantitative trait loci (QTL) and code for an n-dimensional phenotype. The user can 183

set the phenotypic effect of each T3 locus on each of the n axes of the phenotype, and these 184

phenotypic effects can also depend on the environment in order to simulate a plastic response. A 185

user can also add random developmental noise (drawn from a Gaussian distribution) in the 186

production of a phenotype in order to reduce heritability. For T3 loci, the user can define a fitness 187

landscape, where an individual’s fitness is given by its phenotype. 188

 189

T4 loci 190

For T4 loci, SimBit computes the coalescent tree of the population over time and adds the 191

mutations onto the tree when the user asks for output. As a consequence, T4 loci are necessarily 192

neutral. T4 loci are inspired from Kelleher et al. (2018) and the method has already been 193

implemented in SLiM (Haller et al., 2019). Tree recording technics can be very promising when 194

dealing with lots of highly linked neutral loci. This technic allows a forward-in-time simulator to 195

perform equally than backward-in-time simulators for some extreme simulation scenarios while 196

retaining many of the advantages of forward-in-time simulations such as simulating selection at 197

other loci (Haller et al., 2019). 198

 199

T5 loci 200

T5 loci are very similar to T1 loci (two simulations with the same random seed differing only by 201

the fact that one uses T1 loci and the other uses T5 loci will produce the same output). For each 202

haplotype, SimBit has a dynamic sorted array with the position of each T5 locus that is mutated. 203

As such T5 loci are somewhat similar to how SLiM keeps track of its genetic architecture. With 204

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 11

high genetic diversity SimBit therefore tracks a lot of mutated loci, while with low genetic diversity 205

SimBit tracks few mutated loci. For this reason, T5 loci tend to perform better than T1 loci for 206

moderate to low genetic diversity per locus. 207

Behind the scene, SimBit will track separately T5 loci that are under selection and T5 loci that are 208

neutral for improved performance. SimBit can also compress T5 loci (either the neutral ones and/or 209

the selected ones) information in memory. Compression reduces the RAM usage by up to a factor 210

of 2 and can increase or decrease CPU time depending on the simulation scenario. By default, 211

SimBit makes this compression on the neutral T5 loci only and only when it is certain it will 212

improve performance. For advanced users, it is also possible to ask SimBit to invert the meaning 213

of some loci depending on their frequencies. For example, if the locus 23 is fixed or quasi-fixed, 214

haplotypes would track this 23rd locus only if they carry the non-mutated allele. 215

With T5 loci, one can specify the fitness values of the heterozygote and double mutants’ genotypes 216

only allowing for all types of dominance including overdominance and underdominance. Just as 217

on T1 loci (and T2 loci), a user can take advantage of the assumption of “multiplicative fitness”. 218

 219

Initialization 220

Several options exist in SimBit to initialize and reset the genome of existing individuals. The patch 221

size as well as the genetic diversity for each locus can be set at initialization. A user can then 222

perform any mutation desired at predefined times with the option --resetGenetics. To ease user 223

interface, SimBit also allows the user to define “individual types” (via option --individualTypes). 224

Those individual types can then be used to either initialize a population or to insert (or replace) 225

new individuals into any patch at arbitrary moments (also via option --resetGenetics). One can, for 226

example, create individual types belonging to large hypothetical patches and simulate immigration 227

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 12

from these hypothetical patches by just introducing these individual types into the focal patch. This 228

speeds up simulations as SimBit does not explicitly simulate these large source patches. 229

It is also possible to start a simulation from the individuals of a previous simulation that have been 230

saved in binary files. Binary files are particularly useful to 1) avoid simulating a burn-in multiple 231

times, 2) resume a simulation from an intermediate timepoint, and 3) save the entire population in 232

a compact format to extract specific summary statistics later on. 233

 234

Outputs 235

Outputs are often very limiting factors for population genetic simulators (Hoban et al., 2012). 236

SimBit can produce 30 different types of outputs (which can be sampled at any number of 237

generations throughout the simulation). These outputs include, but are not limited to, entire 238

genotypes of each individual in the metapopulation, allele frequencies, FST, VCF files, fitness 239

(specifying fitness for each type of locus), patch sizes, extinction times of the different species, the 240

whole genealogy between two specified generations, binary files of the entire population (that can 241

be reused for future simulations or simply to extract summary statistics later on). Many of these 242

outputs can be restricted on a specified subset of loci. SimBit can also simulate sequencing errors 243

before producing the outputs to make results easier to compare to empirical data. 244

 245

User interface 246

SimBit reads options either directly from the command line or via an input file. An important goal 247

of SimBit is to have a user interface that takes input that is readable and in a very simple format to 248

give the users a good understanding of what they are simulating and offer very explicit error 249

messages when input is nonsense. SimBit recognizes specific options as they are proceeded by a 250

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 13

double dash (`--`). For example, `--patchCapacity unif 1e4` indicates that the carrying capacity is 251

uniform (keyword `unif`) for all patches and is set to 10,000. The ordering of these options does 252

not matter. SimBit also provides a number of macros that are mainly inspired from R functions. 253

These inputs can be read either directly from the command line or from a file. SimBit also comes 254

with an R wrapper. 255

In order to be fast and easy to learn, SimBit provides many functionalities with a relatively small 256

number of options. It achieves this by having most options being specific to a generation, a habitat 257

and/or a species and uses specific markers, @G, @H and @S to input information that are 258

generation-specific, habitat-specific and species-species, respectively. For example, the entry --259

N @G0 unif 100 @G5e3 unif 1000 asks for the carrying capacity of all patches to be 260

uniformly (keyword unif) set to 100 from generation 0 to generation 4999 and then set to 1000 261

until the end of the simulation. Also, most options come with a diversity of modes of data entry. 262

For example, for the migration scenario, a user can indicate the whole dispersal matrix or can 263

simply specify an island model, a linear stepping stone model or a Gaussian dispersal kernel. 264

Below, I benchmark SimBit in comparison to other softwares. Examples of command line inputs 265

to SimBit for these simulations which results are shown on figures 1, 2, S1, S2, S3 and S4 as well 266

as for the simulations of figure 3 are found in appendix A. Here is an example of a input file used 267

for this benchmark. Please see manual for more information. 268

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 14

 269

270

 271

SimBit also comes with an R wrapper that is particularly useful for building numerous input 272

simulations. Without going into explaining the detail working of the wrapper, let’s consider a 273

complete example of code that will test how different migration rates and number of patches in an 274

island model affect FST. The first step is to create a grid of parameters (a “data.frame”), where each 275

row contains information for a single simulation. We will use a full factorial design with three 276

distinct migration rates and seven distinct number of patches. We will run 20 replicates for each 277

of these 3×7=21 combinations resulting in a grid of parameters of 420 rows. The argument 278

#############################
Example of input file ###
#############################

Number of patches
--PatchNumber 1

Carrying capacity
--N unif 1e5

Genetic architecture. Asks for 60000 T5 loci
--Loci T5 6e4

Mutation rate on T5 loci
--T5_mu unif 1e-7

Selection (uses multfit assumption)
--T5_fit multfitUnif 0.99999

Recombination rate
Values are interpreted as a “rate”.
For centimorgan, use “cM”, instead of “rate”
--r rate unif 1e-7

Number of generations
--nbGens 1e5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 15

“outputFilePrefix” sets a column called “outputFile” with the prefix given followed by the row 279

number. This column will be used to set the where outputs should be directed. 280

281

 282

The second step is to loop through the rows of the parameter grid in order to run the simulations 283

(or to create the input file to run them later on). For this, we use the function 284

GetParameterGridData, which, for each column of the grid of parameters, sets a variable 285

with name equal to the column name and value equal to the value of this column at the specified 286

row of the specified parameter grid given in input. 287

########################
Load SimBitWrapper ##
########################

devtools::install_github(“RemiMattheyDoret/SimBitWrapper”)
require(SimBitWrapper)

###############################
Create grid of parameters ##
###############################

parameterGrid = fullFactorial(
 PatchNumber = c(2,3,4,5,6,7,8),
 migrationRate = c(0.001, 0.003, 0.01),
 N = 1e3,
 nbLoci = 1e4,
 nbGenerations = 5e4,
 recRate = 1e-4,
 mu = 1e-5,
 replicate = 1:20,
 outputFilePrefix = "/Users/Remi/mySims/output_"
)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 16

288

 289

The argument maxNbThreads is an easy way to parallelize the simulations. 290

maxNbThreads=24 does not mean that a given simulation will use 24 threads (each simulation 291

takes one thread) but that the run method will start 24 simulations in the background and will 292

then wait that one of them finishes before starting a 25th simulation. Please see manual for further 293

information about the run method. It is sometimes more practical to print the input command into 294

a file either and run the simulations from the shell at a later time. This can be achieved with 295

input$print(“/path/to/input.txt”). Finally, the last step is to gather the outputs and 296

graph the results. In order to gather the outputs, we use the function gatherData. This function 297

#######################################
Create inputs and run simulations ##
#######################################

for (row in 1:nrow(parameterGrid))
{
 ### Get data for the row

GetParameterGridData(parameterGrid, row)

Initialize the input
input = Input$new()

Set the values
input$set(“PatchNumber”, PatchNumber)
input$set(“m”,“island”, migrationRate)
input$set(“N”, “unif”, N)
input$set(“nbGenerations”, nbGenerations)
input$set(“L”, “T1”, nbLoci)
input$set(“T1_mu”, “unif”, mu)
input$set(“r”, “rate”, “unif”, recRate)
input$set(“T1_FST_file”, outputFile, nbGenerations)

Run the simulation
input$run(maxNbThreads=24)

}

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 17

uses a number of optional parameters (see manual) but default parameters work fine for our simple 298

example. 299

300

In this simple example, the entire study (defining the parameters, creating the inputs, running the 301

simulations, gathering and graphing the results) takes 16 lines of code (16 expressions; including 302

loading packages, excluding the curly braces; and it could be reduced to 7 lines only)! The column 303

“FST_WeirCockerham_ratioOfAverages” used for plotting corresponds to Weir & Cockerham 304

(1984) estimator of FST. The resulting graph is displayed in figure S5 on which is added the 305

theoretical expected FST values from Charlesworth (1998) for comparison. 306

 307
Program comparison – Performance 308

It is often hard for a user to know which program to use for a given study. Indeed, few articles 309

compare program’s features (but see Hoban, 2014, who compares software flexibility), and when 310

authors publish a new program, they do not always compare its performance to other similar 311

programs (but see performance comparisons between SLiM, SFS_CODE and fwdpp in Haller & 312

Messer, 2017). 313

 314

##############################
Gather and graph outputs ##
##############################

Gather simulation outputs
data = gatherData(parameterGrid)

Graph
ggplot2::ggplot(data, aes(y=FST_WeirCockerham_ratioOfAverages,
x=PatchNumber, color=as.factor(migrationRate))) +
stat_summary() + theme_classic()

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 18

In this article, I compared performance of SimBit to three forward-in-time programs; SFS_CODE 315

(Hernandez, 2008; Hernandez & Uricchio, 2015), SLiM (Haller et al., 2019; Haller & Messer, 316

2017, 2019; Messer, 2013) and Nemo (Guillaume & Rougemont, 2006). I chose these three 317

programs because they are all forward-in-time simulation platforms, they can all simulate 318

selection, they are all popular (392 citations among the articles announcing SLiM, SLiM2, SLiM3 319

and the implementation of tree recording sequences in SLiM; 127 citations for Nemo; 216 citations 320

for SFS_CODE; as of 23rd April 2020 on Google Scholar) and are generally considered the highest 321

performing software available. 322

 323

SimBit contains a number of options that are meant to refine its performance (see section 324

“Performance options” in the manual). In practice though, most users will probably only need to 325

choose the type of loci to simulate, and SimBit will do a decent job to figure out how best to 326

simulate it. In order to best represent the performance that a new user ought to expect from SimBit, 327

however, all simulation performances (CPU time and memory usage) presented below are made 328

with the default parameters of SimBit. 329

 330

In order to compare program performance, I ran basic simulations with a single Wright-Fisher 331

population, uniform mutation rate and a uniform recombination rate. All loci experienced a 332

selection coefficient of s=0.00001 and h=0.5. Low selection coefficients were chosen to 1) prevent 333

any software from throwing an error stating that it might suffer from round-off errors caused by 334

low mean fitness and 2) reduce the effects of assuming multiplicative fitness among haplotypes on 335

the simulated scenario (fitness differences between simulations that take advantage of the 336

assumption of multiplicative fitness and the ones that do not is of the order of 10-11). Note that 337

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 19

while SimBit can take advantage of this assumption of multiplicative fitness on demand, 338

SFS_CODE is forced to make this assumption and Nemo and SLiM cannot take advantage of this 339

assumption. I varied the mutation rate (taking values 10-7, 10-5 and 10-3 per locus), the 340

recombination rate (taking values 0, 10-9 and 10-7 and 10-5 per adjacent locus), the carrying capacity 341

(taking values 102, 103, 104, 105 and 106 diploid individuals), and the number of loci (taking values 342

6, 6×102, 6×104 and 6×106) in a full factorial design. All simulations ran for 10,000 generations. I 343

ran these simulations with Nemo (version 2.3.46), SLiM (version 3.1), SFS_CODE (version 344

20150910) and SimBit (version 4.11.0). Because using Nemo’s full potential is not trivial, for 345

Nemo, the input files used for these benchmarks were directly created by Frederic Guillaume. In 346

order to compare the behaviour of different types of loci and selection scenarios in SimBit, I ran 347

all simulations four times in SimBit with T1 and T5 types of loci with and without making use of 348

the assumption of multiplicative fitness among haplotypes. CPU time and peak in Resident Set 349

Size (RSS; memory) usage are reported. Simulations that exceeded 10 days (240 hours) of 350

simulation time or 20GB of memory usage were killed and are reported below with a dot at 240 351

hours (8.64 × 105 seconds in the units used on the figures) and at 20GB (2 × 107 kb in the units 352

used on the figures). All these simulations were run on an Intel Xeon X5650 processor and codes 353

were compiled with gcc-4.8.2rev203690. I ensured that the number of SNPs were not significantly 354

different between all four programs for three of the simulation scenarios benchmarked. 355

For brevity and because changing the recombination rate has very little effect on the results (only 356

SFS_CODE appears to significantly slow down with higher recombination rates), I am showing 357

only the recombination rate 10-7 and only the carrying capacities 103, 104 and, 105 in the main 358

figures. The other benchmarks are found in supplementary material. Figure 1 compares the CPU 359

time among SimBit simulations (T1 vs. T5 and with vs. without taking advantage of the 360

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 20

assumption of multiplicative fitness among haplotypes) for a subset of scenarios. Figure S1 and 361

S2 compare, respectively, the CPU time and the memory usage among SimBit simulations for all 362

scenarios. Figure 2 compares CPU time among Nemo, SLiM, SFS_CODE and SimBit for a subset 363

of scenarios. Figure S3 and S4 compare, respectively, the CPU time and the memory usage among 364

Nemo, SLiM, SFS_CODE and SimBit. 365

366

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 21

Figure 1: Comparison of computational time among the four different ways to simulate the same 367

evolutionary scenario using SimBit. Results here are only for a subset of parameters (excluding 368

N=100, N=106 and all scenarios where the recombination rate among adjacent loci differs from 369

10-7). Other scenarios are in figure S1. Comparisons of memory usage (max Resident Set Size) are 370

found in figure S2. Simulations that exceeded 10 days (240 hours) of simulation time or 20GB of 371

memory were killed and are reported below with an empty dot at 240 hours (8.64 × 105 second). 372

The bold M signifies the usage of the assumption of multiplicative fitness. 373

 374

 375

 376

● ●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ●

●

●

●
●

●

●

● ●
●

●

● ●

●

●

● ●
●

●

●
●

● ●

● ● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

● ●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

● ●

●

●

●
●

● ●

●
●

● ●

●

●

● ●

mu: 1e−07
r: 1e−07

mu: 1e−05
r: 1e−07

mu: 0.001
r: 1e−07

N
: 1000

N
: 10000

N
: 1e+05

102 104 106 102 104 106 102 104 106

102

104

106

102

104

106

102

104

106

Number of Loci

C
PU

 ti
m

e
[s

ec
on

ds
]

µ: 10-7 µ: 10-5 µ: 10-3

N
: 10

3
 N

: 10
4

 N

: 10
5

SimBit M T1

SimBit T1

SimBit M T5

SimBit T5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 22

As expected, T1 loci perform best at high per locus genetic diversity, while T5 loci perform best 377

at moderate to low per locus genetic diversity (figure 1). This is because with T5 loci, SimBit 378

tracks the mutated loci, while with T1 loci, SimBit tracks every locus whether mutated or not (see 379

above section “Representations of the genetic architecture”). 380

Simulations taking advantage of the assumption of multiplicative fitness generally performed 381

better. This advantage decreases as recombination gets higher. For the range of recombination 382

rates explored (up to 10-5 among adjacent loci), simulations taking advantage of the assumption of 383

multiplicative fitness always outperformed the simulations that did not make this assumption. The 384

reason why recombination rate matters for performance is because, as explained in section “Types 385

of loci and selection”, SimBit needs to recompute fitness for a fitness block only if a recombination 386

event happens within this block when using the multiplicative fitness assumption. 387

 388

 389

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 23

Figure 2: Comparison of computational time among the four different simulation programs Nemo, 390

SFS_CODE, SLiM and SimBit. For SimBit, two lines are displayed showing the best performing 391

between T1 and T5 loci from figure 1, once taking advantage of the assumption of multiplicative 392

fitness, once without taking advantage of this assumption. For comparison, SLiM and Nemo are 393

unable to take advantage of this assumption while SFS_CODE is forced to make this assumption. 394

Other scenarios are in figure S3. Comparisons of memory usage (max Resident Set Size) are found 395

in figure S4. See figure 1 for more details. 396

 397

 398

 399

● ●

●

●

●

●

●

● ●

●

●

● ● ●

●

● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●
●

●

● ●

●

●

● ●

●

●

●

● ●

● ●

●

●

● ● ●

●

●
●

●

●

● ●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●
●● ● ●

●

●

● ●

● ●

●

●

●
●

● ●

● ●

●

●● ● ●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●● ● ●

●

● ● ●

● ●

●

●

●

●

●

●

● ●

●
●●● ● ●● ● ● ●

● ●

●

●

●
●

● ●

mu: 1e−07
r: 1e−07

mu: 1e−05
r: 1e−07

mu: 0.001
r: 1e−07

N
: 1000

N
: 10000

N
: 1e+05

102 104 106 102 104 106 102 104 106

102

104

106

102

104

106

102

104

106

Number of Loci

C
PU

 ti
m

e
[s

ec
on

ds
]

µ: 10-7 µ: 10-5 µ: 10-3

 N

: 10
3

N

: 10
4

N

: 10
5

Nemo

SFS_CODE

SLiM

SimBit M

SimBit

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 24

Comparisons between different programs highlight that there is no one program that always 400

performs best (figure 2; figure S3). However, unlike all other software tested, SimBit perform 401

highly in all simulation scenarios considered. SFS_CODE’s CPU time and peak RSS increases 402

exponentially with increase in mutation rate and population size (see also simulations performed 403

by the Ryan Hernandez on SFS_CODE websites; 404

sfscode.sourceforge.net/SFS_CODE/Performance.htlm). Hence, SFS_CODE performs well for 405

simulations that have very low genetic diversity, but it quickly becomes very slow as genetic 406

diversity increases. 407

Nemo is most competitive when there is high genetic diversity per locus (high mutation rate and 408

high population size). This was expected because Nemo tracks every single locus for each 409

haplotype whether or not it is mutated. In fact, with high genetic diversity, Nemo sometimes runs 410

in less time than SimBit when SimBit did not take advantage of the multiplicative fitness 411

assumptions (the grey dots in figures 2 and S3). Nemo never outperformed SimBit in terms of 412

memory usage though (Figure S4) or in terms of CPU time when SimBit takes advantage of the 413

multiplicative assumption. 414

SLiM, just like SFS_CODE, performs best at very low genetic diversity. SLiM computational time 415

is however not as exponential as SFS_CODE, which makes SLiM fast for a wider range of 416

simulation scenarios. SLiM tends to perform better than SimBit when there is little genetic 417

diversity, while SimBit tends to perform better when there is moderate to high genetic diversity. 418

In general, performance comparison in terms of memory usage (figures S2, S4) mirrors well the 419

performance comparisons in terms of CPU time (figures S1, S3). 420

A difference in performance is not just a question of whether a user will have to wait a little longer 421

to get their output; often it is the difference between a research project that is feasible or not. The 422

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 25

log scale on figures S1 and S2 (and supp. figures) might give the reader a false impression of the 423

importance of an observed difference. Consider for example the simulation scenario where r=10-424

7, N=103, µ=10-7 and 6 loci where SLiM outperforms SimBit. SLiM runs in 16 seconds while 425

SimBit runs in 37 seconds. Let’s now consider the simulation scenario where r=10-7, N=105, µ=10-426

7 and 6×104 loci. SimBit (with multiplicative fitness assumption) runs in ~4 hours, while SLiM 427

runs in ~19 hours, Nemo runs in more than 3 days and SFS_CODE does not manage to finish 428

within the 10-day limit. To further consider comparisons between SLiM and SimBit as example, 429

from figure 2, the simulation scenario where SLiM is comparably the fastest, SLiM is 2.56 times 430

faster than SimBit; SimBit took 41 seconds while SLiM took only 16 seconds. For the simulation 431

scenario where SimBit is comparably the fastest, SimBit is (at least) 1169 times faster than SLiM; 432

SimBit took ~12.3 minutes while SLiM was killed after overpassing the 240 hours walltime. These 433

performance differences can translate into a major determinant of what can be achieved for a 434

research project. 435

 436

These very simple simulation scenarios benchmarked above might not be representative of what 437

people really want to simulate. I therefore performed further benchmarking by comparing the 438

performance of Nemo, SLiM, SFS_CODE and SimBit for simulations inspired by recent papers. 439

I sampled three papers, one that performed simulations with SFS_CODE (O’Neill et al., 2019), 440

one that performed simulations with Nemo (Gilbert et al. 2017) and one that performed simulations 441

with SLiM (Booker & Keightley, 2018). To simplify the writing of the commands and make sure 442

that the comparison is fair, I simplified the Booker and Keightley (2017) simulations by assuming 443

a constant mutation rate and recombination rate and used the gamma distribution of fitness effects 444

with a mean of 0.05 and an alpha parameter of 0.111. For the Gilbert et al. (2017) paper, the 445

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 26

simulations have also been slightly modified from the original. The original paper’s specified a 446

“breeding kernel” that can only run on a modified version of Nemo that is not directly published 447

on Nemo’s official website. Hence, for the Gilbert et al. (2017) simulation, I removed the 448

breeding_kernel and modified the size of the dispersal kernel appropriately. For simplicity 449

(because the original input file was 390Mb large), I also used a linear stepping stone model of 450

8000 patches starting with the 1000 left-most patches at carrying capacity and the others empty. I 451

made sure the expansion speed was similar among the two programs. For fairness, I compared the 452

Nemo and SLiM that cannot take advantage of the assumption of multiplicative fitness with SimBit 453

that does not make this assumption, while I compared SFS_CODE that is forced to make this 454

assumption with SimBit that makes this assumption. I also performed a benchmark inspired from 455

human genome and human ancestral demography. I simulate 500 patches of 100 individuals each 456

in a linear stepping stone model with a migration rate to either of the two neighboring patch of 0.2. 457

The genome contained 2×108 sites with a uniform mutation rate of 2×10-8 and a uniform 458

recombination rate of 10-8. For simplicity, all loci were under purifying selection with a constant 459

selection coefficient of 0.0001 and a dominance coefficient of 0.5. Finally, I added a benchmark 460

of a simple Wright-Fisher simulation scenario (N=1000, µ=10-5, 106 loci, r=0; 5000 generations) 461

without selection. Neutral loci can be tracked through a coalescent tree for both SLiM (with Tree 462

Recording and subsequent analysis of the outputted binary file in Python) and SimBit (with T4 463

loci). These simulations were run on an Intel i7-8559u processor, and codes were compiled with 464

clang-800.0.42.1. 465

SimBit systematically outperforms the software used in the original papers (figure 3). For the 466

simulation inspired from human genetics and ancestral human population, SimBit outperformed 467

SLiM whether it made use of the multiplicative fitness assumption or not. Finally, for the “Neutral 468

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 27

simulation example”, the coalescent tree recording technique of both SLiM and SimBit vastly 469

outperform more traditional techniques (figure 3). With “traditional techniques”, SLiM, Nemo and 470

SimBit took 8m29s, 4m05s and 1m18s, respectively, while using coalescent tree recording 471

methods, SLiM and SimBit only took 16.6 seconds and 1.2 seconds, respectively. Here, I only 472

considered an extreme scenario to exemplify the possible advantage of tree recording techniques. 473

For example, I used a recombination rate of zero. With higher recombination rates, the 474

computational time of tree recording techniques would become slower, while it would not have 475

much impact on the runs that did not use a tree recording technique. 476

 477

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 28

Figure 3: Comparison of CPU time among the four programs to reproduce simulations inspired 478

from three recent papers as well as for a neutral simulation scenario with extreme parameters 479

chosen to highlight the possible advantage of T4 loci (Tree recording). The bold M signifies the 480

use of the assumption of multiplicative fitness. SFS_CODE simulation from the “Neutral 481

simulation example” as well as both SFS_CODE and Nemo simulations from the “Human 482

ancestral populations” were purposely killed after overpassing 50 times SimBit’s CPU time for 483

the same simulation. 484

 485

Conclusion 486

There is no perfect way to compare program performance, and one must always be careful when 487

making conclusions from such a benchmark. First, the parameter space considered is, of course, 488

finite. For example, my benchmark does not include any single-locus simulations, simulations with 489

high selfing rates or with males and females instead of hermaphrodites, or any simulations with a 490

very high recombination rate. Also, different programs mean different things by a locus. 491

SFS_CODE simulate triplets of loci as a codon. This means that many mutations that are 492

happening in SFS_CODE are synonymous mutations that don’t affect fitness. Consequently, the 493

0

10000

20000

30000

40000

50000

Gilbert et al.
(2017)

0

20

40

60

80

O'Neil et al.
(2019)

0

50

100

150

Booker & Keightley
(2018)

0

120

240

360

480

Coalescent tree
recording

0

800

1600

2400

3200

Ancestral human
populations

C
PU

 ti
m

e
[s

ec
on

ds
]

N
em

o

Si
m

Bi
t

SL
iM

Si
m

Bi
t

SF
S_

C
O

D
E

Si
m

Bi
t M

N
em

o

Si
m

Bi
t

SL
iM

Si
m

Bi
t T

4

SL
iM

 tr
ee

SL
iM

Si
m

Bi
t

Si
m

Bi
t M

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 29

performance comparisons shown here are unfairly favourable to SFS_CODE compared to Nemo, 494

SLiM and SimBit, but it would not be any fairer either to run all SFS_CODE simulations with 495

three times as many loci. Nemo uses a byte to represent each neutral locus (but only a single bit 496

for loci under selection) hence allowing for the representation of up to 256 possible alleles at 497

neutral loci. SimBit on the other hand represent each locus with a single bit (whether the locus is 498

under selection or not), hence allowing for only two possible alleles. SLiM’s mutations “stack” 499

(no reverse mutations) at a given locus, hence simulating a pseudo infinite allele type of model 500

(see SLiM manual on “mutation stacking” for more information; 501

http://benhaller.com/slim/SLiM_Manual.pdf). As explained above, SimBit contains a number of 502

performance tweaks a user can take advantage of to improve the performance above the default 503

run mode (compression of T5 data in memory, allowing inversion of the meaning of T5 loci 504

depending on their frequency, turning on/off the swapping of pointers for haplotypes that do not 505

recombine or mutate during reproduction, setting manually the positions of blocks for the 506

multiplicative fitness assumption). However, the above simulations were all performed with 507

SimBit default values for these performance tweaks, which is somewhat unfair to SimBit. 508

 509

SimBit has already been used in a number of projects. It has been used for simulations that require 510

very high performance, simulating the effect of background selection of large stretch of DNA in 511

structured populations (Matthey-Doret & Whitlock, 2019). SimBit has also been used for two 512

projects on genetic rescue, one requiring habitat-specific epistatic interactions (Nietlisbach et al., 513

forthcoming) and one requiring complex metapopulation initialization and introduction of 514

predefined individuals during the simulation (Whitlock lab consortium, forthcoming). SimBit is 515

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 30

under a permissive free program license and is available at 516

https://github.com/RemiMattheyDoret/SimBit. 517

 518

Acknowledgment 519

Thank you to Michael C. Whitlock for his help through discussions in designing SimBit. Thank 520

you to both Michael C. Whitlock and Kimberly J. Gilbert for helpful comments on the manuscript. 521

Thank you to Pirmin Nietlisbach for being the main beta tester and for his advice on how to 522

improve the user interface and the manual. Thank you also to Ben Haller and Frédéric Guillaume 523

for their feedback on how to make a fair comparison among programs. Special thanks to Frédéric 524

Guillaume for his help at creating the input files for Nemo and for his feedback about how to 525

display the benchmark results in a way that is fair. Finally, thank you to ComputeCanada for the 526

computational resources used for benchmarking. 527

 528

Funding 529

The work was partially funded by a Swiss National Science Foundation (SNF) Doc.Mobility 530

fellowship P1SKP3_168393 and partially funded by Natural Science and Engineering Research 531

Canada (NSERC) Discovery Grant RGPIN-2016-03779. 532

 533

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 31

Beaumont, M. A. (2010). Approximate Bayesian Computation in Evolution and Ecology. Annual 534

Review of Ecology, Evolution, and Systematics, 41(1), 379–406. 535

https://doi.org/10.1146/annurev-ecolsys-102209-144621 536

Booker, T. R., & Keightley, P. D. (2018). Understanding the Factors That Shape Patterns of 537

Nucleotide Diversity in the House Mouse Genome. Molecular Ecology, 18. 538

https://doi.org/10.1093 539

Çelik, C., & Duman, O. (2009). Allee effect in a discrete-time predator–prey system. Chaos, 540

Solitons & Fractals, 40(4), 1956–1962. https://doi.org/10.1016/j.chaos.2007.09.077 541

Charlesworth, B. (1998). Measures of divergence between populations and the effect of forces 542

that reduce variability. Molecular Biology and Evolution, 15(5), 538–543. 543

https://doi.org/10.1093/oxfordjournals.molbev.a025953 544

Cowley, D. E. (2008). Estimating required habitat size for fish conservation in streams. Aquatic 545

Conservation: Marine and Freshwater Ecosystems, 18(4), 418–431. 546

https://doi.org/10.1002/aqc.845 547

Gilbert, K. J., Sharp, N. P., Angert, A. L., Conte, G. L., Draghi, J. A., Guillaume, F., Hargreaves, 548

A. L., Matthey-Doret, R., & Whitlock, M. C. (2017). Local Adaptation Interacts with 549

Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load. The 550

American Naturalist, 189(4), 368–380. https://doi.org/10.1086/690673 551

Guillaume, F., & Rougemont, J. (2006). Nemo: An evolutionary and population genetics 552

programming framework. Bioinformatics, 22(20), 2556–2557. 553

https://doi.org/10.1093/bioinformatics/btl415 554

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 32

Haller, B. C., Galloway, J., Kelleher, J., Messer, P. W., & Ralph, P. L. (2019). Tree‐sequence 555

recording in SLiM opens new horizons for forward‐time simulation of whole genomes. 556

Molecular Ecology Resources, 19(2), 552–566. https://doi.org/10.1111/1755-0998.12968 557

Haller, B. C., & Messer, P. W. (2017). SLiM 2: Flexible, Interactive Forward Genetic 558

Simulations. Molecular Biology and Evolution, 34(1), 230–240. 559

https://doi.org/10.1093/molbev/msw211 560

Haller, B. C., & Messer, P. W. (2019). SLiM 3: Forward Genetic Simulations Beyond the 561

Wright–Fisher Model. Molecular Biology and Evolution, 36(3), 632–637. 562

https://doi.org/10.1093/molbev/msy228 563

Halls, A. S., & Welcomme, R. L. (2004). Dynamics of river fish populations in response to 564

hydrological conditions: A simulation study. River Research and Applications, 20(8), 565

985–1000. https://doi.org/10.1002/rra.804 566

Hernandez, R. D. (2008). A flexible forward simulator for populations subject to selection and 567

demography. Bioinformatics, 24(23), 2786–2787. 568

https://doi.org/10.1093/bioinformatics/btn522 569

Hernandez, Ryan D., & Uricchio, L. H. (2015). SFS_CODE: More Efficient and Flexible 570

Forward Simulations [Preprint]. Bioinformatics. https://doi.org/10.1101/025064 571

Hoban, S. (2014). An overview of the utility of population simulation software in molecular 572

ecology. Molecular Ecology, 23(10), 2383–2401. https://doi.org/10.1111/mec.12741 573

Hoban, S., Bertorelle, G., & Gaggiotti, O. E. (2012). Computer simulations: Tools for population 574

and evolutionary genetics. Nature Reviews Genetics, 13(2), 110–122. 575

https://doi.org/10.1038/nrg3130 576

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

 33

Kelleher, J., Thornton, K. R., Ashander, J., & Ralph, P. L. (2018). Efficient pedigree recording 577

for fast population genetics simulation. PLOS Computational Biology, 14(11), e1006581. 578

https://doi.org/10.1371/journal.pcbi.1006581 579

Matthey‐Doret, R., & Whitlock, M. C. (2019). Background selection and F ST: Consequences for 580

detecting local adaptation. Molecular Ecology, 28(17), 3902–3914. 581

https://doi.org/10.1111/mec.15197 582

Messer, P. W. (2013). SLiM: Simulating Evolution with Selection and Linkage. Genetics, 583

194(4), 1037–1039. https://doi.org/10.1534/genetics.113.152181 584

O’Neill, M. B., Shockey, A., Zarley, A., Aylward, W., Eldholm, V., Kitchen, A., & Pepperell, C. 585

S. (2019). Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa 586

and Eurasia. Molecular Ecology, mec.15120. https://doi.org/10.1111/mec.15120 587

Otto, S. P., & Day, T. (2007). A biologist’s guide to Mathematical Modeling in Ecology and 588

Evolution. Princeton University Press. 589

Schrider, D. R., & Kern, A. D. (2018). Supervised Machine Learning for Population Genetics: A 590

New Paradigm. Trends in Genetics, 34(4), 301–312. 591

https://doi.org/10.1016/j.tig.2017.12.005 592

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population 593

Structure. Evolution, 38(6), 1358–1370. 594

Yeaman, S., & Whitlock, M. C. (2011). THE GENETIC ARCHITECTURE OF ADAPTATION 595

UNDER MIGRATION-SELECTION BALANCE: THE GENETIC ARCHITECTURE 596

OF LOCAL ADAPTATION. Evolution, 65(7), 1897–1911. 597

https://doi.org/10.1111/j.1558-5646.2011.01269.x 598

 599

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/

