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 2 

Abstract 10 

SimBit is a general purpose and high performance forward-in-time population genetics simulator. 11 

SimBit has been designed to be able to model a wide diversity of complex scenarios from a simple 12 

set of commands that are very flexible. SimBit also comes with a R wrapper that simplifies the 13 

management of an entire research project from the creation of a grid of parameters and 14 

corresponding inputs, running simulations and gathering outputs for analysis. Implementing 15 

various representations of the individual’s genotype allows SimBit to sustain a high performance 16 

in a wide diversity of simulation scenarios. SimBit’s performance was extensively benchmarked 17 

in comparison to SLiM, Nemo and SFS_CODE. No single program systematically outperforms 18 

the others but SimBit is most often the highest performing program and maintains high 19 

performance in all scenarios considered.   20 
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Introduction 21 

Evolutionary genetics has always had a strong theoretical background. As our understanding of 22 

ecological and evolutionary processes improves, we study more and more complex processes for 23 

which mathematical modelling becomes very tedious if not impossible. For such processes, only 24 

numerical simulations can allow us to perform realistic modelling. In fact, to my knowledge, the 25 

first work in computational biology has been conducted by one of the fathers of population 26 

genetics, Ronald A. Fisher (1950). 27 

We are today in an uncanny valley in which we are almost able to perform realistic genome-wide 28 

simulations of populations but not quite yet. Individual-based simulations are used to investigate 29 

phenomena in evolutionary biology and ecology (e.g. Gilbert et al., 2017; Yeaman & Whitlock, 30 

2011), to question conservation scenarios (e.g. Cowley, 2008; Halls & Welcomme, 2004) and are 31 

also used in statistical settings such as with Approximate Bayesian Computation (reviewed in 32 

Beaumont, 2010) or with a machine learning algorithm (e.g. Schrider & Kern, 2018). However, 33 

such technics are often computationally very expensive and it can take a lot of time to parametrize 34 

these simulations. As a consequence, many studies limit forward simulations to unrealistically low 35 

number of individuals or loci. 36 

Writing an algorithm to make efficient individual-based simulations is no easy task, and most 37 

authors therefore rely on existing, flexible simulation programs. It is often difficult, however, to 38 

choose a simulation program. There are no objective ways to compare and express how user-39 

friendly a program is. Also, different program packages have drastically different performance for 40 

different simulation scenarios. Learning how to use a new program can be a lengthy and difficult 41 

task, therefore many users just use the program they already know or just pick one program that is 42 

able to perform the simulations they need without questioning its performance. However, as shown 43 
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below, even under simple scenarios, a given program can be hundreds or thousands of times slower 44 

than another one which will drastically affect the feasibility, or level of replication, of a study. 45 

Here, I present SimBit, a general purpose forward-in-time population genetics simulator written 46 

in C++. SimBit has been designed to have a high performance for a wide variety of simulation 47 

scenarios. SimBit does so by using diverse representations of the genetic architecture for different 48 

simulation scenarios. As a user of Nemo (Guillaume & Rougemont, 2006), SFS_CODE 49 

(Hernandez, 2008; Hernandez & Uricchio, 2015) and SLiM (Haller et al., 2019; Haller & Messer, 50 

2017, 2019), I gathered my experience to make SimBit a program that offers a fast learning curve 51 

to new users. With a simple set of commands that are very flexible, users can quickly simulate a 52 

great diversity of scenarios. SimBit can simulate a wide variety of selection scenarios (any 53 

selection coefficient and dominance coefficient at any locus, any epistatic interaction with any 54 

number of loci, any spatial and temporal changes of selection scenarios, etc.), demographic 55 

scenarios (any number of discrete patches with specific migration scenario, hard vs. soft selection, 56 

changes in patch size depending on fecundity, exponential vs logistic growth, gametic or zygotic 57 

dispersion, etc.), mating systems (any cloning rate and selfing rate, hermaphrodites or males and 58 

females), different types of representation of the genetic architecture (bi-allelic loci, QTLs, etc.) 59 

and SimBit has a great diversity of tools to manipulate simulations and gather output. Finally, 60 

SimBit comes with a R wrapper that is very handy for managing the creation of numerous input 61 

commands. This article aims at presenting the general working of SimBit and compares its 62 

performance to other similar programs. For detailed information about how to use SimBit, please 63 

consult the manual. 64 

 65 

 66 
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Demography and species ecologies 67 

In the current version, SimBit assumes non-overlapping generations (although different species 68 

can have different generation times), diploidy (although one can mimic haploidy), and assumes 69 

discrete patches (although patches can be made arbitrarily small, essentially mimicking continuous 70 

space). Outside of these three assumptions, SimBit can simulate very diverse types of scenarios. 71 

SimBit can simulate any number of patches with any migration matrix, carrying capacity, variation 72 

of the patch size from the carrying capacity based on realized fecundity with exponential or logistic 73 

growth model (the growth model can be set for each patch independently; see more on that below). 74 

Each patch can be initialized at the desired size and all of the above parameters can vary over time. 75 

Dispersal can happen at the gametic or at the zygotic phase and may be a function of the patch 76 

mean fitness (hard versus soft selection). SimBit can also simulate multiple species and their 77 

ecological interactions as explained below. 78 

 79 

SimBit can simulate realistic changes in population in response to patch mean fitnesses. Let’s 80 

denote at time t the expected number of offspring of a species s produced in patch p as 𝑃!,#,$"""""". Let’s 81 

also denote the patch growth rate 𝑟!,#,$ = 𝑓∑𝑤% as the product of f, the theoretical maximum 82 

fecundity of an individual having a (relative) fitness of 1.0 (set by the user), and ∑𝑤%, the sum of 83 

finesses in this patch. If the user allows the patch size to vary from the carrying capacity of this 84 

species and that at time t, in patch p, for species s, the carrying capacity is set to Kt,s,p then the 85 

expected number of offspring produced is 𝑃!,#,$"""""" = 𝑟𝑁!,#,$  for the exponential model and 𝑃!,#,$"""""" =86 

𝑁!,#,$ + 𝑟𝑁!,#,$ *1 −
&!,#,$
'!,#,$

- for the logistic model, where 𝑁!,#,$ is the size of the patch p of species 87 

s at time t. The actual number of offspring produced, 𝑃!,#,$	can then either be set deterministically 88 

/𝑃!,#,$ = 𝑃!,#,$""""""0 or stochastically /𝑃!,#,$ = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑃!,#,$"""""")0. With more than one patch, these 89 
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offspring produced are then spread out through migration. With a single patch (or in absence of 90 

immigration and emigration for the patch p), 𝑁!(),#,$ is simply set to 𝑃!,#,$. 91 

 92 

Into the above framework, we can add the fact that different species can affect each other’s through 93 

their ecological relationships. This can be achieved through a “competition matrix” that 94 

implements a Lotka-Volterra model of competition and/or through a “predation matrix” that 95 

implements a consumer-resource model (or predator-prey model) with a linear rate of resource 96 

consumption (introduction to these models in Otto & Day, 2007; discrete-time example of a 97 

predator-prey model in Çelik & Duman, 2009). Let ⍺i,s be an element of the “competition matrix” 98 

describing the competitive effect of species i  on focal species s. The expected number of offspring 99 

produced is then given by 𝑃!,#,$"""""" = 𝑁!,#,$ + 𝑟𝑁!,#,$ *1 −
∑ ⍺%,#% &!,%,$

'!,#,$
-. Note that competitive effects 100 

can only be set on species and on patches having logistic growth. Let βi,s be an element of the 101 

“predation matrix” describing the effect of species i on species s. The predation effect is added to 102 

the expected number of offspring produced 𝑃′!,#,$""""""" = 𝑃!,#,$"""""" + ∑ β%,#% . In this last equation, I 103 

assumed that all effects βi,s are independent of the patch sizes of both the causal and recipient 104 

species but in practice a user can specify for each βi,s whether the effect should be multiplied by 105 

the causal species patch size (𝑁!,%,$), by the recipient species patch size (𝑁!,#,$) or by both. SimBit 106 

enforces that all the diagonal values ⍺#,# = 1.0	and that all the diagonal values β#,# = 0.0. SimBit 107 

can also allow the patch size to overshoot the carrying capacity 𝐾!,#,$up to an arbitrary large value 108 

allowing for oscillating or chaotic changes in patch sizes.  109 

 110 

 111 

 112 
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Mating system 113 

SimBit can simulate hermaphrodites or males and females with an arbitrary sex-ratio. At every 114 

reproduction event, an organism will be cloned with probability C and self with probability S. By 115 

default, the cloning rate is set at 0.0 and the selfing rate is set at 1/2N (Wright-Fisher model), but 116 

these can be set by the user.  117 

 118 

Types of loci and selection 119 

Different programs use different representations of the genetic variation. For example, Nemo 120 

represents an individual’s haplotype with an array in which the nth element of the array indicates 121 

the allelic value for the nth locus. In SLiM, each individual’s haplotype is represented with a 122 

container of mutations (where each mutation is an object that stores its position and other 123 

associated features as attributes). In SFS_CODE, a haplotype is represented with a linked list of 124 

mutations. These different representations of the genetic variation have important consequences 125 

for the performance of the software package. Nemo’s technique is expected to perform well at high 126 

genetic diversity per locus, while SLiM and SFS_CODE are expected to perform better at low 127 

genetic diversity per locus. Nemo also has QTLs and SLiM can mimick QTLs through Eidos (the 128 

programming language used to parameterize SLiM simulations). These different representations 129 

also have consequences on the flexibility and performance of a program. 130 

 131 

SimBit implements five different representations of the genetic variation called T1, T2, T3, T4 and 132 

T5. I refer to these representations as types of loci. T1, T4 and T5 types of locus represent binary 133 

loci. SimBit has multiple representations of binary loci in order to sustain flexibility and high 134 

performance over a wide range of genetic diversity and of simulation scenarios. T2 type of locus 135 
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 8 

represents blocks that count mutations, T3 type of locus represent QTLs and all three types. More 136 

information on these five types of representations is below. Loci of different types are integrated 137 

on the same recombination map. The recombination rate can be specified between any pair of 138 

adjacent loci (whether the two loci are of the same type or not) with any number of chromosomes. 139 

Mutation rates can also be set independently for each locus. 140 

For a number of types of loci (see below), SimBit can make use of an assumption about the 141 

selection scenario that can provide substantial improvement in run time. I call this assumption the 142 

“multiplicative fitness” assumption. The multiplicative fitness assumption assumes 1) 143 

multiplicative fitness interactions among loci and 2) that the fitnesses of the three possible 144 

genotypes at a given locus are 1, 1–s and (1–s)2. When a user makes this assumption, SimBit 145 

partitions a haplotype into blocks and computes the fitness value for each block. If, during 146 

reproduction, no recombination events happen within a given block, then SimBit will not need to 147 

recompute the fitness for this specific block as the fitness of the block can simply be multiplied by 148 

the fitness of the same block on the other haplotype. By default, SimBit attempts to estimate the 149 

optimal size of these blocks, but a user can also explicitly specify the position and location of each 150 

block. This technique yields substantial performance improvement in terms of CPU time especially 151 

when the recombination rate within blocks is relatively low (see ‘Performance’ section below). 152 

Therefore, unless the exact dominance relationship is of central importance, it is generally 153 

recommended to make use of this assumption. 154 

 155 

The genetic architecture can be set independently for each species and all the selection scenarios 156 

presented below can be set differentially for each species, habitat and time. By default, all of the 157 

patches belong to the same habitat, but a user can assign each patch to a specific habitat and all the 158 
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selection pressures described below (including epistasis) can be specified for each habitat 159 

independently. Also, selection can be applied on viability and/or on fertility. 160 

 161 

T1 loci 162 

T1 loci track binary variables (e.g., mutated vs wildtype). SimBit has in memory for each 163 

haplotype an array of bits of the length of the number of T1 loci simulated. The nth bit indicates 164 

whether the nth T1 locus of this haplotype is mutated or not. As such, T1 loci are somewhat similar 165 

to Nemo’s genetic representation. T1 loci have high performance for simulations with very high 166 

per locus genetic diversity. 167 

Selection scenarios on T1 loci are extremely flexible. A user can set the fitness values of each of 168 

the three possible genotypes at each locus allowing for any kind of dominance scenario including 169 

overdominance and underdominance. Any epistatic interactions between any number of loci can 170 

also be specified. A user can also use the assumption of “multiplicative fitness” on T1 loci. 171 

 172 

T2 loci 173 

T2 loci are meant to represent aggregate blocks of loci, and, SimBit counts the number of mutations 174 

happening in this block. This type should be used only when 1) the genetic diversity per T2 locus 175 

is very high, 2) when performance is a major concern, 3) the user is satisfied with the limited 176 

selection scenario it can model, and 4) a simple count of the number of mutations happening per 177 

T2 locus for each haplotype is a sufficient output. Selection on T2 is forced to have multiplicative 178 

effect among haplotypes (therefore T2 loci always use the assumption of “multiplicative fitness”). 179 

 180 

 181 
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T3 loci 182 

T3 loci are quantitative trait loci (QTL) and code for an n-dimensional phenotype. The user can 183 

set the phenotypic effect of each T3 locus on each of the n axes of the phenotype, and these 184 

phenotypic effects can also depend on the environment in order to simulate a plastic response. A 185 

user can also add random developmental noise (drawn from a Gaussian distribution) in the 186 

production of a phenotype in order to reduce heritability. For T3 loci, the user can define a fitness 187 

landscape, where an individual’s fitness is given by its phenotype. 188 

 189 

T4 loci 190 

For T4 loci, SimBit computes the coalescent tree of the population over time and adds the 191 

mutations onto the tree when the user asks for output. As a consequence, T4 loci are necessarily 192 

neutral. T4 loci are inspired from Kelleher et al. (2018) and the method has already been 193 

implemented in SLiM (Haller et al., 2019). Tree recording technics can be very promising when 194 

dealing with lots of highly linked neutral loci. This technic allows a forward-in-time simulator to 195 

perform equally than backward-in-time simulators for some extreme simulation scenarios while 196 

retaining many of the advantages of forward-in-time simulations such as simulating selection at 197 

other loci (Haller et al., 2019). 198 

 199 

T5 loci 200 

T5 loci are very similar to T1 loci (two simulations with the same random seed differing only by 201 

the fact that one uses T1 loci and the other uses T5 loci will produce the same output). For each 202 

haplotype, SimBit has a dynamic sorted array with the position of each T5 locus that is mutated. 203 

As such T5 loci are somewhat similar to how SLiM keeps track of its genetic architecture. With 204 
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high genetic diversity SimBit therefore tracks a lot of mutated loci, while with low genetic diversity 205 

SimBit tracks few mutated loci. For this reason, T5 loci tend to perform better than T1 loci for 206 

moderate to low genetic diversity per locus.  207 

Behind the scene, SimBit will track separately T5 loci that are under selection and T5 loci that are 208 

neutral for improved performance. SimBit can also compress T5 loci (either the neutral ones and/or 209 

the selected ones) information in memory. Compression reduces the RAM usage by up to a factor 210 

of 2 and can increase or decrease CPU time depending on the simulation scenario. By default, 211 

SimBit makes this compression on the neutral T5 loci only and only when it is certain it will 212 

improve performance. For advanced users, it is also possible to ask SimBit to invert the meaning 213 

of some loci depending on their frequencies. For example, if the locus 23 is fixed or quasi-fixed, 214 

haplotypes would track this 23rd locus only if they carry the non-mutated allele. 215 

With T5 loci, one can specify the fitness values of the heterozygote and double mutants’ genotypes 216 

only allowing for all types of dominance including overdominance and underdominance. Just as 217 

on T1 loci (and T2 loci), a user can take advantage of the assumption of “multiplicative fitness”. 218 

 219 

Initialization 220 

Several options exist in SimBit to initialize and reset the genome of existing individuals. The patch 221 

size as well as the genetic diversity for each locus can be set at initialization. A user can then 222 

perform any mutation desired at predefined times with the option --resetGenetics. To ease user 223 

interface, SimBit also allows the user to define “individual types” (via option --individualTypes). 224 

Those individual types can then be used to either initialize a population or to insert (or replace) 225 

new individuals into any patch at arbitrary moments (also via option --resetGenetics). One can, for 226 

example, create individual types belonging to large hypothetical patches and simulate immigration 227 
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from these hypothetical patches by just introducing these individual types into the focal patch. This 228 

speeds up simulations as SimBit does not explicitly simulate these large source patches. 229 

It is also possible to start a simulation from the individuals of a previous simulation that have been 230 

saved in binary files. Binary files are particularly useful to 1) avoid simulating a burn-in multiple 231 

times, 2) resume a simulation from an intermediate timepoint, and 3) save the entire population in 232 

a compact format to extract specific summary statistics later on. 233 

 234 

Outputs 235 

Outputs are often very limiting factors for population genetic simulators (Hoban et al., 2012). 236 

SimBit can produce 30 different types of outputs (which can be sampled at any number of 237 

generations throughout the simulation). These outputs include, but are not limited to, entire 238 

genotypes of each individual in the metapopulation, allele frequencies, FST, VCF files, fitness 239 

(specifying fitness for each type of locus), patch sizes, extinction times of the different species, the 240 

whole genealogy between two specified generations, binary files of the entire population (that can 241 

be reused for future simulations or simply to extract summary statistics later on). Many of these 242 

outputs can be restricted on a specified subset of loci. SimBit can also simulate sequencing errors 243 

before producing the outputs to make results easier to compare to empirical data. 244 

 245 

User interface 246 

SimBit reads options either directly from the command line or via an input file. An important goal 247 

of SimBit is to have a user interface that takes input that is readable and in a very simple format to 248 

give the users a good understanding of what they are simulating and offer very explicit error 249 

messages when input is nonsense. SimBit recognizes specific options as they are proceeded by a 250 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.086884doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.086884
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

double dash (`--`). For example, `--patchCapacity unif 1e4` indicates that the carrying capacity is 251 

uniform (keyword `unif`) for all patches and is set to 10,000. The ordering of these options does 252 

not matter. SimBit also provides a number of macros that are mainly inspired from R functions. 253 

These inputs can be read either directly from the command line or from a file. SimBit also comes 254 

with an R wrapper. 255 

In order to be fast and easy to learn, SimBit provides many functionalities with a relatively small 256 

number of options. It achieves this by having most options being specific to a generation, a habitat 257 

and/or a species and uses specific markers, @G, @H and @S to input information that are 258 

generation-specific, habitat-specific and species-species, respectively. For example, the entry --259 

N @G0 unif 100 @G5e3 unif 1000 asks for the carrying capacity of all patches to be 260 

uniformly (keyword unif) set to 100 from generation 0 to generation 4999 and then set to 1000 261 

until the end of the simulation. Also, most options come with a diversity of modes of data entry. 262 

For example, for the migration scenario, a user can indicate the whole dispersal matrix or can 263 

simply specify an island model, a linear stepping stone model or a Gaussian dispersal kernel. 264 

Below, I benchmark SimBit in comparison to other softwares. Examples of command line inputs 265 

to SimBit for these simulations which results are shown on figures 1, 2, S1, S2, S3 and S4 as well 266 

as for the simulations of figure 3 are found in appendix A. Here is an example of a input file used 267 

for this benchmark. Please see manual for more information. 268 
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 269 

270 

 271 

SimBit also comes with an R wrapper that is particularly useful for building numerous input 272 

simulations. Without going into explaining the detail working of the wrapper, let’s consider a 273 

complete example of code that will test how different migration rates and number of patches in an 274 

island model affect FST. The first step is to create a grid of parameters (a “data.frame”), where each 275 

row contains information for a single simulation. We will use a full factorial design with three 276 

distinct migration rates and seven distinct number of patches. We will run 20 replicates for each 277 

of these 3×7=21 combinations resulting in a grid of parameters of 420 rows. The argument 278 

############################# 
### Example of input file ### 
############################# 
 
### Number of patches 
--PatchNumber 1 
 
### Carrying capacity 
--N unif 1e5 
 
### Genetic architecture. Asks for 60000 T5 loci 
--Loci T5 6e4 
 
### Mutation rate on T5 loci 
--T5_mu unif 1e-7 
 
### Selection (uses multfit assumption) 
--T5_fit multfitUnif 0.99999 
 
### Recombination rate 
# Values are interpreted as a “rate”. 
# For centimorgan, use “cM”, instead of “rate” 
--r rate unif 1e-7 
 
### Number of generations 
--nbGens 1e5 
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“outputFilePrefix” sets a column called “outputFile” with the prefix given followed by the row 279 

number. This column will be used to set the where outputs should be directed. 280 

281 

 282 

The second step is to loop through the rows of the parameter grid in order to run the simulations 283 

(or to create the input file to run them later on). For this, we use the function 284 

GetParameterGridData, which, for each column of the grid of parameters, sets a variable 285 

with name equal to the column name and value equal to the value of this column at the specified 286 

row of the specified parameter grid given in input. 287 

######################## 
## Load SimBitWrapper ## 
######################## 
 
# devtools::install_github(“RemiMattheyDoret/SimBitWrapper”) 
require(SimBitWrapper) 
 
############################### 
## Create grid of parameters ## 
############################### 

 
parameterGrid = fullFactorial(              
 PatchNumber = c(2,3,4,5,6,7,8),  
 migrationRate = c(0.001, 0.003, 0.01), 
 N = 1e3, 
 nbLoci = 1e4, 
 nbGenerations = 5e4, 
 recRate = 1e-4, 
 mu = 1e-5, 
 replicate = 1:20, 
 outputFilePrefix = "/Users/Remi/mySims/output_" 
) 
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288 

 289 

The argument maxNbThreads is an easy way to parallelize the simulations. 290 

maxNbThreads=24 does not mean that a given simulation will use 24 threads (each simulation 291 

takes one thread) but that the run method will start 24 simulations in the background and will 292 

then wait that one of them finishes before starting a 25th simulation. Please see manual for further 293 

information about the run method. It is sometimes more practical to print the input command into 294 

a file either and run the simulations from the shell at a later time. This can be achieved with 295 

input$print(“/path/to/input.txt”). Finally, the last step is to gather the outputs and 296 

graph the results. In order to gather the outputs, we use the function gatherData. This function 297 

####################################### 
## Create inputs and run simulations ## 
####################################### 
 
for (row in 1:nrow(parameterGrid)) 
{ 
 ### Get data for the row 

GetParameterGridData(parameterGrid, row) 
 

### Initialize the input 
input = Input$new() 
 

### Set the values 
input$set(“PatchNumber”, PatchNumber) 
input$set(“m”,“island”, migrationRate) 
input$set(“N”, “unif”, N) 
input$set(“nbGenerations”, nbGenerations) 
input$set(“L”, “T1”, nbLoci) 
input$set(“T1_mu”, “unif”, mu) 
input$set(“r”, “rate”, “unif”, recRate) 
input$set(“T1_FST_file”, outputFile, nbGenerations) 

 
### Run the simulation 
input$run(maxNbThreads=24) 

} 
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uses a number of optional parameters (see manual) but default parameters work fine for our simple 298 

example. 299 

300 

In this simple example, the entire study (defining the parameters, creating the inputs, running the 301 

simulations, gathering and graphing the results) takes 16 lines of code (16 expressions; including 302 

loading packages, excluding the curly braces; and it could be reduced to 7 lines only)! The column 303 

“FST_WeirCockerham_ratioOfAverages” used for plotting corresponds to Weir & Cockerham 304 

(1984) estimator of FST. The resulting graph is displayed in figure S5 on which is added the 305 

theoretical expected FST values from Charlesworth (1998) for comparison. 306 

 307 
Program comparison – Performance 308 

It is often hard for a user to know which program to use for a given study. Indeed, few articles 309 

compare program’s features (but see Hoban, 2014, who compares software flexibility), and when 310 

authors publish a new program, they do not always compare its performance to other similar 311 

programs (but see performance comparisons between SLiM, SFS_CODE and fwdpp in Haller & 312 

Messer, 2017).  313 

 314 

############################## 
## Gather and graph outputs ## 
############################## 

 
### Gather simulation outputs 
data = gatherData(parameterGrid) 
 
### Graph 
ggplot2::ggplot(data, aes(y=FST_WeirCockerham_ratioOfAverages, 
x=PatchNumber, color=as.factor(migrationRate))) + 
stat_summary() + theme_classic() 
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In this article, I compared performance of SimBit to three forward-in-time programs; SFS_CODE 315 

(Hernandez, 2008; Hernandez & Uricchio, 2015), SLiM (Haller et al., 2019; Haller & Messer, 316 

2017, 2019; Messer, 2013) and Nemo (Guillaume & Rougemont, 2006). I chose these three 317 

programs because they are all forward-in-time simulation platforms, they can all simulate 318 

selection, they are all popular (392 citations among the articles announcing SLiM, SLiM2, SLiM3 319 

and the implementation of tree recording sequences in SLiM; 127 citations for Nemo; 216 citations 320 

for SFS_CODE; as of 23rd April 2020 on Google Scholar) and are generally considered the highest 321 

performing software available. 322 

 323 

SimBit contains a number of options that are meant to refine its performance (see section 324 

“Performance options” in the manual). In practice though, most users will probably only need to 325 

choose the type of loci to simulate, and SimBit will do a decent job to figure out how best to 326 

simulate it. In order to best represent the performance that a new user ought to expect from SimBit, 327 

however, all simulation performances (CPU time and memory usage) presented below are made 328 

with the default parameters of SimBit. 329 

 330 

In order to compare program performance, I ran basic simulations with a single Wright-Fisher 331 

population, uniform mutation rate and a uniform recombination rate. All loci experienced a 332 

selection coefficient of s=0.00001 and h=0.5. Low selection coefficients were chosen to 1) prevent 333 

any software from throwing an error stating that it might suffer from round-off errors caused by 334 

low mean fitness and 2) reduce the effects of assuming multiplicative fitness among haplotypes on 335 

the simulated scenario (fitness differences between simulations that take advantage of the 336 

assumption of multiplicative fitness and the ones that do not is of the order of 10-11). Note that 337 
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while SimBit can take advantage of this assumption of multiplicative fitness on demand, 338 

SFS_CODE is forced to make this assumption and Nemo and SLiM cannot take advantage of this 339 

assumption. I varied the mutation rate (taking values 10-7, 10-5 and 10-3 per locus), the 340 

recombination rate (taking values 0, 10-9 and 10-7 and 10-5 per adjacent locus), the carrying capacity 341 

(taking values 102, 103, 104, 105 and 106 diploid individuals), and the number of loci (taking values 342 

6, 6×102, 6×104 and 6×106) in a full factorial design. All simulations ran for 10,000 generations. I 343 

ran these simulations with Nemo (version 2.3.46), SLiM (version 3.1), SFS_CODE (version 344 

20150910) and SimBit (version 4.11.0). Because using Nemo’s full potential is not trivial, for 345 

Nemo, the input files used for these benchmarks were directly created by Frederic Guillaume. In 346 

order to compare the behaviour of different types of loci and selection scenarios in SimBit, I ran 347 

all simulations four times in SimBit with T1 and T5 types of loci with and without making use of 348 

the assumption of multiplicative fitness among haplotypes. CPU time and peak in Resident Set 349 

Size (RSS; memory) usage are reported. Simulations that exceeded 10 days (240 hours) of 350 

simulation time or 20GB of memory usage were killed and are reported below with a dot at 240 351 

hours (8.64 × 105 seconds in the units used on the figures) and at 20GB (2 × 107 kb in the units 352 

used on the figures). All these simulations were run on an Intel Xeon X5650 processor and codes 353 

were compiled with gcc-4.8.2rev203690. I ensured that the number of SNPs were not significantly 354 

different between all four programs for three of the simulation scenarios benchmarked. 355 

For brevity and because changing the recombination rate has very little effect on the results (only 356 

SFS_CODE appears to significantly slow down with higher recombination rates), I am showing 357 

only the recombination rate 10-7 and only the carrying capacities 103, 104 and, 105 in the main 358 

figures. The other benchmarks are found in supplementary material. Figure 1 compares the CPU 359 

time among SimBit simulations (T1 vs. T5 and with vs. without taking advantage of the 360 
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assumption of multiplicative fitness among haplotypes) for a subset of scenarios. Figure S1 and 361 

S2 compare, respectively, the CPU time and the memory usage among SimBit simulations for all 362 

scenarios. Figure 2 compares CPU time among Nemo, SLiM, SFS_CODE and SimBit for a subset 363 

of scenarios. Figure S3 and S4 compare, respectively, the CPU time and the memory usage among 364 

Nemo, SLiM, SFS_CODE and SimBit. 365 

366 
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Figure 1: Comparison of computational time among the four different ways to simulate the same 367 

evolutionary scenario using SimBit. Results here are only for a subset of parameters (excluding 368 

N=100, N=106 and all scenarios where the recombination rate among adjacent loci differs from 369 

10-7). Other scenarios are in figure S1. Comparisons of memory usage (max Resident Set Size) are 370 

found in figure S2. Simulations that exceeded 10 days (240 hours) of simulation time or 20GB of 371 

memory were killed and are reported below with an empty dot at 240 hours (8.64 × 105 second). 372 

The bold M signifies the usage of the assumption of multiplicative fitness.  373 

 374 
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As expected, T1 loci perform best at high per locus genetic diversity, while T5 loci perform best 377 

at moderate to low per locus genetic diversity (figure 1). This is because with T5 loci, SimBit 378 

tracks the mutated loci, while with T1 loci, SimBit tracks every locus whether mutated or not (see 379 

above section “Representations of the genetic architecture”). 380 

Simulations taking advantage of the assumption of multiplicative fitness generally performed 381 

better. This advantage decreases as recombination gets higher. For the range of recombination 382 

rates explored (up to 10-5 among adjacent loci), simulations taking advantage of the assumption of 383 

multiplicative fitness always outperformed the simulations that did not make this assumption. The 384 

reason why recombination rate matters for performance is because, as explained in section “Types 385 

of loci and selection”, SimBit needs to recompute fitness for a fitness block only if a recombination 386 

event happens within this block when using the multiplicative fitness assumption. 387 

 388 

  389 
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Figure 2: Comparison of computational time among the four different simulation programs Nemo, 390 

SFS_CODE, SLiM and SimBit. For SimBit, two lines are displayed showing the best performing 391 

between T1 and T5 loci from figure 1, once taking advantage of the assumption of multiplicative 392 

fitness, once without taking advantage of this assumption. For comparison, SLiM and Nemo are 393 

unable to take advantage of this assumption while SFS_CODE is forced to make this assumption. 394 

Other scenarios are in figure S3. Comparisons of memory usage (max Resident Set Size) are found 395 

in figure S4. See figure 1 for more details. 396 

 397 
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Comparisons between different programs highlight that there is no one program that always 400 

performs best (figure 2; figure S3). However, unlike all other software tested, SimBit perform 401 

highly in all simulation scenarios considered. SFS_CODE’s CPU time and peak RSS increases 402 

exponentially with increase in mutation rate and population size (see also simulations performed 403 

by the Ryan Hernandez on SFS_CODE websites; 404 

sfscode.sourceforge.net/SFS_CODE/Performance.htlm). Hence, SFS_CODE performs well for 405 

simulations that have very low genetic diversity, but it quickly becomes very slow as genetic 406 

diversity increases. 407 

Nemo is most competitive when there is high genetic diversity per locus (high mutation rate and 408 

high population size). This was expected because Nemo tracks every single locus for each 409 

haplotype whether or not it is mutated. In fact, with high genetic diversity, Nemo sometimes runs 410 

in less time than SimBit when SimBit did not take advantage of the multiplicative fitness 411 

assumptions (the grey dots in figures 2 and S3). Nemo never outperformed SimBit in terms of 412 

memory usage though (Figure S4) or in terms of CPU time when SimBit takes advantage of the 413 

multiplicative assumption. 414 

SLiM, just like SFS_CODE, performs best at very low genetic diversity. SLiM computational time 415 

is however not as exponential as SFS_CODE, which makes SLiM fast for a wider range of 416 

simulation scenarios. SLiM tends to perform better than SimBit when there is little genetic 417 

diversity, while SimBit tends to perform better when there is moderate to high genetic diversity. 418 

In general, performance comparison in terms of memory usage (figures S2, S4) mirrors well the 419 

performance comparisons in terms of CPU time (figures S1, S3). 420 

A difference in performance is not just a question of whether a user will have to wait a little longer 421 

to get their output; often it is the difference between a research project that is feasible or not. The 422 
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log scale on figures S1 and S2 (and supp. figures) might give the reader a false impression of the 423 

importance of an observed difference. Consider for example the simulation scenario where r=10-424 

7, N=103, µ=10-7 and 6 loci where SLiM outperforms SimBit. SLiM runs in 16 seconds while 425 

SimBit runs in 37 seconds. Let’s now consider the simulation scenario where r=10-7, N=105, µ=10-426 

7 and 6×104 loci. SimBit (with multiplicative fitness assumption) runs in ~4 hours, while SLiM 427 

runs in ~19 hours, Nemo runs in more than 3 days and SFS_CODE does not manage to finish 428 

within the 10-day limit. To further consider comparisons between SLiM and SimBit as example, 429 

from figure 2, the simulation scenario where SLiM is comparably the fastest, SLiM is 2.56 times 430 

faster than SimBit; SimBit took 41 seconds while SLiM took only 16 seconds. For the simulation 431 

scenario where SimBit is comparably the fastest, SimBit is (at least) 1169 times faster than SLiM; 432 

SimBit took ~12.3 minutes while SLiM was killed after overpassing the 240 hours walltime. These 433 

performance differences can translate into a major determinant of what can be achieved for a 434 

research project.  435 

 436 

These very simple simulation scenarios benchmarked above might not be representative of what 437 

people really want to simulate. I therefore performed further benchmarking by comparing the 438 

performance of Nemo, SLiM, SFS_CODE and SimBit for simulations inspired by recent papers. 439 

I sampled three papers, one that performed simulations with SFS_CODE (O’Neill et al., 2019), 440 

one that performed simulations with Nemo (Gilbert et al. 2017) and one that performed simulations 441 

with SLiM (Booker & Keightley, 2018). To simplify the writing of the commands and make sure 442 

that the comparison is fair, I simplified the Booker and Keightley (2017) simulations by assuming 443 

a constant mutation rate and recombination rate and used the gamma distribution of fitness effects 444 

with a mean of 0.05 and an alpha parameter of 0.111. For the Gilbert et al. (2017) paper, the 445 
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simulations have also been slightly modified from the original. The original paper’s specified a 446 

“breeding kernel” that can only run on a modified version of Nemo that is not directly published 447 

on Nemo’s official website. Hence, for the Gilbert et al. (2017) simulation, I removed the 448 

breeding_kernel and modified the size of the dispersal kernel appropriately. For simplicity 449 

(because the original input file was 390Mb large), I also used a linear stepping stone model of 450 

8000 patches starting with the 1000 left-most patches at carrying capacity and the others empty. I 451 

made sure the expansion speed was similar among the two programs. For fairness, I compared the 452 

Nemo and SLiM that cannot take advantage of the assumption of multiplicative fitness with SimBit 453 

that does not make this assumption, while I compared SFS_CODE that is forced to make this 454 

assumption with SimBit that makes this assumption. I also performed a benchmark inspired from 455 

human genome and human ancestral demography.  I simulate 500 patches of 100 individuals each 456 

in a linear stepping stone model with a migration rate to either of the two neighboring patch of 0.2. 457 

The genome contained 2×108 sites with a uniform mutation rate of  2×10-8 and a uniform 458 

recombination rate of 10-8. For simplicity, all loci were under purifying selection with a constant 459 

selection coefficient of 0.0001 and a dominance coefficient of 0.5. Finally, I added a benchmark 460 

of a simple Wright-Fisher simulation scenario (N=1000, µ=10-5, 106 loci, r=0; 5000 generations) 461 

without selection. Neutral loci can be tracked through a coalescent tree for both SLiM (with Tree 462 

Recording and subsequent analysis of the outputted binary file in Python) and SimBit (with T4 463 

loci). These simulations were run on an Intel i7-8559u processor, and codes were compiled with 464 

clang-800.0.42.1. 465 

SimBit systematically outperforms the software used in the original papers (figure 3). For the 466 

simulation inspired from human genetics and ancestral human population, SimBit outperformed 467 

SLiM whether it made use of the multiplicative fitness assumption or not. Finally, for the “Neutral 468 
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simulation example”, the coalescent tree recording technique of both SLiM and SimBit vastly 469 

outperform more traditional techniques (figure 3). With “traditional techniques”, SLiM, Nemo and 470 

SimBit took 8m29s, 4m05s and 1m18s, respectively, while using coalescent tree recording 471 

methods, SLiM and SimBit only took 16.6 seconds and 1.2 seconds, respectively. Here, I only 472 

considered an extreme scenario to exemplify the possible advantage of tree recording techniques. 473 

For example, I used a recombination rate of zero. With higher recombination rates, the 474 

computational time of tree recording techniques would become slower, while it would not have 475 

much impact on the runs that did not use a tree recording technique.  476 

  477 
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Figure 3: Comparison of CPU time among the four programs to reproduce simulations inspired 478 

from three recent papers as well as for a neutral simulation scenario with extreme parameters 479 

chosen to highlight the possible advantage of T4 loci (Tree recording). The bold M signifies the 480 

use of the assumption of multiplicative fitness. SFS_CODE simulation from the “Neutral 481 

simulation example” as well as both SFS_CODE and Nemo simulations from the “Human 482 

ancestral populations” were purposely killed after overpassing 50 times SimBit’s CPU time for 483 

the same simulation. 484 

 485 

Conclusion 486 

There is no perfect way to compare program performance, and one must always be careful when 487 

making conclusions from such a benchmark. First, the parameter space considered is, of course, 488 

finite. For example, my benchmark does not include any single-locus simulations, simulations with 489 

high selfing rates or with males and females instead of hermaphrodites, or any simulations with a 490 

very high recombination rate. Also, different programs mean different things by a locus. 491 

SFS_CODE simulate triplets of loci as a codon. This means that many mutations that are 492 

happening in SFS_CODE are synonymous mutations that don’t affect fitness. Consequently, the 493 
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performance comparisons shown here are unfairly favourable to SFS_CODE compared to Nemo, 494 

SLiM and SimBit, but it would not be any fairer either to run all SFS_CODE simulations with 495 

three times as many loci. Nemo uses a byte to represent each neutral locus (but only a single bit 496 

for loci under selection) hence allowing for the representation of up to 256 possible alleles at 497 

neutral loci. SimBit on the other hand represent each locus with a single bit (whether the locus is 498 

under selection or not), hence allowing for only two possible alleles. SLiM’s mutations “stack” 499 

(no reverse mutations) at a given locus, hence simulating a pseudo infinite allele type of model 500 

(see SLiM manual on “mutation stacking” for more information; 501 

http://benhaller.com/slim/SLiM_Manual.pdf). As explained above, SimBit contains a number of 502 

performance tweaks a user can take advantage of to improve the performance above the default 503 

run mode (compression of T5 data in memory, allowing inversion of the meaning of T5 loci 504 

depending on their frequency, turning on/off the swapping of pointers for haplotypes that do not 505 

recombine or mutate during reproduction, setting manually the positions of blocks for the 506 

multiplicative fitness assumption). However, the above simulations were all performed with 507 

SimBit default values for these performance tweaks, which is somewhat unfair to SimBit. 508 

 509 

SimBit has already been used in a number of projects. It has been used for simulations that require 510 

very high performance, simulating the effect of background selection of large stretch of DNA in 511 

structured populations (Matthey-Doret & Whitlock, 2019). SimBit has also been used for two 512 

projects on genetic rescue, one requiring habitat-specific epistatic interactions (Nietlisbach et al., 513 

forthcoming) and one requiring complex metapopulation initialization and introduction of 514 

predefined individuals during the simulation (Whitlock lab consortium, forthcoming). SimBit is 515 
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under a permissive free program license and is available at 516 

https://github.com/RemiMattheyDoret/SimBit. 517 
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