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Abstract Enviro-climatological changes are thought to be causing alterations in ecosystem 

processes through shifts in plant and microbial communities. However, how links between plant and 

microbial communities change with enviro-climatological change is likely to be less straightforward, 

but may be fundamental for many ecological processes. To address this, we assessed the composition 

of the plant community and the prokaryotic community –using amplicon-based sequencing– of three 

European peatlands that were distinct in enviro-climatological conditions. Bipartite networks were 

used to construct site-specific plant-prokaryote co-occurrence networks. Our data show that between 

sites, plant and prokaryotic communities differ and that turnover in interactions between the 

communities was complex. Essentially, turnover in plant-microbial interactions is much faster than 

turnover in the respective communities. Our findings suggest that network rewiring does largely result 

from novel associations between species that are common and shared across the networks. Turnover 

in network composition is largely driven by novel interactions between a core community of plants 

and microorganisms. Taken together our results indicate that the functional role of species is context 

dependent, and that changes in enviro-climatological conditions will likely lead to network rewiring. 

Integrating turnover in plant-microbe interactions into studies that assess the impact of enviro-

climatological change on peatland ecosystems is essential to understand ecosystem dynamics and 

must be combined with studies on the impact of these changes on ecosystem processes. 

 

Keywords microbial and plant diversity, plant-microbe interactions, bipartite networks, 16S 

rRNA, 16S amplicon sequencing, peatlands. 
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Introduction 

Throughout the present interglacial period, northern peatlands have acted as carbon (C) sinks, resulting 

in over 500 Gt of C (Yu et al. 2010) to be locked away in these ecosystems. Recently it has even been 

suggested that northern peatlands may contain twice as much C (Nichols & Peteet 2019), i.e. > 1000 

Gt, yet these numbers are debated (Ratcliffe et al. 2020). Nevertheless, maintaining a positive carbon 

balance (C uptake > C release) in peatlands is of great relevance to mitigate carbon-climate feedbacks. 

The carbon sink function of peatlands largely depends on the imbalance between gross primary 

production and decomposition, which in undisturbed peatlands is largely in favour of the former. 

Indeed, peatland plants, and Sphagnum mosses in particular, produce recalcitrant litter (Clymo 1965, 

Dorrepaal et al. 2005) and release anti-microbial compounds (Fudyma et al. 2019; Hamard et al. 2019), 

which together with acidic and anoxic environmental conditions impede microbial breakdown of 

organic matter and thus facilitate the accumulation of plant remains. Hence, the C sink function of 

peatlands is controlled by an interplay between abiotic and biotic factors.  

Climate and environmental change is often linked to alterations in the biotic composition of 

ecosystems (Walther et al. 2002, Pimm et al. 2014), which more often than not has consequences for 

ecosystem processes (Bardgett et al. 2013, Rillig et al. 2019). The effects of climate change on peatland 

ecosystem processes can either be direct or indirect. Examples of direct effects abound. Increased 

nitrogen deposition (Aldous 2002, Bragazza et al. 2006), drought (Fenner & Freeman 2011; Estop-

Aragonés et al. 2016), and warming (Dorrepaal et al. 2009; Wilson et al. 2016), amongst others, have 

been linked to carbon loss. Nevertheless, responses to enviro-climatological change (ECC) can be 

inconsistent (Zhang et al. 2018) likely due to indirect effects of climate change on peatland processes, 

or to non-linear responses in plant and soil communities (Jassey et al. 2018, Lamentowicz et al. 2019). 

Indeed, the effects of warming and drought on carbon cycling in peatlands have previously shown to 

largely depend on the vegetation (Ward et al. 2013, Dieleman et al. 2015, Rupp et al. 2019). Moreover, 

Wang et al. (2015) and Fenner & Freeman (2020) respectively propose a plant-controlled metabolomic 

and a biogeochemical mechanism that protects C loss during drought. Following the train of thought 

that progressive changes in enviro-climatological conditions cause shifts in the composition of plant 

communities (Robroek et al. 2017), convergent shifts in the microbial community can be expected. 
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Indeed, peatland microbial community structure and activity are strongly connected to plant community 

assemblage (Bragina et al. 2014, Chronakova et al. 2019, Martí et al. 2019b, Ivanova et al. 2020). 

Hence, interactions between plant and microorganisms are the cornerstone that shape carbon-related 

processes in peatlands (Lindo et al. 2013) and it is critical that we understand how ECC affects these 

interactions to forecast the consequences for ecosystem processes (Kostka et al. 2016). 

Most species do not exist in isolation but are embedded in trophic, non-trophic, mutualistic or 

antagonist interaction networks (Tylianakis et al. 2008, Bascompte 2009, Kéfi et al. 2016). In these 

networks, the number of species and interactions vary depending on species identity, functional traits 

present and enviro-climatologic niche (Schleuning et al. 2016). Network assemblage, in turn, can affect 

the resilience and stability of the network, which ultimately underlies the robustness of ecosystem 

functions to enviro-climatic change (Allesina et al. 2009, Morriën et al. 2017, de Vries et al. 2018). The 

effects of changes in plant community composition on soil microbial communities, however, are 

thought to be independent of the environmental context (Fanin et al. 2019), leading to complex 

responses of plant-microbe interactions to ECC. Hence, how environmental conditions regulate plant-

microbe associations (i.e. networks) and how this relates to within-community responses (i.e. plant and 

microbial communities) is essential knowledge leading to improved understanding on the effects of 

ECC on peatland processes. 

To assess how ECC affects plant-microbe interactions, we characterized plant and microbial 

communities in three European Sphagnum-dominated peatlands. We assessed how enviro-

climatological context relates to compositional differences in plant and 16S rRNA-derived microbial 

communities and how this plays out on plant-microbial bipartite networks. We postulate that enviro-

climatic change will trigger both communities to turnover, leading to changes in the network structure. 

The influence of enviro-climatologic conditions on plant-microbe associations can manifest in various 

ways: (i) no difference in biotic communities, nor in network associations, (ii) no difference in biotic 

communities but a rewiring in network association with altered enviro-climatological conditions, (iii) 

differences in the composition in one or both communities with congruent differences in network 

associations, and (iv) differences in biotic community compositions with a disproportionate rewiring of 

interaction networks. Congruent with the effects of environmental conditions on peatland plant 
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communities (Robroek et al. 2017), we expect that differences in plant-microbe network structure are 

largely driven by turnover in one or both communities.  

 

Material and Methods 

Site description and enviro-climatic data. Three geographically distinct European Sphagnum-

dominated peatlands were selected for this study. Degerö Stormyr (64°88′N, 19°56′E, 277 m above sea 

level (asl)), Sweden, is a minerogenic peatland with ombrotrophic elements. Cena Mire (56°25’N, 

23°81’E, 12 m asl), Latvia, is an ombrotrophic raised bog. Dosenmoor, (54°95’N, 10°02’E, 28 m asl), 

Germany, is a restored ombrotrophic raised bog. These sites vary in degree of conservation status, but 

all sampling locations were located in an ombrotrophic part of each peatland with vegetation 

characteristic for natural peatlands. Full vegetation characteristics of the sites can be found on 

https://doi.org/10.5061/dryad.g1pk3.  

We collected variables that describe climatic and environmental conditions in the selected 

peatlands. Four bioclimatic variables (mean annual temperature, temperature seasonality, mean annual 

precipitation, precipitation seasonality) were extracted from the WorldClim database (Hijmans et al. 

2005), and averaged over a 5-year (2005-2009) period that preceded our sampling campaign. 

Atmospheric deposition data were produced using the EMEP (European Monitoring and Evaluation 

Programme)-based IDEM (Integrated Deposition Model) model (Pieterse et al. 2007) and consisted of 

grid cell (50 ´ 50 km) averages of total nitrogen and sulfur deposition. 

  

Field sampling of plant and microbial communities. Abundance data for all vascular plant and 

bryophyte species from randomly selected lawn (n =3) and hummock (n = 3) microhabitats (0.25 m2 

quadrats; six in total) were collected in the summer of 2010. Microhabitats were sampled in pairs, with 

each lawn-hummock pair separated < 2 m. This sampling strategy was chosen as to represent the nature 

of the whole peatland as much as possible. Vascular plants and Sphagnum mosses were identified to 

the species level. Non-Sphagnum bryophytes were identified to the family level. Rarefaction analysis 

indicated that our sampling adequately captured species richness in our peatlands.  
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In all plots (3 sites, 2 microhabitats, 3 replicates; 18 in total), we collected a 5 cm3 peat sample 

from the acrotelm – defined as the peat layer between the peatland surface and the lowest water table 

level, which largely contains living plants – and the catotelm – the peat layer that underlies the acrotelm, 

is largely anoxic, and contains mostly dead plant remains (Clymo 1984). Hence, we collected a total of 

36 samples from 18 plots. Sampling depth for the acrotelm samples was 5 cm below the surface, while 

sampling depth of the catotelm samples was 12.5 cm and 37.5 cm below the surface for the lawns and 

hummocks, respectively (Martí et al. 2015); Suppl. Fig. 1). Sampling was conducted using a 10-cm 

wide Holmen auger (Holmen 1964), which was carefully cleaned with 70% alcohol between sampling 

plots. Samples were refrigerated at 4°C, transported to the laboratory, and stored at -20°C prior to RNA 

extraction. 

 

RNA isolation, amplicon sequencing and data handling.  Total RNA was extracted from 0.75 

g of wet peat (7.8% ± 2.5 dry peat) using the FastRNA®Pro Soil-Direct Kit and FastPrep® Instrument 

(MP Biomedicals, Santa Ana, CA) as per the manufacturer’s instructions. Quality and concentration 

were determined on a Qubit fluorometer (Invitrogen, Eugene, OR, USA). Extracted RNA was reverse 

transcribed to complementary DNA (cDNA) using the lllustraTM Ready-to-Go RT-PCR Bead (GE-

Healthcare, Uppsala, Sweden). Briefly, 2 µl of the extracted RNA and 2.5 µl of the random primer 

pd(N)6 (1.0 µg/µl) (GE-Healthcare, Uppsala, Sweden) were mixed, denatured at 97°C for 5 min, and 

then chilled on ice. One IllustraTM Ready-to-Go RT-PCR Bead and RNAse-free water were added to 

a final volume of 50 µl. Next, reverse transcription, consisting of a chain of 30 mins at 42°C followed 

by 5 mins at 95°C was used to create cDNA. RNA and cDNA were stored at -80°C and -20°C, 

respectively.  

A 485 base pair (bp) fragment flanking the V3-V4 region of prokaryotic 16S rRNA was 

amplified using the primers 341F (5’-CCTAYGGGRBGCASCAG-3’) and 806R (5’-

GGACTACNNGGGTATCTAAT-3’) modified from (Yu et al. 2005). Each 25-µl PCR mixture 

contained one Illustra PuReTaq Ready-To-Go PCR Bead (GE Healthcare, Uppsala, Sweden), 0.5 µM 

of each primer, 5 µl of cDNA and RNAse-free water. The 35 PCR cycles, performed on a MyCyclerTM 

Thermal Cycler (Bio-Rad Laboratories), consisted of 90 s at 95°C, 30 s at 95°C, 30 s at 56°C, 30 s at 
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72°C and a final 5 mins at 72°C. PCR products were verified on 1% agarose gel and purified with a 

GeneJET PCR Purification Kit (Fermentas, Vilnius, Lithuania). Purified PCR product concentrations 

were determined using the Quant-iT dsDNA HS Assay Kit and the Qubit fluorometer (Invitrogen) and 

adjusted to 5 ng µl-1. To link sequence reads to samples, a second PCR on the initial product was 

performed using the primer pair 341F/806R with adapters and a unique barcode. The number of cycles 

was reduced to 10. Bands of ca. 530 bp were cut out and purified by High Pure PCR Cleanup Micro 

Kit (Roche Diagnostics GmbH, Mannheim, Germany) as per the manufacturer’s instructions. These 

fragments were quantified using a Qubit™ dsDNA HS Assay Kit and the Qubit™ fluorometer 

(Invitrogen) and qPCR (Mx-3000, Stratagene). The sample amplicons were mixed to equal 

concentrations (4 ´ 105 copies µl-1) and subjected to two-region 454-pyrosequencing on a 70 ´ 75 GS 

PicoTiterPlate (PTP) using a GS FLX pyrosequencing system.   

Sequence data were sorted, trimmed, filtered and quality checked (QS ≥ 25 for trimming, and 

lengths ≥ 150 bp) using the Qiime 1.6.0 data analysis pipeline (Caporaso et al. 2010). Chimeras were 

detected and removed using UCHIME in reference mode with the MicrobesOnline gold set (Edgar et 

al. 2011). Briefly, operational taxonomical units (OTUs) were selected at 97% identity with a 

confidence threshold of 50%. Representative sequences were selected randomly and classified against 

the SILVA database version 132 (https://www.arb-silva.de/). Unifrac distances for beta diversity were 

calculated from trees generated with Fasttree. The input multiple sequence alignments were generated 

using PyNAST against gg2011 template alignments. From the 36 libraries, we obtained a total of 

772,742 sequences with an average of 21,465 sequences per library, except for one sample from Cena 

Mire –lawn, acrotelm– which had 135 reads and was therefore removed from the analysis. OTUs that 

were present in fewer than 20% of the samples were removed from the analyses as well as OTUs 

identified as chloroplast. A total of 464,327 sequences were left, corresponding to 4707 OTUs. From 

those, 74% (3690) of the OTUs corresponded to bacterial taxa and 20% (141) to archaeal taxa.6% of 

the OTUs were unclassified.  

 

Plant-prokaryote bipartite networks. Bipartite networks were used to detect co-occurrence between 

plants and prokaryotes as a proxy for site-specific plant-prokaryote associations (Faust & Raes 2012). 
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Co-occurrence networks were computed at site level. Hence data for the hummock and lawn 

microhabitats were pooled; however, separate networks were constructed to link the plant community 

with the acrotelm and with the catotelm prokaryote communities. Hellinger-transformed matrices, 

comprising data of bacterial and archaeal OTUs, vascular plants and Sphagnum species, were used to 

calculate Spearman’s correlation coefficients for plant-prokaryote associations (Berry & Widder 2014). 

Significance for each permutation was assessed using a permutation test with 10,000 repetitions. A null 

distribution of correlations was estimated based on correlations calculated for the permuted data. Only 

correlations > 0.6 (positive and negative) and significantly larger in magnitude than expected by chance 

for an overall false discovery rate of 0.05 (using the Benjamini-Hochberg FDR correction) were adopted 

in the co-occurrence matrix (Sander et al. 2017). Each co-occurrence matrix was transformed into an 

adjacency (binary) matrix based on the presence or absence of links. Networks were then produced 

using the igraph and bipartite R packages (references in Supplementary), where each network 

comprised positive and negative plant-prokaryote associations. Each network was further analysed in 

terms of topography, and network dissimilarity (Berry & Widder 2014, Williams et al. 2014). 

First, we evaluated the topological attributes of the networks using a set of indices focussed on 

species interactions, which were calculated for interaction between the plant and prokaryotic 

communities. Effective partners was defined as the number average of links for individuals in a specific 

network. Partner diversity is the diversity (PD; Shannon-based) of interactions between species from 

the two levels of the network. Partner specificity (PS) was calculated as the coefficient in variation of 

interactions, normalised to values between 0 and 1 (Poisot et al. 2012b), where PS = 0 indicates low 

specificity and PS = 1 indicates high specificity. These three indices were calculated from a top-down 

and bottom up perspective. Top-down accounts for the number of interactions plant species have with 

prokaryotic ‘species’. Bottom-up accounts for the number of interactions prokaryotes have with species 

in the plant community. Essentially, in a network top-down and bottom up networks do not necessarily 

have to match (Suppl. Fig. 2). Next, we identified network attributes using a set of plant-prokaryote 

interaction indices. Linkage density (LD) is the marginal total-weighted diversity of interactions 

between species. Generality of the plant community (Gp) is calculated as the mean effective number of 

prokaryotic ‘species’ per plant species weighted by the total number of interactions. It describes the 
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degree of specialization in the plant community. Low values indicate a high degree of specialization. 

Generality for the prokaryotic community (Gm) is calculated as the mean effective number of plant 

species per prokaryotic ‘species’ weighted by the total number of interactions, and represents the degree 

of specialization in the prokaryotic community. Robustness (R) is a measure of robustness of the 

network to species loss, calculated as the area under the extinction curve of the network. The curve, 

essentially, describes the dependency –for survival– of species from one level on species of another 

level. R = 1 corresponds to a situation where most prokaryotes survive while most plant species are 

eliminated, or vice versa. R = 0 corresponds to a situation where species loss form one level results in 

the loss of most to all network connections. Partner diversity in the networks (PDn) is the diversity 

(Shannon-based) of the number of interactions for the species in each level of the bipartite network. 

Species richness (SR) is the number of species in the bipartite network community. Niche specialization 

(N) represents the site scores from a NMDS analysis, and represent the niche characteristics of each 

community (Devictor et al. 2010). The indices G, R, PD SR and N were calculated separately for the 

two levels –plants and prokaryotes– in the bipartite networks.  

 

Network turnover. To test if enviro-climatic conditions affected species turnover and turnover in 

bipartite networks, we calculated pairwise b-diversity in species composition and plant-prokaryote 

networks in each site using the methods proposed by Legendre & De Cáceres (2013) and Poisot et al. 

(2012a), respectively. For pairwise b-diversity in species composition, we used a site × species 

abundance matrix. Total b-diversity (BD) was partitioned into species contributions (BDS; degree of 

variation of individual species in each site) and local contribution (BDL; comparative indicators of the 

ecological uniqueness of the sites) to b-diversity (Legendre & De Cáceres 2013). For b-diversity in co-

occurrence networks, we use a site × species pairs matrix (adjacency binary matrix). As differences in 

networks can arise either through changes in species composition and/or realized interactions between 

species, we specifically focused on the dissimilarities in interactions between networks (BDN) that 

originates from differences in species interactions due to species turnover (BDNNS) or from novel 
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interactions between common network species (BDNCS) (Koleff et al. 2003, Canard et al. 2012, Poisot 

et al. 2012a). 

 

Data handling and statistical analyses. Analysis of Variance tests were used to test for differences in 

pore water nutrients, plant species and prokaryote richness, diversity (Shannon H’), evenness (Pielou’s 

J), and plant-prokaryote network indices between sites and sampling depth (for prokaryote data only). 

Prior to testing for turnover in prokaryotic community composition across the different habitats (β-

diversity), relative abundance of each OTU was calculated within each sample. We used redundancy 

analysis (RDA) to relate enviro-climatologic factors to plant and prokaryotic communities (Hellinger-

transformed matrices). To avoid apparent spatial trends in plant and prokaryotic communities, we 

detrended biotic communities using partial RDAs (pRDA) with latitude and longitude as co-variables. 

A subset of enviro-climatological variables was selected from the complete set of enviro-climatologic 

variables using stepwise selection based on Akaike Information Criterion (AIC) to avoid issues of 

multicollinearity and overparameterization in the RDA models. Then, based on this subset, we selected 

the variables that best described environmental differences between sites: seasonality in temperature 

and total nitrogen deposition. The robustness and significance of the RDAs was then tested using 

permutation tests. All statistical analyses were performed in R version 3.1.2 using the vegan, diverse, 

phyloseq, nlme, dplyr and tidyr packages (references in Supplementary).  

 

Results 

Mean annual temperature (MAT) was lowest in Degerö Stormyr and highest in Dosenmoor, while 

seasonality in temperature (TS) followed an opposite pattern (Table 1). Mean annual precipitation 

(MAP) varied from 710 mm in the Cena Mire to 760 mm in Dosenmoor. Seasonality in precipitation 

(PS) did not vary much between sites (Table 1). Total nitrogen and sulfur deposition were lowest in 

Degerö Stormyr. Total nitrogen deposition values in Dosenmoor were almost double as compared to 

those in Cena Mire. For sulfur, Cena Mire and Dosenmoor had similar deposition values (Table 1). 
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Plant and prokaryote community composition. Vascular plant and bryophyte species richness and 

evenness were highest in Cena Mire (Table 2). Detected archaeal richness did not differ among the 

three sites. Richness of the acrotelm archaeal communities was at least three times higher as compared 

to richness of the catotelm archaeal communities (Table 2). Bacterial richness, opposite to the patterns 

observed in the plant community, was lowest in Cena Mire, for both acrotelm and catotelm (Table 2). 

Redundancy analysis (RDA) showed that all communities (plants, acrotelm prokaryotes, and 

catotelm prokaryotes) well separated in the ordination space (Suppl. Fig. 3). RDA analysis explained 

27% (vascular plants), 8% (prokaryote, acrotelm) and 19% (prokaryote, catotelm) of the variance 

(adjusted R2) of each community. Total nitrogen deposition and temperature seasonality both explained 

much of the differences in community structure for all three communities (P ≤ 0.05). Notably, the three 

communities showed similar patterns in their species-environment relationships. Communities in 

Degerö Stormyr were related to high seasonality in temperature, and communities in Dosenmoor were 

related to high total nitrogen deposition (Suppl. Fig. 3).  

Across sites, and pooled for the acro- and catotelm communities, bacterial to archaeal ratios 

exceeded 3:1 (Fig. 1 a). Acidobacteria (35%), Proteobacteria (29%), Verrucomicrobia (13%), and 

Actinobacteria (9%) were the most abundant bacterial phyla across sites (Fig. 1 b). Relative abundances 

in bacterial phyla were similar across sites. Composition of the archaeal community, on the other hand, 

seemed site-specific (Fig. 1 c). In Degerö Stormyr, methanogens of the order Methanomicrobiales 

(50%) and Methanobacteriales (37%) were the dominant archaeal orders. Archaeal communities in 

Cena Mire were dominated by one single order, Methanomicrobiales (83%). In Dosenmoor, 

Thermoplasmata (39%) and an uncultured archaeon (28%) likely associated to the phyla 

Thaumarchaeota and Crenarchaeota were most dominant. Of the classified orders in this site, 

Nitrosotaleales (30%), Methanomicrobiales (22%) and Methanosarcinales (19%) had highest 

prevalence. 

 

Network structure The number of plant-prokaryote pairs in bipartite networks differed between 

the three sites (site effect, F1,2 = 65, P = 0.01; site x depth, F1,2 = 2.2, P = 0.27), with > 70% fewer 
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interactions in Cena Mire and Dosenmoor as compared to Degerö Stormyr (Fig. 2). A lower number of 

bipartite interactions results from lower numbers of both positive and negative associations (Fig. 2).  

A couple of vascular plants, Andromeda polifolia and Rhynchospora alba, and one moss 

species, Sphagnum rubellum, were important species in plant-prokaryote networks in all three sites 

(Fig. 2). OTUs classified as belonging to the genera Occallatibacter, Acidothermus, Verrucomicrobia, 

and Phycisphaera-related group WD2101 and OTUs assigned to the family Methylacidiphilaceae were 

present in all three networks of the acrotelm prokaryotic communities (Fig. 2). The bacterium 

“Candidatus Koribacter”, a bacterium in the family Acidobacteriaceae, and a bacterium in the family 

Pedosphaeraceae were important network species of the catotelm prokaryotic communities (Fig. 2). 

 

For all sites, β-diversity for bipartite (plant-prokaryote) networks (BDN) exceeded β-diversity for 

species composition (BD), indicating that network turnover is higher than species turnover between 

sites (P ≤ 0.001; Fig. 3). Indeed, network compositions (i.e. pairwise comparison between networks) 

between sites were more dissimilar (acrotelm, BDN = 0.91; catotelm, BDN = 0.89) than species 

compositions (i.e. pairwise comparison between communities) between sites (acrotelm, BD = 0.32; 

catotelm, BD= 0.31). Turnover in species composition between sites, β-diversity (BD), was equally 

driven by species and local contributions (BDS and BDL). Network β-diversity (BDN) was mostly 

driven by turnover in interactions (both direction and number) between species that are common in the 

three sites (BDNCS), rather than by novel interactions driven by changes in the community composition 

(BDNNS; Fig. 3). 

 

Differences in the number of bi-partite interactions between sites seem to relate to differences in the 

numbers of effective partners between the respective communities, which were always highest in 

Degerö Stormyr (acrotelm: P < 0.001; catotelm: P < 0.001; Fig. 4 a, b). This is further supported by 

differences in diversity in plant-prokaryotic partners, which were higher in Degerö Stormyr as 

compared to Cena Mire and Dosenmoor (acrotelm: P < 0.001; catotelm: P < 0.001, Fig 4 c, d). 

Moreover, the number, but also diversity, of prokaryotic partners with the plant community (top-down 

links), were higher than the number of plant partners with the prokaryote community (bottom up links). 
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This means that plant species link to a higher number of prokaryotes, than prokaryotes to plants. Partner 

specificity was lowest in Degerö Stormyr for both levels of organisation in the bi-partite networks 

(acrotelm: P < 0.001; catotelm: P < 0.05, Fig. 4 e, f). Specificity of the links of prokaryotes with plants 

were larger than the specificity of plants links to prokaryotes (acrotelm: P < 0.001; catotelm: P < 0.001). 

At the network level, the overall linkage density (LD), generality (G), partner diversity (PD) 

and species richness (SR) in the bipartite networks was higher in Degerö Stormyr as compared to Cena 

Mire and Dosenmoor; a pattern found in both acrotelm and catotelm bipartite networks (Suppl. Fig. 4). 

The bipartite networks, acro- and catotelm, in Degerö Stormyr were strongly sensitive to the loss of 

prokaryotes (low robustness) but not to the loss of plants. Oppositely, bipartite networks in Cena Mire 

and Dosenmoor were more sensitive to the loss of plants as compared to prokaryote loss (Suppl. Fig. 

4). As compared to Degerö Stormyr, networks in Cena Mire and Dosenmoor show a high degree in 

niche specialization, especially in the plant communities (Suppl. Fig. 4). Such differences in network 

indices between sites were driven by both total nitrogen deposition and temperature seasonality (Fig. 

5). While compositional network indices (linkage density, partner diversity, number of effective 

partners) and generality indices decreased with increasing nitrogen deposition, stability network indices 

(robustness, niche extinctions, modularity) increased. Opposite patterns were found with increasing 

temperature seasonality (Fig. 5). These results indicate that plant-microbial interactions change in 

complexity, specificity and evenness in the distribution of species interactions with changes in 

environmental conditions, and that these patterns are likely driven by the turnover of species between 

peatland sites. 

 

Discussion 

Using data on plant and prokaryotic community composition in three Sphagnum-dominated peatlands, 

we evidence that plant-prokaryotic networks are site-specific. As these peatlands are situated in three 

distinct environmental zones (Metzger et al. 2005) our data suggest that these networks are vulnerable 

to the effects of enviro-climatological change, and turnover at a faster rate than the individual biotic 

levels that comprise these networks. Hence, a turnover in the plant community as shown in earlier 
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research (Gunnarsson et al. 2002, Pinceloup et al. 2020) will lead to complex changes in plant-microbe 

interactions that could affect ecosystem processes in the longer term (Morriën et al. 2017).  

In line with earlier work where it was suggested that changes in enviro-climatological 

conditions in peatland ecosystems leads to a significant turnover in the composition of the plant 

community (Robroek et al. 2017), plant community composition was highly distinctive between sites. 

Moreover, our study confirms previous suggestions that enviro-climatological conditions are important 

drivers that underlie the composition of the vegetation, and that changes in these drivers result in 

alterations of the plant community (Gunnarsson et al. 2002, Pinceloup et al. 2020) and associated biotic 

interactions (Wiedermann et al. 2007). Indeed, we note that site-specificity of plant communities is 

paralleled in the prokaryotic community, a pattern that is likely explained by the strong links between 

plant and microbial communities (Chronakova et al. 2019; Ivanova et al. 2020). Despite the variation 

in prokaryotic community composition between sites, the archaea to bacteria ratio remains strikingly 

stable. These results would imply that both microbial groups are equally affected by alterations in 

enviro-climatological conditions. Yet, our data also highlights that bacterial community composition 

was remarkably similar between sites. These results mirror earlier findings where bacterial community 

composition was reported to be rather stable under experimental warming (Weedon et al. 2017). 

Archaeal communities, on the other hand, were highly dissimilar between the three peatland sites. In 

Degerö Stormyr and Cena mire, methanogens dominated the archaeal community. In these sites, 

biogeochemical drivers likely promoted a classical anaerobic degradation of organic matter to methane 

in the absence of other terminal electron acceptors. The dominating methanogens, Methanobacteriales 

and Methanomicrobiales, characteristic for acid peatlands, are hydrogenotrophic and form methane 

from hydrogen/CO2 and/or formate (Kotsyurbenko et al. 2007, Martí et al. 2015). Interestingly, the 

Methanomicrobiales family Methanoregulaceae identified in the present study dominated the 

methanogen population in a comparable set of peatlands along a nitrogen deposition gradient (Martí et 

al. 2015). Reductions in the relative abundance of methanogens in Dosenmoor may be the result of 

higher deposition levels of nitrogen and sulfur. The presence of oxidized forms of these elements, may 

favour nitrogen oxide and sulphate reduction, resulting in increased competition for methanogens. This 

is supported by the higher relative abundance of the phyla Nitrosotaleales and Thaumarchaeota (Suppl. 
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Table 1), which are known ammonia-oxidizing archaea in acid environments (Lehtovirta-Morley et al. 

2011, Lin et al. 2015), in the Dosenmoor. Furthermore, Thermoplasmata –highly abundant in the 

Dosenmoor– are suggested to be involved in the transformation of sulphite and possibly 

organosulphonates (Lin et al. 2015). Given the high sulfur deposition in the Dosenmoor, these 

compounds prospectively are abundant. Here, it should be stressed that relative abundance does not 

necessarily correspond to the actual abundance and/or the physiological activity by the microorganisms 

displayed. To exemplify, increased methanogen activity has been shown in peatlands with high nitrogen 

deposition (Martí et al. 2019a). Hence, the main part of the organic matter degradation likely follows 

the methanogenic route, also at the Dosenmoor.  

Beyond the differences in community composition, our work shows that plant-microbe network 

structure differs between sites. As the turnover of plant-microbe interactions outpaces the turnover of 

plant and prokaryote communities, these results suggest that changes in enviro-climatological 

conditions are key in driving the observed rewiring of plant-prokaryote interactions. Interestingly, the 

highest numbers of effective partners and partner diversity were found in the plant community. 

Prokaryotes have significantly lower numbers of plant partners, but their associations with plant species 

are much more specific. This pattern is consistent with observations of plant-specific microbial 

community compositions (Bragina et al. 2012, Hamard et al. 2019), yet our results also suggest that 

compared to the rather specific nature of microbial associations to plant species the plant-microbiome 

is relatively non-specific. An explanation for this observation would be that one plant species can 

provide resources or niche space for a wide array of microbes, which in turn are rather specific (Suppl. 

Fig. 2). These findings would then ultimately indicate that plants are important drivers for plant-

prokaryote interactions and is in line with the general idea that the plant community has a direct effect 

on the prokaryotic species occurrences and community composition and activity (Fisk et al. 2003, 

Wardle et al. 2004, Robroek et al. 2015, Yavitt & Williams 2015), but the opposite is not necessarily 

true. 

Network size and complexity differ between sites and seem to erode from the most northern 

(Degerö Stormyr) to the most southern (Dosenmoor) site. These findings echo earlier findings where, 

as a response to warming, networks were observed to become less complex (Galiana et al. 2014). A 
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faster loss of network interactions as compared to species loss has earlier been observed and has been 

suggested to have major implications upon ecosystem processes and services (Valiente-Banuet et al. 

2014). Indeed, decreased network complexity has been connected to efficiency in soil carbon uptake in 

ex-arable land, even without major changes in the composition of plant communities (Morriën et al. 

2017). Our data suggest that seasonality in temperature and nutrient deposition modulates network 

indices that are related to composition, stability and generality of plant-microbe networks. As the effects 

of both variables are opposing, clear consequences of changing are hard to distil from our data. 

Nevertheless, our findings strongly parallel previous findings on specialization in ecological networks 

(Olesen & Jordano 2002), and suggest that lower seasonality and greater nutrient availability lead to 

narrower and more specialized niches. Hence, more optimal enviro-climatological conditions allow for 

potential species co-evolution, which increases local adaptations and favours network specialization 

(Dalsgaard et al. 2011, 2013). Such increase in specialization indicates an increased level of nestedness 

and would in the long term weaken network stability. Network properties were strongly modified across 

sites because of the vulnerability of prokaryotes to enviro-climatological changes. Bacteria in the genera 

Occallatibacter, Acidothermus, Verrucomicrobium, bacteria in the Phycisphaera-related group 

WD2101 (yet uncultured Planctomycetes of the order Tedisphaerales) and bacteria in the family 

Methylacidiphilaceae (phylum Verrucomicrobia) occurred in all three acrotelm networks. These genera 

have been previously found in soils, and have been characterised as chemoorganotrophic, strictly 

aerobic, moderately acidophilic, and chemoorganotrophic mesophiles. The bacterium “Candidatus 

Koribacter”, a bacterium in the family Acidobacteriaceae, and a bacterium in the family 

Pedosphaeraceae were important network species in catotelm prokaryotic communities.  

 

With our research we show that while differences in environmental properties, such as temperature and 

nutrient deposition, between sites markedly relate to differences in the composition of plant and 

prokaryote, acro- and catotelm, communities, turnover in plant-prokaryote networks exceeds species 

turnover in either one of both communities. Specifically, we show that species turnover, likely caused 

by enviro-climatological changes resulted in a reshuffling of plant and microbial communities, which 

then led to a significant rewiring of plant-microbial interactions. Our results suggest that increasing 
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network specialization may have been driven by a shift in physiological and metabolic activity across 

one organisational level (Blazewicz et al. 2020; Williams & de Vries 2020), which then cascaded to the 

other level. Our findings highlight that while spatial patterns of diversity across trophic levels are indeed 

key to understand network specialization as forwarded by Galiana et al. (2019), and that the contribution 

of novel associations between species that are common and shared across the networks is most 

prevalent. Hence, turnover in network composition is largely driven by novel interactions between 

plants and microbes that are common across networks and to a lower extent by species new to a 

metacommunity due to species turnover, suggesting that differences in enviro-climatological conditions 

result in alterations in the functional role of species. The latter will likely lead to network rewiring as 

observed in our study, which in the long term has unforeseen consequences for important ecosystems 

functions such as carbon uptake.  
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Table 1. Bioclimatic data for Degerö Stormyr, Cena Mire, and Dosenmoor. MAT = Mean annual temperature 

(°C), TS = Seasonality in temperature, MAP = Mean annual precipitation (mm), PS = Seasonality in precipitation; 

Ntot = Total nitrogen deposition (mg m-2 yr-1), Stot = Total sulfur deposition (mg m-2 yr-1). 

 MAT TS MAP PS Ntot Stot 

Degerö Stormyr 1.2 9.3 730 26 130 96 

Cena Mire 6.4 7.9 710 31 760 344 

Dosenmoor 8.0 5.9 760 19 1260 6144 

 

 

Table 2. Plant species and prokaryote richness (OTUs) and evenness (Pielou’s J). Values are means ± standard 

errors. Prokaryotic richness and evenness have been described for the acrotelm and catotelm communities 

separately. Different letters represent significant difference (P ≤ 0.05) in richness or evenness data for the sites as 

tested by analysis of variance within four sub-communities (vascular plants, bryophytes, archaea and bacteria). 

 

Plant community Richness Evenness 

Vascular plants Degerö Stormyr 6.5 ± 1.23b 0.8 ± 0.05a 

 Cena Mire 12.0 ± 1.94a  0.2 ± 0.05b 

 Dosenmoor 7.2 ± 0.40b 0.8 ± 0.06a 

Bryophytes Degerö Stormyr 1.8 ± 0.17b 0.5 ± 0.15 

 Cena Mire 3.3 ± 0.56a 0.5 ± 0.12 

 Dosenmoor 1.7 ± 0.21b 0.7 ± 0.12 

Prokaryotic community Acrotelm (oxic) Catotelm (anoxic) 

Richness Evenness Richness Evenness 

Archaea Degerö Stormyr 14 ± 2.0 0.8 ± 0.05 51 ± 4.5 0.4 ± 0.06 

 Cena Mire 30 ± 13.3 0.6 ± 0.08 74 ± 7.0 0.4 ± 0.05 

 Dosenmoor 38 ± 14.2 0.7 ± 0.05 84 ± 11.9 0.5 ± 0.06 

Bacteria Degerö Stormyr 1367 ± 95.0a 0.8 ± 0.00 1511 ± 99.4a 0.8 ± 0.01a 

 Cena Mire 1231 ± 109.0b 0.8 ± 0.02 838 ± 105.9b 0.7 ± 0.04b 

 Dosenmoor 1615 ± 88.3a 0.8 ± 0.01 1246 ± 139.2a 0.7 ± 0.01a 
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Figure 1. Comprehensive view of the sequence content of peat soil prokaryotic libraries per site: DES = Degerö 

Stormyr, CEN = Cena Mire, DOS = Dosenmoor. Segments that compose each bar represent the total number of 

sequences normalised to the total number of sequences in the libraries per site. a) View of the relative abundance 

of bacteria (blue) and archaea (red) in the site-specific communities. b) View of the relative abundance of bacterial 

‘species’ in the respective site-specific communities. Each segment represents identified bacterial phyla. c) View 

of the relative abundance of archaeal ‘species’ in the respective site-specific communities. Each bar segment 

represents identified archaeal orders.  
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Figure 2. Bipartite network visualisation for the three European peatlands. Indicated are interactions between the 

plant community and acrotelm prokaryotic community (left) and between the plant community and catotelm 

prokaryotic community below (right). Plants are visualised at the top of the networks and coloured dark and light 

green for vascular plants and bryophytes, respectively. Prokaryotes are illustrated on the bottom of the networks 

and follow the colour scheme as in Fig.1. A complementary list of prokaryotes and their classification can be 

found in Suppl. Table 1. Size of the bars scales with relative abundance in the respective communities. For all 

sites, networks are filtered to only visualise interactions with ‘keystone’ prokaryotes, defined as those that had > 

5 interactions in Degerö Stormyr. Interaction lines represent Spearman’s rank correlations > 0.6. Dark grey 

interactions indicate vascular plant-prokaryote interactions, light grey indicates bryophyte-prokaryote 

interactions. Inset numbers indicate the full number of bi-partite (bold) interactions, further broken down in the 

number of positive / negative interactions. 

 

Be
t n

an
Be

t p
ub

D
ro

 ro
t

Er
i a

ng
Er

i t
et

Er
i v

ag
M

ol
 c

ae
Rh

y 
al

b
Va

c 
ul

i
Pl

e 
sc

h
H

yp
 ju

t
Sp

h 
an

g
Sp

h 
au

s
Sp

h 
cu

s

Sp
h 

fim
Sp

h 
fu

s
Sp

h 
ru

s

Ba
c 

1
Ba

c 
2

Ba
c 

3
Ba

c 
4

Ba
c 

5
Ba

c 
6

Ba
c 

7
Ba

c 
8

Ba
c 

9
Ba

c 
10

Ba
c 

11
Ba

c 
12

Ba
c 

13
Ba

c 
14

Be
t n

an
Be

t p
ub

D
ro

 ro
t

Er
i a

ng
Er

i t
et

Er
i v

ag
M

ol
 c

ae
Rh

y 
al

b
Va

c 
ul

i
Pl

e 
sc

h
H

yp
 ju

t
Sp

a 
an

g
Sp

h 
au

s
Sp

h 
cu

s

Sp
h 

fim
Sp

h 
fu

s
Sp

h 
ru

s

A
rc

 1
A

rc
 2

Ba
c 

15
Ba

c 
16

Ba
c 

17
Ba

c 
18

Ba
c 

19
Ba

c 
20

Ba
c 

21
Ba

c 
22

Ba
c 

23
Ba

c 
24

Ba
c 

25
Ba

c 
26

Ba
c 

27
Ba

c 
28

Ba
c 

29
Ba

c 
30

Ba
c 

31
Ba

c 
32

Ba
c 

33
Ba

c 
34

Ba
c 

35
Ba

c 
36

Ba
c 

11
Ba

c 
37

Ba
c 

38
Ba

c 
39

Ba
c 

40
Ba

c 
41

A
nd

 p
ol

Em
p 

ni
g

Er
i a

ng
Rh

y 
al

b

Va
c 

ox
y

H
yp

 ju
t

Sp
h 

cu
s

Sp
h 

fim

Sp
h 

m
ag

Sp
h 

ru
s

Sp
h 

te
n

Ba
c 

2

Ba
c 

4

Ba
c 

8

Ba
c 

9

Ba
c 

11

Ba
c 

12

Ba
c 

13

Ba
c 

14

A
nd

 p
ol

Be
t p

ub
Er

i v
ag

 
M

ol
 c

ae

Va
c 

ox
y

Pl
e 

sc
h

H
yp

 ju
l

Sp
h 

au
s

Sp
h 

m
ag

Ba
c 

21

Ba
c 

22

Ba
c 

23

Ba
c 

26

Ba
c 

27

Ba
c 

33

Ba
c 

38

Ba
c 

39

Ba
c 

40

Er
i v

ag

Rh
y 

al
b

Sp
h 

an
g

Sp
h 

ru
b

Sp
h 

te
n

Ba
c 

3

Ba
c 

4

Ba
c 

5

Ba
c 

7

Ba
c 

10

Ba
c 

11

Ba
c 

12

Ba
c 

13

Ba
c 

14

A
nd

 p
ol

D
ro

 a
ng

Rh
y 

al
b

Va
c 

ox
c

Sp
h 

ba
t

Sp
ha

fu
c

Sp
 ru

b

A
rc

 2

Ba
c 

22

Ba
c 

25

Ba
c 

33

Ba
c 

39

28378
19606 / 8772

22240
14386 / 7854

7728
4510 / 3218

2928
1840 / 1088

6838
4408 / 2430

6568
5104 /1482

Degero Stormyr

Dosenmoor

Cena

acrotelm catotelm

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.090274doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.090274
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 3. Turnover in species composition (species β-diversity) and association (network β-diversity) and their 

respective components across three peatlands (see methods). Red circles indicate plant and microbial communities 

in the acrotelm. Blue circles indicate plant and microbial communities in the catotelm. 
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Figure 4. Boxplots of the species associations and network properties for the acrotelm (a, c, e) and catotelm (b, 

d, f) plant-prokaryote interactions. The number of specific partners (a, b), partner diversity (c, d) and partner 

specificity (e, f) have been calculated for plants (white boxplots: top down links; Suppl. Fig. 2) and prokaryotes 

(grey boxplots: bottom up links; Suppl. Fig. 2). Horizontal solid lines indicate median values. Different letters 

indicate differenced at the P ≤ 0.05 level, based on analysis of variance using mean values. 

 

 

 

0

200

400

600

800

0

200

400

600

800

0

2

4

6

8

0

2

4

6

8

0

0.25

0.50

0.75

1

0

0.25

0.50

0.75

1

Ef
fe

ct
iv

e 
pa

rtn
er

s (
#)

Pa
rtn

er
 d

iv
er

sit
y

Pa
rtn

er
 sp

ec
ifi

ci
ty

Plant and acrotelm prokaryotic communities

Plant and catotelm prokaryotic communities

a

b

b

a b b

a b
b

D
eg

er
o 

St
or

m
yr

Ce
na

 M
ire

D
os

en
m

oo
r

D
eg

er
o 

St
or

m
yr

Ce
na

 M
ire

D
os

en
m

oo
r

D
eg

er
o 

St
or

m
yr

Ce
na

 M
ire

D
os

en
m

oo
r

a
b b

a

b b

a b b

a

b
b

a b b

a
b b

a
b b

b b

a

a

b
bEf

fe
ct

iv
e 

pa
rtn

er
s (

#)

Pa
rtn

er
 d

iv
er

sit
y

Pa
rtn

er
 sp

ec
ifi

ci
ty

a

b

c

d

e

f

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.090274doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.090274
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 5 Linear regressions between the key enviro-climatological variables –total nitrogen deposition and 

temperature seasonality– and network indices. Network indices were grouped into three categories, network 

composition (linkage density, species richness, partner diversity), network stability (robustness, niche 

specialization, modularity) and network generality (generality indices). The grey area represents the 95% 

confidence interval of the mean. Data on specific network indices can be found in Suppl. Fig. 4. 
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