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Abstract: The human face is complex and multipartite, and characterization of its genetic 

architecture remains intriguingly challenging. Applying GWAS to multivariate shape 2 

phenotypes, we identified 203 genomic regions associated with normal-range facial variation, 

117 of which are novel. The associated regions are enriched for both genes relevant to 4 

craniofacial and limb morphogenesis and enhancer activity in cranial neural crest cells and 

craniofacial tissues. Genetic variants grouped by their contribution to similar aspects of facial 6 

variation show high within-group correlation of enhancer activity, and four SNP pairs display 

evidence of epistasis, indicating potentially coordinated actions of variants within the same cell 8 

types or tissues. In sum, our analyses provide new insights for understanding how complex 

morphological traits are shaped by both individual and coordinated genetic actions. 10 

 

Main Text:  12 

“One of the major problems confronting modern biology is to understand how complex 

morphological structures arise during development and how they are altered during evolution” 14 

Atchley and Hall, 19911, p.102 

 16 

The ‘problem’ described by Atchley and Hall continues to enthrall biologists, geneticists, 

anthropologists, and clinicians almost three decades later. In their review, the authors describe a 18 

“complicated developmental choreography” in which intrinsic genetic factors, epigenetic factors, 

and interactions between the two make up the progeny genotype, which engages with the 20 

environment to ultimately produce a complex morphological trait, defined thus by its 

composition from a number of separate component parts1. We now understand that the intrinsic 22 

genetic factors ultimately contributing to complex morphological traits consist not only of single 
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variants altering protein structure and/or function, but also non-coding variants and interactions 24 

among variants, each affecting multiple tissues and developmental timepoints. This realization 

necessitates the development and utilization of methods capable of describing the genetic 26 

architecture of complex morphological traits, which includes identifying the individual genetic 

variants contributing to morphological variation as well as their interactions2,3.  28 

The human face is an exemplar complex morphological structure. It is a highly 

multipartite structure resulting from the intricate coordination of genetic, cellular, and 30 

environmental factors4–6. Through prior genetic association studies of quantitative traits, 51 loci 

have been implicated in normal-range craniofacial morphology, and an additional 50 loci have 32 

been associated with self-reported nose size or chin dimples in a large cohort study7 (Table S1). 

However, as with all complex morphological traits, our ability to identify and describe the 34 

genetic architecture of the face is limited by our ability to accurately characterize its phenotypic 

variation4, identify variants of both large and small effect8, and identify interactions between 36 

variants. We previously described a novel data-driven approach to facial phenotyping, which 

facilitated the identification and replication of 15 loci involved in global-to-local variation in 38 

facial morphology9. Here, we apply this phenotyping approach to two much larger cohorts from 

the US and UK (n = 8,246; Table S2) and use advanced multivariate techniques to uncover new 40 

biological insights into the genetic architecture of the human face. We now identify 203 signals, 

located in 138 cytogenetic bands, associated with normal-range facial morphology (Fig. 1). 42 

Many of these loci harbor genes involved in craniofacial syndromes, which we show also affect 

normal facial variation, and a large number are novel signals, potentially pointing to previously 44 

unknown genes and pathways involved in normal and abnormal facial development. Using 

bioinformatics tools and ChIP-seq databases for epigenomic characterization, we show that 46 
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variants at our GWAS peaks are involved in regulating enhancer activity in cell types controlling 

facial morphogenesis across the developmental timeline. Furthermore, we reveal interactions 48 

between variants at different loci affecting similar aspects of facial shape variation, exposing 

some of the hidden assemblages of genes that work in concert to build human faces. With this 50 

work, we not only push forward our understanding of the human face, but also illustrate the 

potential for researchers to confront Atchley and Hall’s problem, by intensively characterizing 52 

complex morphological variation and using advanced methods to identify factors involved in the 

developmental choreography of complex morphological structures. 54 

 

Fig. 1. Overall results of US-driven and UK-driven meta-analyses. On the left, blocks 56 

representing the facial segments arranged and colored according to quadrant (I = orange; II = 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.090555doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.090555
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 
 

red; III = light blue; IV = dark blue), and the full face (white), and segments 2 (light orange) and 58 

3 (ice blue). The histogram arranged on the left side represents the number of lead SNPs 

reaching their lowest p-value in each segment, colored by quadrant, with the US-driven meta-60 

analysis results on the outside circle and the UK-driven meta-analysis results on the inside circle. 

In the center, the first three levels of the facial segmentation [segments 1 - 7], also colored to 62 

match with the quadrants on the left. On the right, a Miami plot of the US-driven meta-analysis 

p-values on the outside and the UK-driven meta-analysis p-values on the inside, with 64 

chromosomes colored and labeled. P-values are -log10 scaled (range: [0-80]). The red line 

represents the genome-wide significance threshold (p = 5 x 10-8) and the black line represents the 66 

study-wide threshold (p = 6.25 x 10-10). Created using Circos v0.69-8101. 

 68 

 

Multivariate phenotyping and meta-analysis framework 70 

To study facial variation at both global and local scales, we start with a set of 3D facial 

surface scans, upon which we map a dense mesh of homologous vertices10. We then apply a 72 

data-driven facial segmentation approach, defined by grouping vertices that are strongly 

correlated using hierarchical spectral clustering9. The configurations of each of the resulting 63 74 

segments are then independently subjected to a Generalized Procrustes analysis, after which 

principal components analysis is performed in conjunction with parallel analysis to capture the 76 

major phenotypic variation in each facial segment11 (Fig. S1). Within each segment, instead of a 

priori selecting the principal components (PCs) of interest, we use canonical correlation analysis 78 

(CCA) to first identify the linear combination of components maximally correlated with the SNP 

being tested, under an additive genetic model, in the identification cohort (we call this 80 
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combination of PCs the “phenotypic trait”). Subsequently, the verification cohort is projected 

onto each of these learned phenotypic traits, creating univariate phenotypic variables which are 82 

then tested for genotype-phenotype associations. The identification and verification p-values are 

then meta-analyzed using Stouffer’s method12,13. The whole process is then repeated, switching 84 

the dataset used for identification and verification, thereby resulting in two sets of meta-analysis 

p-values from each permutation of identification and verification (pMETA-US and  pMETA-UK; Fig. 86 

S2).  

We first assessed the degree to which variation in each facial segment shares the same 88 

patterns of genetic association across the genome by computing the Spearman correlation among 

all genetic association results for each pair of facial segments. We then used these pairwise 90 

correlations, which we verified were not due to linkage disequilibrium either across the genome 

or with genome-wide significant SNPs (Fig. S3), to both hierarchically cluster the facial 92 

segments and visualize between-segment correlations (Fig. S4). These analyses revealed two key 

features of the global association patterns. First, the correlations were highest between segments 94 

of the same facial quadrant (i.e. lips, nose, lower face, upper face), validating the hierarchical 

clustering used to initially define the segments. Clustering the facial segments based on the 96 

genetic association results resulted in four main clusters, each corresponding to segments from 

the same quadrant of the polar dendrogram (Fig. S5). Second, despite substantial within-quadrant 98 

similarity, there were notable correlations between groups of segments from different quadrants. 

Some of these specific correlations reflect close physical proximity of the segments in different 100 

quadrants (e.g. segment 51-19; Fig. S4), but some correlations seem to reflect the shared 

embryological origins of groups of segments. Specifically, segments representing the nose 102 

(Quadrant II) and upper face (Quadrant IV) cluster together, and segments representing the lips 
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(Quadrant I) and lower face (Quadrant III) cluster together (Fig. S5). Quadrants II and IV 104 

together approximate the frontonasal prominence, which appears earlier in development than the 

mandibular and maxillary prominences, which are approximated by Quadrants I and III14. 106 

Together, these results indicate that hierarchical spectral clustering of the face based on structural 

correlations effectively partitions underlying genetic signals into biologically coherent groups.  108 

In total, we identified 17,612 SNPs with p-values (pMETA-US and/or pMETA-UK) lower than 

the genome-wide threshold (p ≤ 5 × 10-8), and 11,319 SNPs with p-values lower than the study-110 

wide Bonferroni threshold (p ≤ 6.25 × 10-10) (Fig. S6). For each peak, we designated the SNP 

with the lowest p-value across all facial segments as the “lead SNP,” refining our results to 218 112 

lead SNPs, all below the genome-wide threshold. Of these, 203 showed consistent effects of the 

phenotypic trait identified in the US- and the UK-driven meta-analyses in the facial segment with 114 

the lowest p-value for that SNP (Fig 1; Table S3). Trait similarity was tested using a regression 

of slopes of each of the phenotypic traits found in the identification stage for each permutation, 116 

with results considered sufficiently similar if they were below a false discovery rate of p ≤ 3.66 × 

10-2. The output of our meta-analyses is twofold. First, the meta-analyses p-values facilitate 118 

quantification of the statistical evidence of association between the SNPs and these discovered 

traits. In addition, for each SNP and in each segment, we allow the data to drive the identification 120 

of the phenotypic trait most associated with that SNP in the segment. This opens the possibility 

that SNPs could have associations with many different traits across segments, allowing us to 122 

better describe genetic influences on human facial morphology. 

 124 

Genes near lead SNPs are enriched for both craniofacial and limb development 
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Using FUMA15 and GREAT16 analyses, we established that genes located within 500 kb 126 

of the lead SNPs were highly enriched for processes and phenotypes associated with craniofacial 

development and morphogenesis in humans and mice (Fig. S7A). Notably, the top human 128 

phenotype was orofacial clefting, indicating a substantial overlap between the genes involved in 

normal facial variation and those implicated in the most common craniofacial birth defect in 130 

humans. Furthermore, many of the surrounding genes to which the lead SNPs were annotated are 

known to be involved in pathways relevant for craniofacial development, such as the WNT 132 

signaling and TGFB pathways (Fig. S7B). Our GWAS signals were also enriched for processes 

associated with limb development and related phenotypes, pointing to a shared genetic 134 

architecture between faces and limbs (Fig. S7A). A number of genes near our GWAS loci (e.g. 

Dlx homeobox genes, BMPs, and FGFR2) have well-established roles in limb development17. 136 

These findings are also supported by the large number of human syndromes that present with 

both facial and limb malformations18.  138 

 

Facial GWAS peaks are enriched for enhancers specific to cell types across the timeline of 140 

facial development 

To assess the likely cell-types and developmental timepoints in which our GWAS regions 142 

are active, we used epigenomic mapping datasets generated from human cranial neural crest cells 

(CNCCs) and other cell types relevant to embryonic development. To gauge activity, we 144 

analyzed ChIP-seq signals of acetylation of histone H3 on lysine K27 (H3K27ac), which is a 

marker of the promoters of transcriptionally active genes and active distal enhancers19,20. We 146 

compiled H3K27ac ChIP-seq signals from approximately 100 different cell types and tissues, 

including CNCCs, fetal and adult osteoblasts, mesenchymal stem cell-derived chondrocytes, as 148 
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well as dissected embryonic craniofacial tissues (Carnegie stages 13-20). Both CNCCs and 

craniofacial tissues showed the highest H3K27ac signals in the vicinity of the 203 lead SNPs, 150 

whereas no H3K27ac signal was observed for 203 random SNPs matched for allele frequency 

and distance to the nearest gene (Fig. 2A). These observations are consistent with an embryonic 152 

origin for human facial variation across the timeline of facial development, as CNCCs represent 

an early time point in facial development whereas the craniofacial tissues represent progressively 154 

later time points.  

H3K27ac marks activity at both coding and noncoding elements; to distinguish 156 

enrichment between the two, we examined chromatin signals in CNCCs and embryonic 

craniofacial tissues in more detail, using ChIP-seq data on additional chromatin marks and 158 

transcription factors for either cell-type21,22. In both CNCCs and craniofacial tissue at all sampled 

developmental stages, candidate regulatory regions in the vicinity of the 203 lead SNPs were 160 

significantly enriched for predicted enhancers (CNCCs: strong and intermediate enhancers; 

craniofacial tissue: active, flanking, and weak enhancers), and not promoters (Fig. 2B and C). 162 

This is an especially intriguing result, as recent evidence has described the action of multiple 

enhancers, each showing different tissue or timing specificity, in modulating expression levels to 164 

affect craniofacial development23. Thus, though promoters can have an equally important role in 

development, the enrichment of our lead SNPs in predicted enhancer regions signifies the likely 166 

importance of enhancers in regulating normal-range facial variation. 
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 168 

Fig. 2. Regions near the 203 lead SNPs are enriched for enhancers preferentially active in 

cranial neural crest cells and embryonic craniofacial tissue. (A) Each boxplot represents the 170 

distribution of H3K27ac signal in 20 kb regions around the 203 lead SNPs (top) or 203 random 
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SNPs (bottom) in one sample, with cranial neural crest cells and embryonic craniofacial tissue 172 

highlighted in blue and orange, respectively. For each class of regulatory element in either 

cranial neural crest cells (B) or embryonic craniofacial tissue (C), the number of elements within 174 

10 kb of the 203 lead SNPs was compared to the number within 10 kb of 203 random SNPs by 

Fisher’s exact test. Points represent estimated odds ratio and 95% confidence intervals. Asterisk 176 

(*) indicates any adjusted p-value < 0.05. For embryonic craniofacial tissue, enrichments were 

calculated for each Carnegie stage separately, as Wilderman et al.22 performed chromatin state 178 

segmentation for each stage separately. Descriptions of mnemonics for significantly enriched or 

depleted chromHMM states are as follows: EnhA2, active enhancer 2; EnhAF, active enhancer 180 

flank; EnhW2, weak enhancer 2; Quies, quiescent/low; Het, heterochromatin. Descriptions of all 

mnemonics can be found at: https://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp. 182 

 

 184 

While CNCCs and craniofacial tissues showed the strongest enrichments when 

considering the 203 lead SNPs together, we hypothesized that cell-type-specific activity patterns 186 

could be used to further subdivide the 203 lead SNPs. We therefore clustered the 203 lead SNPs 

into six distinct groups on the basis of H3K27ac signal across all ~100 cell types. As expected, 188 

the greatest fraction of lead SNPs showed specific activity for CNCCs and craniofacial tissue 

(e.g. cluster 5; Fig. 3); interestingly, however, some SNPs showed preferential activity for either 190 

CNCCs or craniofacial tissue (e.g. clusters 1 and 2; Fig. 3). Greater specificity for CNCCs could 

arise because CNCCs constitute a relatively small proportion of the cells present in craniofacial 192 

tissue at Carnegie stages 13-20, while greater specificity for craniofacial tissue could be due to 

activity in further differentiated cell-types of the face. Complementing our earlier results 194 
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indicating that some genes near our GWAS peaks are involved in both facial and limb 

development, a subset of SNPs showed preferential activity in additional in vitro-derived cell 196 

types relevant to both the face and the rest of the skeletal system, including osteoblasts, 

chondrocytes, differentiating skeletal muscle myoblasts, fibroblasts, and keratinocytes (e.g. 198 

cluster 3; Fig. 3). As an illustration, lead SNP rs1367228 is located within a transcription factor 

binding sequence in an intron of the EFEMP1 gene (2p16.1), and is associated in this study with 200 

facial variation around the eye sockets and upper cheekbones and showed preferential activity in 

fetal osteoblast cell lines and MSC-derived chondrocytes (Fig. S9). Together, these results 202 

suggest that genetic variation underlying facial morphology operates by modulating enhancer 

activity across multiple cell types throughout the timeline of embryonic facial development. 204 

 

 206 

Fig. 3. Activity of 203 peak SNPs in all cell-types studied. H3K27ac signal calculation and k-

means clustering of SNPs were performed as described in Methods. Average linkage clustering 208 
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on Euclidean distances was performed both within each of the 6 row clusters and for all columns. 

SNPs in cluster are active primarily in CNCCs, representing activity in an early time point in 210 

development. Cluster 2, 3, and 5 represent SNPs likely active across development, displaying 

activity in both CNCCs and craniofacial tissue, with SNPs in clusters 2 and 3 additionally active 212 

across many cell types and tissues, suggesting broad roles in general development. 

 214 

 

Known and novel loci and SNP effects on multiple facial phenotypes   216 

We identified 86 GWAS peaks that overlap with the results of prior association studies of 

normal-range facial phenotypes. In several such instances, we observed new details providing a 218 

more nuanced understanding of the underlying genetic architecture. For example, variants at the 

TBX15/WARS2 locus (1p12) were previously reported to be associated with forehead 220 

prominence9 and self-reported chin dimples7, already indicating that this locus has multiple 

spatially separated effects on the face. In our current analysis, we see the same influence on 222 

forehead morphology (lead SNP rs3936018, located in the promoter region of WARS2), as 

previously reported (Fig. 4)9. Interestingly, this lead SNP overlaps in location with rs12027501, 224 

but each SNP is associated with a separate linkage disequilibrium cluster and rs12027501 was 

most significant in segment 48, representing part of the cheeks (Fig. 4). We also see a signal 226 

approximately 275kb upstream of TBX15 (rs7513680) that was most significantly associated 

with morphology in segment 51, representing the bottom cheek area at the corners of the mouth 228 

(Fig. 4). Lastly, another GWAS peak is present approximately 301 kb downstream of WARS2 

(rs17023457) with an effect in the same area, though the two are approximately 725 kb apart 230 

(Fig. 4). These results, in which we are able to finely parse out the effect of a SNP even within a 
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complex genomic region, highlight the utility of using hierarchical clustering to segment the 232 

face. Of interest, we observed twenty-four such loci with multiple peaks that each affect different 

facial phenotypes, suggesting that these variants might overlap with or be impacted by regulatory 234 

elements that affect the face in highly specific ways (Table S4, Fig. S10).  

 236 

Fig. 4. TBX15-WARS2 multi-peak locus. LocusZoom plots and facial effects for four 

association signals near the TBX15-WARS2 locus. Clustering based on linkage disequilibrium 238 

was performed to separate independent signals, resulting in the identification of four lead SNPs. 
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Color for each SNPs is based on cluster association, with saturation indicating linkage 240 

disequilibrium with the lead SNP. SNPs represented by diamonds are the lead SNPs also present 

in the 1000G Phase 3 dataset; SNPs represented by circles are adjacent SNPs also present in the 242 

1000G Phase 3 dataset; SNPs represented by asterisks are those not present in the 1000G Phase 3 

dataset. For the segment in which each lead SNP had its lowest effect, we plot the facial effects 244 

for the lead SNPs reaching significance in that segment as the normal displacement 

(displacement in the direction normal to the facial surface) in each quasi-landmark going from 246 

minor to major allele, with red colored areas shifting outward while blue colored areas shift 

inwards. 248 

 

 250 

A total of 64 GWAS peaks observed in our analysis are located at loci harboring putative 

craniofacial genes (implicated from human malformations or animal models), but which had not 252 

yet been observed in GWAS for normal-range facial morphology. For instance, MSX1 has been 

implicated in orofacial clefting in humans24,25 and mice25,26, and is also widely expressed in lip 254 

and dental tissues during development27. We observed two distinct peaks at the MSX1 locus 

(4p16.2), one approximately 55 kb upstream of MSX1 with a pronounced effect on the lateral 256 

upper lip (lead SNP rs13117653) and a second peak, about 323 kb upstream of MSX1 and 

located in the intron of STX18, involving the lateral lower lip and mandible (lead SNP 258 

rs3910659; Fig. S11). This result could indicate a potential role of STX18 in craniofacial 

development, or provide further evidence that complex phenotypic effects seen in our human 260 

sample could be due to the action of multiple regulatory elements within a single locus. In 

support of this, Attanasio et al., demonstrated that the activity of Msx1 in the second pharyngeal 262 
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arch and maxillary process of the e11.5 mouse embryo is recapitulated by the combined activity 

of two separate enhancers, located 1 and 235 kb upstream of the gene promoter23. 264 

Our GWAS additionally revealed 53 peaks at loci harboring genes with no previously 

known role in craniofacial development or disease, though many of the implicated genes at these 266 

loci are known to have a general role in developmental processes critical to proper 

morphogenesis. For example, DACT1 is an established antagonist of the WNT signaling 268 

pathway, which is known to be involved in craniofacial development28, though DACT1 has not 

previously been associated with facial morphology. DACT1 is mostly studied for its involvement 270 

in gastric cancer, however it has also been shown to inhibit the delamination of neural crest cells, 

further supporting its involvement in facial development29. In the current study, variants at the 272 

DACT1 locus are associated with mandibular morphology, particularly in the chin region (Fig. 

S11). DACT1, and the other 52 signals not previously associated with craniofacial morphology, 274 

are promising new candidates of potential roles in facial morphogenesis.  

Given the proximity of our GWAS peaks to enhancers, and the understanding that some 276 

genomic regions are known to influence multiple phenotypes, we hypothesized that some lead 

SNPs could have additional associations with facial phenotypic traits besides that with which 278 

they were originally associated during the CCA. To test this, we performed pairwise linear 

regressions between each of the facial phenotypic traits identified during the CCA step and the 280 

genotypes at all other lead SNPs (see cross-peak association in Methods; Fig. S12), and 

identified 13 SNPs with associations with multiple phenotypic traits across multiple quadrants 282 

(Table S5). For example, rs1370926, a transcription factor binding site located 34 kb upstream of 

PAX3 (based on Ensembl GRCh37 annotation30), showed associations with phenotypic traits in 284 

segments relating to morphology of the nose (Quadrant II; segments 5, 10, 11, 20, 22, 23, 40, 44, 
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45, and 47), upper lip (quadrant I; segments 9, 36), forehead (Quadrant IV; segment 28), and 286 

eyes (Quadrant IV; segment 60). This indicates an association between PAX3 and many facial 

regions, which is consistent with previous GWAS findings implicating PAX3 in general facial 288 

morphology, independent of phenotyping method or sample7,31–34. These 13 SNPs might show 

associations in multiple segments because of proximity to enhancer sequences, expansive effects 290 

across multiple cell populations, or early actions in facial development, perhaps in multiple facial 

prominences, that are then carried along to facial regions with little phenotypic correlation in our 292 

sample (i.e. different facial segments). PAX3, for example, plays a key role early in development 

by influencing the induction of the neural crest and the proliferation of craniofacial neural crest 294 

cells35. Seven of these SNPs can be grouped based on H3K27ac signal into clusters which had 

the highest activity in CNCCs and craniofacial tissues (clusters 1, 2, and 3; Fig. 3). Higher 296 

activity in craniofacial tissue is consistent with effects across multiple parts of the face, since 

higher activity within a tissue with as many different cell types as the embryonic face likely 298 

means that these SNPs are active in many cell types relevant to facial variation.  

 300 

Genetic interactions impacting facial variation 

Given the complexity of the human face and its component traits, it is likely that the 302 

genetic architecture contributing to facial variation includes not only the genomic regions 

impacting multiple parts of the face, as described above, but also groups of genomic regions that 304 

contribute to the same facial trait, perhaps through actions in similar cell types or explicit 

interactions among variants. To better analyze and rank the effects of multiple genotypes on a 306 

facial trait, we used structural equation modeling (SEM) to refine our understanding of which 

groups of variants best explain the variance observed in each facial segment. SEM is a 308 
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multivariate statistical analysis technique that has the ability to analyze structural relationships 

between measured variables (e.g. genetic variants and covariates) and latent constructs 310 

(univariate phenotypes derived from the PCs of the analyzed facial segment). This was done in 

an iterative manner, eventually resulting in 50 SEM models (corresponding to 50 facial 312 

segments) that converged successfully and were considered well-fitting based on recommended 

model fit parameters (Table S6). For each of these 50 models, the output included a univariate 314 

latent variable and a list of variants ranked by their estimated contribution to that variable 

(between 1 and 60, depending on the model), highlighting the polygenic nature of facial variation 316 

captured by the latent variable. Importantly, SNPs that significantly explained variance in the 

same segment showed higher correlations of cross-sample H3K27ac activity than when 318 

compared to non-significant SNPs for that segment, indicating that the SEM-refined lists of 

SNPs for each segment are likely those that are similar in either their spatial or temporal cellular 320 

activity (Fig. S13). We further analyzed these refined SNP lists for explicit genotype interactions 

by assessing, for each of the 50 models, whether interactions between the genotypes increased or 322 

decreased the median distribution of the latent variable. Four SNP combinations showed 

significant pairwise epistatic interactions (Table 1; Fig. 5; Fig. S14). For example, rs76244841 324 

(PRDM16 associated) and rs62443772 (GLI3 associated) were found to have a significant 

interaction in facial segment 9, which covers the premaxillary soft tissue from the base of the 326 

columella to the oral commissure. PRDM16 encodes a zinc finger transcription factor36,37 and has 

been shown to affect palatal shelf elevation through repression of TGFβ signaling38,39. GLI3 328 

encodes a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, which 

has been shown to play a role in limb development40–42. In addition, there is evidence that mouse 330 

null Gli3 mutants have a broad nose phenotype43 and genome-wide scans have previously 
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implicated GLI3 in affecting nose morphology33. The connection between PRDM16 and GLI3 332 

can be seen by their interaction through the SUFU intermediary. Multiple studies conducted on 

Drosophila melanogaster have identified evidence for a tetrameric Hedgehog signaling complex 334 

comprising Fu, Ci (an ortholog of PRDM16), Cos2, and Su(fu) (an ortholog of SUFU), including 

evidence that Su(fu) binds directly to Ci44–46. SUFU has also been shown to mediate the 336 

phosphorylation of GLI3 via GSK347 and has also been shown to interact with the GLI1-3 zinc-

finger DNA-binding proteins48,49. Overall, these results indicate that the statistical evidence of 338 

SNP groups influencing polygenic facial variation, identified through SEM, and explicit variant 

interactions, suggested by the epistasis analysis, are potentially representative of true biological 340 

relationships, but must be confirmed with further study.  

 342 

 

Fig. 5. Phenotypic and marginal distributions for rs62443772 - rs76244841 epistatic pair 344 

Plotted in the first column and last row are the marginal phenotypic distributions of the 

genotypes, which shows the phenotypic distribution that would occur if the two genotypes were 346 
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acting independently. The median phenotype based on the two genotype distributions (blue 

dashed lines on the colored plots) was also calculated for each diplotype. The observed diplotype 348 

median (black line on the colored plots) was compared to the expected diplotype median (blue 

dashed lines on the colored blots) via Mood’s Median test95 with one degree of freedom. The 350 

resulting log transformed p-value was used to color the boxplots to illustrate significance, unless 

the difference was non-significant (i.e p > 0.05; log(p) < 1.30), in which the color was 352 

automatically set to grey. Within each colored boxplot is the untransformed Mood’s median p-

value as well as the number of individuals used for significance testing. The phenotypic 354 

distribution facial image in the lower left corner was constructed by comparing the principal 

components.  356 

 

Table 1. Four SNPs with evidence of epistatic interactions. 358 

For each of the 50 segments with a refined SEM model, we used the latent variables and SNP 

lists to test for evidence of epistasis. For the four SNP pairs with significant evidence of epistatic 360 

interactions, this table lists the epistasis p-value, rsID, GRCH37 location, and gene annotation. 

The phenotypic and marginal distributions for the pairs are depicted as boxplots in Fig. 5 and 362 

Fig. S14. 

 
Segment 

SNP 1 SNP 2 
p-value RSID Location 

Annot. 
Gene RSID Location Annot. Gene 

6 
rs10838269 11:44378010 ALX4 rs11175967 12:66321344 HMGA2 9.94 x 10-7 

9 
rs76244841 1:2775953 PRDM16 rs62443772 7:42131949 GLI3 4.68 x 10-6 

  11 
rs6740960 2:42181679 PKDCC rs6795164 3:133885925 SLCO2A1 5.21 x 10-5 

  22 
rs7373685 3:128107020 GATA2 rs7843236 8:121980512 SNTB1 7.10 x 10-5 

 364 
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Conclusions 

In sum, these results illustrate an avenue for investigating the coordinated processes 366 

underlying complex morphological structures, like the human face, at a deeper level than single 

associations between genotype and univariate phenotype. Having identified the largest number of 368 

signals associated with facial morphology to date, including a mix of known and novel loci, we 

additionally sought to better describe the processes and interactions through which the implicated 370 

genomic regions might influence the face. The genomic regions identified in this study are likely 

active across the timeline of facial development, evidenced by preferential H3K27ac activity in 372 

cells representing early timepoints (CNCCs) and progressively later timepoints (craniofacial 

tissues), and likely influence facial morphology by modulating the activity of nearby enhancers. 374 

Our results additionally illustrate that we are now able to pick up on the early shared 

developmental processes linking multiple complex structures, here both face and limb 376 

development. This is supported by genes near our lead SNPs being enriched for patterns and 

processes relevant to both anatomical regions and by the clustering of some lead SNPs through 378 

preferential H3K27ac activity in cell types relevant to both the face and skeleton. Lastly, though 

we know complex phenotypes like the face are polygenic, for the first time we now explicitly 380 

describe refined groups of SNPs influencing the same aspects of facial variation in each facial 

segment. These groups show correlated H3K27ac activity patterns and four pairs of SNPs exhibit 382 

evidence of epistatic interactions influencing facial variation. These results illustrate the potential 

of bioinformatic techniques to highlight spatial and temporal groupings of SNPs and connections 384 

between SNPs, representing a major step forward in our ability to characterize the polygenic 

genetic architecture of complex morphological structures like the face. We anticipate our results 386 

will be useful for researchers seeking to use model organisms and cell expression approaches in 
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future functional investigations to refine the locations, timings, and connections that we suggest 388 

in this report, in an effort to better understand the biological forces that shape human and animal 

morphology. 390 

 

Online Methods 392 

Sample and recruitment details  

The samples used for analysis included a combination of three independently collected 394 

datasets from the United States (US) and one dataset from the United Kingdom (UK), for a total 

sample size of n = 8,246. The US samples originated from the 3D Facial Norms cohort (3DFN) 396 

and studies at the Pennsylvania State University (PSU) and Indiana University-Purdue 

University Indianapolis (IUPUI). The UK dataset included samples from the Avon Longitudinal 398 

Study of Parents and their Children (ALSPAC). Institutional review board (IRB) approval was 

obtained at each recruitment site, and all participants gave their written informed consent prior to 400 

participation. For children, written consent was obtained from a parent or legal guardian. Some 

individuals from the 3DFN and PSU samples were previously tested for associations with facial 402 

morphology in our prior work9. A breakdown of the samples used for analysis is shown in Table 

S2. In all datasets, participants with missing information in sex, age, height, weight, or with 404 

insufficient image quality were removed.  

For the 3DFN sample, 3D images and genotype data were obtained from the 3D Facial 406 

Norms repository50. The repository includes 3D facial surface images and self-reported 

demographic descriptors as well as basic anthropometric measurements from individuals 408 

recruited at four US sites: Pittsburgh, PA (PITT IRB PRO09060553 and RB0405013); Seattle, 

WA (Seattle Children’s IRB 12107); Houston, TX (UT Health Committee for the Protection of 410 
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Human Subjects HSC-DB-09-0508); and Iowa City, IA (University of Iowa Human Subjects 

Office IRB (200912764 and 200710721). Recruitment was limited to individuals aged 3 to 40 412 

years old and of self-reported European ancestry. Individuals were excluded if they reported a 

personal or family history of any birth defect or syndrome affecting the head or face, a personal 414 

history of any significant facial trauma or facial surgery, or any medical condition that might 

alter the structure of the face. The intersection of unrelated participants with quality-controlled 416 

images, covariates, and genotype data from individuals of European descent resulted in 1,906 

individuals for analysis. 418 

The PSU sample included 3D images and genotypes of participants recruited through 

several studies at the Pennsylvania State University and sampled at the following locations: 420 

Urbana-Champaign, IL (PSU IRB 13103); New York, NY (PSU IRB 45727); Cincinnati, OH 

(UC IRB 2015-3073); Twinsburg, OH (PSU IRB 2503); State College, PA (PSU IRB 44929 and 422 

4320); Austin, TX (PSU IRB 44929); and San Antonio, TX (PSU IRB 1278). Participants self-

reported information on age, ethnicity, ancestry, and body characteristics, and data were gathered 424 

on height and weight. Individuals were excluded from the analysis if they were below 18 years 

of age and if they reported a personal history of significant trauma or facial surgery, or any 426 

medical condition that might alter the structure of the face. No restriction on ancestry or ethnicity 

was imposed during recruitment, but only individuals of European descent were used in this 428 

study. The intersection of unrelated European participants with quality-controlled images, 

covariates, and genotype data resulted in 1,990 individuals for analysis. 430 

The IUPUI sample includes 3D images and genotypic data from individuals recruited in 

Indianapolis, IN and Twinsburg, OH (IUPUI IRB 1409306349). Participants self-reported 432 

information on age, height, weight, and ancestry at the time of the collection. Individuals who 
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were below 18 years of age were included if they had a parent or legal guardian’s signature. 434 

Similar to the PSU sample cohort, no restrictions were placed on the recruitment of participants, 

but only individuals of European descent and those meeting all quality control criteria were used 436 

in this study (n = 784). 

The UK sample was derived from the ALSPAC dataset, a longitudinal birth cohort in which 438 

pregnant women residing in Avon with an expected delivery date between 1 April 1991 and 31 

December 1992 were recruited51,52. At the time, 14,541 pregnant women were recruited and 440 

DNA samples were collected for 11,343 children. Genome-wide data was available for 8,952 

subjects of the B2261 study, titled “Exploring distinctive facial features and their association 442 

with known candidate variants.” In addition to this, 4,731 3D images were available along with 

information on sex, age, weight, height, ancestry, and other body characteristics. The ALSPAC 444 

study website contains details of all the data that is available through a fully searchable data 

dictionary (http://www.bris.ac.uk/alspac/researchers/our-data/). The intersection of participants 446 

of European ancestry with quality-controlled images, covariates, and genotype data included 

3,566 individuals. Ethical approval for the study was obtained from the ALSPAC Ethics and 448 

Law Committee and the Local Research Ethics Committees. Informed consent for the use of data 

collected via questionnaires and clinics was obtained from participants following the 450 

recommendations of the ALSPAC Ethics and Law Committee at the time. Consent for biological 

samples has been collected in accordance with the Human Tissue Act (2004).  452 

 

Genotyping platform 454 

Genotyping of the 3DFN sample was performed at the Center for Inherited Disease 

Research at Johns Hopkins University. Participants, including 70 duplicate samples and 72 456 
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HapMap control samples, were genotyped on the Illumina OmniExpress + Exome v1.2 array, 

plus 4,322 investigator-chosen SNPs included to capture variation in specific regions of interest 458 

involved in the genetics of facial variation. PSU participants were genotyped by 23andMe on the 

v3 and v4 arrays (Mountain View, CA). Participants sampled at IUPUI were genotyped using 460 

Illumina’s Infinium Multi-Ethnic Global-8 v1 array consisting of 1.78M genome-wide markers. 

Genotyping was performed by the University of Chicago’s DNA Sequencing & Genotyping 462 

Facility (Chicago, IL). For the ALSPAC sample, participants were genotyped using the Illumina 

Human Hap550 quad genome-wide SNP genotyping platform by Sample Logistics and 464 

Genotyping Facilities at the Wellcome Trust Sanger Institute (Cambridge, UK) and the 

Laboratory Corporation of America (Burlington, NC), supported by 23andMe. 466 

 

Genetic imputation 468 

Due to the several genotyping platforms used to genotype the US cohort, we chose to 

impute the samples from each platform separately, then combine the imputed results, following 470 

Verma, et al. 201453. For each dataset, standard data cleaning and quality assurance practices 

were performed based on the GRCh37 (hg19) genome assembly. Specifically, samples were 472 

evaluated for concordance of genetic and reported sex (--check-sex), evidence of chromosomal 

aberrations, genotype call rate (--mind 0.1), and batch effects using PLINK 1.954. SNPs were 474 

evaluated for call rate (--geno 0.1), Mendelian errors (--set-me-missing), deviation from Hardy-

Weinberg genotype proportions (--hwe 0.01), and sex differences in allele frequency and 476 

heterozygosity, also using PLINK 1.9. The genotypes were “harmonized” with 1000 Genomes 

Project (1000G) Phase 355 using Genotype Harmonizer56 with a window size of 200 SNPs, a 478 

minimum of 10 variants, and alignment based on minor allele frequency (--mafAlign 0.1). This 
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program was also used to filter out ambiguous SNPs, update the SNP id, and update the 480 

reference allele as needed, all in reference to the 1000G Phase 3 genotypes. After genotype 

harmonization, the study datasets were merged (n = 44,383 SNPs in common) and explored 482 

using principal components analysis to assure that there were no batch effects by genotyping 

platform. Relatedness across the entire US sample was also assessed using this intersection and 484 

the KING software57. Relatives were noted in the per-platform subsets, and the imputation 

process proceeded for the full number of quality-controlled SNPs from each platform. 486 

Prior to phasing, special quality control steps were performed on each platform. First, the 

allele frequency of each SNP was compared to the allele frequency of that SNP in the 1000G 488 

Phase 3 dataset. SNPs were removed if the allele frequency in the study dataset was not within 

|0.2| of any one of the 1000G super populations. We also removed SNPs with duplicate 490 

positions, any remaining insertions/deletions, copy number variants, and haploid genotypes. 

Individuals were removed if they had heterozygosity values ±3 standard deviations from the 492 

mean. Haplotypes were estimated using SHAPEIT258. The samples were then imputed to the 

1000G Phase 3 reference panel using the Sanger Imputation Server59 with the Positional 494 

Burrows-Wheeler Transform (PBWT) pipeline60, resulting in nearly 40 million variants for each 

dataset. SNP-level (INFO score >0.8) and genotype-per-participant-level (genotype probability 496 

>0.9) filters were used to omit poorly imputed variants. The datasets were then merged and 

filtered by SNP missingness (--geno 0.5), minor allele frequency (--maf 0.01), and Hardy-498 

Weinberg equilibrium (p < 1 x 10-6) to produce a single merged dataset of all US participants 

with 7,417,619 SNPs for analysis.  500 

The raw genotype data from ALSPAC was not available and restrictions are in place against 

merging the ALSPAC genotypes with any other genotypes. For this reason, imputed ALSPAC 502 
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genotypes were obtained directly from the ALSPAC database and held separately during the 

analysis. Prior to phasing and imputation, these genotypes were subjected to standard quality 504 

control methods. Individuals were excluded on the basis of genetic sex and reported gender 

mismatches, minimal or excessive heterozygosity, disproportionate levels of individual 506 

missingness (>3%), and insufficient sample replication (IBD <0.8). Only individuals of 

European descent, compared to the Hapmap II dataset by way of multidimensional scaling 508 

analysis, were kept for imputation. SNPs were removed if they had a minor allele frequency of 

<1%, a call rate of <95%, or evidence for violations of Hardy-Weinberg equilibrium (p < 5x10-510 

7). Haplotypes were estimated using SHAPEIT258 and imputed to the 1000G Phase 1 reference 

panel (Version 3)61 using IMPUTE262. After post-imputation quality control, the ALSPAC 512 

dataset contained 8,629,873 SNPs for analysis.  

 514 

Ancestry axes and selection of European participants 

From the post-imputation merged dataset of the US participants, we identified the European 516 

participants by projecting them into a principal component (PC) space constructed using the 

1000G Phase 3 dataset. To do this, we first excluded all indels, multi-allelic SNPs, and SNPs 518 

with MAF ≤ 0.1 in both the 1000G dataset and the US dataset and identified the SNPs common 

to both datasets. On this list (n = 1,940,221 SNPs), we iteratively performed linkage 520 

disequilibrium (LD) pruning (50 bp window, 5 bp step size, 0.2 correlation threshold) on the 

1000G dataset until no variants were excluded. We then used this LD-pruned list (n = 461,372 522 

SNPs) in a principal component analysis (PCA) to construct a population structure space based 

upon the 1000G project and projected our dataset onto that PCA space to obtain the ancestry 524 

axes of our dataset. 
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Once in a combined PC space, we calculated the Euclidean distance between all US 526 

participants and the 1000G samples. Using a k-th nearest neighbor algorithm, we identified the 

five nearest 1000G sample neighbors for each US participant in our dataset. The most common 528 

1000G population label (e.g. CEU, GIH, YRI) from these five nearest neighbors was then 

assigned to the US participant in our dataset. Participants with the 1000G European population 530 

labels of CEU, TSI, FIN, GBR, and IBS were then selected for analysis. Prior to association, the 

genotypes in the US and UK dataset were separately corrected for sex, age, age-squared, height, 532 

weight, facial size, the first four genomic ancestry axes, and the camera system, using PLSR 

(plsregress from Matlab 2017b). 534 

 

3D image acquisition 536 

For all datasets, 3D images were captured using either one of two digital facial 

stereophotogrammetry systems or one laser scanning system. All participants were asked to have 538 

closed mouths and to maintain a neutral facial expression during image capture63. For the 3DFN 

sample, facial surfaces were acquired using the 3dMDface (3dMD, Atlanta, GA) camera system. 540 

PSU sample images were obtained with either the 3dMDface or Vectra H1 (Canfield Scientific, 

Parsippany, NJ) systems. The IUPUI sample was also imaged using the Vectra H1 system. The 542 

ALSPAC sample was imaged using a Konica Minolta Vivid 900 laser scanner (Konica Minolta 

Sensing Europe, Milton Keynes, UK). For this system, two high-resolution facial scans were 544 

taken and then processed, merged, and registered using a macro algorithm in Rapidform® 

software (INUS Technology Inc., Seoul, South Korea). 546 

 

3D image registration and quality control 548 
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3D surface images were imported in wavefront.obj format into Matlab 2017b to perform the 

spatially dense registration process using a series of in-house functions packaged together in the 550 

MeshMonk registration framework10. Briefly, each image is cleaned to remove hair, ears, 

clothing, and other imaging artifacts. Five positioning landmarks are roughly indicated to 552 

establish image orientation. MeshMonk is then used to map a symmetric (relative to the sagittal 

plane) anthropometric mask of 7,160 landmarks onto the images and their reflections, which 554 

were constructed by changing the sign of the x coordinate64. This process results in a 

homologous configuration of spatially dense quasi-landmarks, allowing the image data from 556 

different individuals and camera systems to be standardized10,65.   

Although variation in asymmetric facial features is of interest, in this work we sought to 558 

only study variation in symmetric facial shape. Therefore, when discussing facial shape, we 

always refer to the symmetric quasi-landmark configuration. To obtain the symmetric 560 

configuration, the registered original and reflected images were aligned using Generalized 

Procrustes analysis (GPA) to eliminate differences in position, orientation, and centroid size of 562 

both quasi-landmark configurations66. The average of the original and reflected quasi-landmark 

configuration constitutes the symmetric component, while the difference between the two 564 

constitutes the asymmetric component.  

Outlier images, likely caused by image mapping errors, were identified using two 566 

approaches. First, as described in prior work9, outlier faces were identified by calculating Z-

scores from the Mahalanobis distance between the average face and each individual face. Faces 568 

with Z-scores higher than two were manually investigated. Second, a score was calculated that 

reflects the missing data present in the image due to holes, spikes, and other mesh artifacts, 570 

which can be caused by facial hair or errors during the preprocessing steps. Images with high 
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scores, indicating large gaps in the mesh, were also manually investigated. During the manual 572 

check, the images were either classified as images of poor quality and removed or were 

preprocessed and mapped again. 574 

 

Segmentation of facial shape 576 

To study global and local effects on facial variation, we performed a data-driven facial 

segmentation on the UK and US datasets combined, as described previously9. Before 578 

segmentation, images in the two datasets were separately adjusted for sex, age, age-squared, 

height, weight, facial size, the first four genomic ancestry axes, and the camera system, using a 580 

partial least-squares regression (PLSR, function plsregress from Matlab 2017b). After 

adjustment, facial segments were defined by grouping vertices that are strongly correlated using 582 

hierarchical spectral clustering. The strength of covariation between quasi-landmarks was 

defined using Escoufier’s RV coefficient67,68. The RV coefficient was then used to build a 584 

structural similarity matrix that defined the hierarchical construction of 63 facial segments, 

broken into five levels (Fig. S1A). The configurations of each segment were then independently 586 

subjected to a GPA, after which a PCA was performed in combination with parallel analysis to 

capture the major variance in the facial segments with fewer variables11,69.   588 

 

Genome-wide association meta-analyses 590 

The meta-analysis framework used consists of three steps: identification, verification, and 

meta-analysis (Fig. S2). For all analyses, the genotypes were coded additively based on the 592 

presence of the major allele. In the identification step, within each of the 63 facial segments, 

each SNP was associated with phenotypic variation using canonical correlation analysis (CCA, 594 
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canoncorr in Matlab 2017b). CCA is a multivariate analysis which extracts the linear 

combination of PCs that are maximally correlated with the SNP, which represent the direction of 596 

phenotypic effect in shape space (i.e. a phenotypic trait). The correlation is tested for 

significance based on Rao’s F-test approximation70 (right tail, one-sided test). In sum, the 598 

identification step identifies a phenotypic trait most correlated with each SNP and a p-value 

representing the strength of the correlation. In the verification step, the shape variables (PCs) of 600 

the non-identification dataset (i.e. the verification dataset) were projected onto the trait found in 

the identification stage, which returns a univariate variable (UniVar in Fig. S2). These univariate 602 

variables were then tested for genotype-phenotype associations in a standard linear regression 

with the SNP genotypes of the verification dataset as independent variables and the univariate 604 

trait projection score as the dependent variable (regstats in Matlab 2017b). This function employs 

a t-statistic and a one-sided p-value was obtained with the Student’s T cumulative distribution 606 

function71 (function tcdf in Matlab 2017b). Next, the identification p-value (from the CCA) and 

the verification p-value (from the univariate regression) were combined in a meta-analysis using 608 

Stouffer’s method12,13. This process was repeated, resulting in two meta-analysis p-values 

accompanied by two identified traits, per segment and per SNP: first using US in the 610 

identification stage and UK as verification (METAUS), then using UK in the identification stage 

and US as verification (METAUK).  612 

 

Sharing of genome-wide signal between facial segments 614 

To assess the extent to which genome-wide signals of association with facial variation 

were shared between a pair of facial segments, we computed Spearman correlation rho between 616 

the two vectors of approximately 6 million SNP association p-values (Fig. S3). This was done 
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separately for the METAUS and METAUK p-values, but the pairwise rho values were very similar 618 

between the two datasets, so we used the average rho from METAUS and METAUK. This 63 x 63 

matrix of correlations was visualized on top of the facial segmentation hierarchy to assess 620 

correlation both within and between facial quadrants (Fig. S4) and used to perform average-

linkage hierarchical clustering (Fig. S5). To exclude the possibility that the correlations observed 622 

were driven primarily by linkage disequilibrium (LD) with the 203 lead SNPs reported, we 

downloaded the locations of 1,725 approximately independent European LD blocks in the human 624 

genome72 and re-computed the between-segment correlations when excluding all SNPs in the 

same LD block as any of the 203 lead SNPs. We also computed the mean SNP association p-626 

value for each LD block and computed between-segment comparisons when using the average p-

value for each LD block. 628 

 

GWAS peak selection 630 

The analysis strategy yielded 126 p-values and 126 traits for every SNP, representing the 

63 segments by two permutations of identification and verification. Per SNP, the lowest p-value 632 

was selected, and we noted in which version of the meta-analysis (METAUS or METAUK; “Best 

Permutation”) and segment (“Best Segment”) this p-value occurred. The study-wide Bonferroni 634 

threshold (p ≤ 6.25 x 10-10) was calculated as 5 x 10-8 / (40 * 2), where 40 is the number of 

independent segments and two is the number of datasets used. The FigShare repository for this 636 

work provides information on all SNPs reaching suggestive significance (p = 5 x 10-7). For the 

initial peak selection, we chose to group SNPs below genome-wide threshold by genomic 638 

position and the SNP with the lowest p-value per genomic region was selected as the lead SNP. 

Within a 1 Mb window (± 500 kb) of the resulting lead SNPs, we further refined the selection by 640 
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performing a regression of slopes on the traits defined in the identification stage (in Best 

Permutation and Best Segment) to determine if adjacent SNPs showed consistent effects with the 642 

lead SNP. Adjacent SNPs were considered suggestively similar and belonging to the same signal 

as the lead SNP if the slope of the adjacent SNP trait and the lead SNP trait had a regression p-644 

value lower than 0.2. On the other hand, a p-value higher than 0.2 was considered to indicate a 

different phenotypic effect by the two SNPs and led to a definition of a new lead SNP within the 646 

1 Mb window. Peak selection on both genomic position and phenotypic effect resulted in 218 

lead SNPs. Of these 218 lead SNPs, 203 showed consistent phenotypic effects in the US and UK 648 

in the Best Segment (Table S3). The consistency of effect across datasets was also determined 

with a regression of the CCA traits found in the identification stage for each dataset, with results 650 

considered sufficiently similar if they were below a false discovery rate of p ≤ 3.66 x 10-2. The 

203 lead SNPs were mapped to 138 cytogenetic bands (i.e. loci) using the Ensembl GRCh37 652 

locations30. This method of peak selection is statistical in nature and is thus not perfect. For 

example, our inspection of the LocusZoom plots for the TBX15-WARS2 locus led to the 654 

identification of two clusters of SNPs, based on linkage disequilibrium, sharing the same 

genomic positions and affecting different facial segments, but separating these two clusters was 656 

not possible in our initial peak selection and they were considered a single signal until manual 

investigation. To more comprehensively identify all of the SNPs within a locus contributing to 658 

facial morphology, and the specific facial segments affected, fine mapping and other detailed 

investigations are needed. 660 

 

Gene annotation 662 
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Genes 500 kb up- and downstream of the lead SNPs were identified using the Table 

Browser of the UCSC Genome Browser73. The most likely candidate gene per lead SNP was 664 

identified based on a three-step system. First, we investigated whether any gene in the window 

was previously associated with craniofacial development or morphology through normal-range 666 

facial association studies, genetic disorders with facial dysmorphology as a symptom, or animal 

models. If this was not the case, we checked whether the gene was a known contributor to facial 668 

development based on the paper of Hooper and colleagues, who used transcriptome data from 

critical periods of mouse face formation to assess gene activity across facial development74. If 670 

both methods did not deliver a suitable candidate gene, the most likely candidate gene was 

selected based on the FUMA gene prioritization algorithm15.  672 

To investigate the potential roles of the identified lead SNPs, enrichment analyses using 

FUMA and GREAT16 were performed, using preset parameters (Fig. S7). We additionally 674 

investigated whether SNPs within ±250 kb of the lead SNPs were previously identified in a 

GWAS using the NCBI-EBI GWAS catalog75. All links with facial morphology from the 676 

literature, based on genomic region or gene, are provided in Table S3.  

 678 

Cell-type-specific enhancer enrichment 

Raw read (fastq) files of H3K27ac ChIP-seq from Prescott et al.21 (GSE70751; CNCCs), 680 

Najafova et al.76 (GSE82295; fetal osteoblast cell line, undifferentiated and differentiated), and 

Baumgart et al.77 (GSE89179; mesenchymal stem cell-derived osteoblasts) were downloaded and 682 

aligned to the human genome (hg19) using bowtie2 with default parameters. Aligned read 

(tagAlign) files of H3K27ac ChIP-seq from Wilderman et al.22 (GSE97752; embryonic 684 

craniofacial tissue) and the Roadmap Epigenomics Project78 
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(https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/; various fetal and 686 

adult tissues and cell-types) were downloaded. To compare H3K27ac signal in the vicinity of 

lead SNPs between cell-types in an unbiased manner, we divided the genome into 20 kb 688 

windows, and calculated H3K27ac reads per million from each aligned read (bam or tagAlign) 

file in each window using bedtools coverage. We then performed quantile normalization (using 690 

the normalize.quantiles function from the preprocessCore package) on the matrix of 154,613 

windows x 133 ChIP-seq datasets. We then selected the windows containing each of the 203 lead 692 

SNPs, 203 random SNPs matched for minor allele frequency and distance to the lead SNPs using 

SNPsnap79, or 619 Crohn’s disease-associated SNPs from the NCBI-EBI GWAS catalog75. 694 

Regions in the vicinity of SNPs associated with Crohn’s disease showed the highest H3K27ac 

signal in various immune cell types, serving as a positive control for both our approach and 696 

dataset (Fig. S8). K-means clustering was performed on the lead SNP H3K27ac signal with k = 

6, as we found that this value maximized the number of clusters without significantly impacting 698 

cluster quality, as measured by silhouette width (Fig. 3). 

 700 

Chromatin state association in CNCCs and embryonic craniofacial tissue 

Lists of human CNCC regulatory elements were annotated on the basis of multiple 702 

chromatin marks by Prescott et al.21 and embryonic craniofacial chromHMM states were 

computed in combined data from each Carnegie stage by Wilderman et al.22. For each set of 704 

regulatory regions, all regions within 20 kb of either lead SNPs or the above-described 203 

random SNPs were considered. Enrichment/depletion of each class of regulatory region for lead 706 

SNPs versus random SNPs was computed using Fisher’s exact test (Fig. 2B, C). 

 708 
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Cross peak association 

For each lead SNP, one or more traits (i.e. linear combination of PCs) were discovered 710 

during the identification step in both METAUS and METAUK permutations, depending on the 

number of segments in which the SNP showed a significant effect. Taking into account the 712 

polygenic and complex nature of facial shape, it is possible that a single SNP can be associated 

with more than one trait. To test this possibility, we executed a cross peak association (CPA), in 714 

which we performed a linear regression between all the lead SNPs and the facial phenotypic 

traits of each of the other lead SNPs, acting as a pool of possible secondary traits for association. 716 

For each lead SNP we took the union of segments in which the SNP had a significant result 

in METAUS and METAUK. We then averaged the traits from the METAUS and METAUK 718 

identification steps of each SNP in each selected segment. Accordingly, n = 1,405 traits were 

used as input in the CPA. Next, we projected all of our participants in both datasets onto each of 720 

these n = 1,405 traits using the same technique as used in the verification step of the GWAS, 

obtaining univariate variables that encapsulate the location of a participant relative to the other 722 

participants along the trait. These univariate variables, together with the genotypes at the lead 

SNPs, then served as input for linear regressions (regstats in Matlab 2017b) in which we tested 724 

for associations between each of the univariate variables and the genotypes at all lead SNPs 

excluding the lead SNP with which the trait was originally identified. We defined a CPA result 726 

as significant when the p-value was lower than a Bonferroni threshold of p ≤ 1.7617 x 10-7 

(overall tests performed = 283,810, resulting from 1,405 traits each associated with 202 SNPs; 728 

Figure S12). Across all facial segments, we identified 75 lead SNPs with significant associations 

with an additional trait besides the trait identified for that SNP in the CCA step. Of these, 36 730 

associations were present with phenotypes in multiple segments. For example, rs1572037 was 
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associated with three different facial traits in segments 23, 45, and 47, all of which are in 732 

quadrant II. Because of the hierarchical nature of the facial segmentation, it is possible that 

associations within the same quadrant are driven by the inheritance of similar phenotypes from 734 

an upper level of the hierarchy. Thus, we further refined our results to 13 SNPs with associations 

to multiple phenotypes across multiple quadrants (Table S5).  736 

 

Structural Equation Modeling 738 

To better define the cause-effect relationships between the significant genotypes and their 

collective phenotypic effects, both the US and UK participants were used as input for structural 740 

equation modeling (SEM) using the Lavaan package in R80. Mathematically, SEM analyses are a 

combination of a measurement model, which is constructed via confirmatory factor analysis, and 742 

a structural model, which is constructed using path analysis. In general, Lavaan outputs a best fit 

model that summarizes all genotype, phenotype, and covariate interactions, as well as a latent 744 

variable (aka “mask”), which is produced by a built-in dimension reduction that condenses the 

multidimensional facial phenotype from many principal components down to a single univariate 746 

phenotype. Parameters, which represent the interactions between the input variables, are 

generated by comparing the real covariance matrix between input variables and the estimated 748 

matrix created by numerical maximization, in our case carried out via maximum likelihood 

estimation. To maximize statistical power, Schreiber et al. recommend having at least 10 750 

participants per parameter81. For our analyses, separate SEM models were constructed for each 

segment using each of the 203 lead SNPs and the shape PCs for all 8,246 participants. Missing 752 

genotypes were substituted with the most common genotype based on frequency. Covariates of 

age, sex, height, weight and face size (i.e. centroid size) were also included as model input. Prior 754 
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to analysis, the distributions of these covariates were plotted and transformed, if necessary, to 

display near normal distributions. As genotypes are trichotomous, normality was not assessed.  756 

Since analyzing all variants and all principal components for each segment via a single 

SEM would require the modeling of thousands of interactions and require extensive 758 

computational resources, separate SEM models were initially constructed. First, for each 

segment, we separated the 203 variants into three groups and ran three SEM models on each of 760 

these groups, plus all covariates. If any of the three subset SEMs did not converge, we then re-

grouped the SNPs into four or more groupings and re-ran the subset SEM models on these 762 

groupings. This process was repeated until all subset SEMs converged and we had parameter 

estimates for all 203 SNPs. Next, for each segment, SNPs with p-values lower than 0.2 in the 764 

initial subset SEMs were collected and a unified SEM model for each segment was created and 

subsequently refined. If the unified SEM model did not converge, then this segment was 766 

discarded and no further analysis was performed. If all of the SNPs included in the unified model 

had p-values lower than 0.2, a cutoff selected to maintain model stability, no further changes 768 

were made, and we reported the model fit indices and parameter estimates. For segments where 

the unified SEM model produced SNP p-values greater than 0.2, the SNPs included in the SEM 770 

model were pruned by selecting SNPs with p < 0.05 and the model was re-run with this reduced 

set of SNPs. This process was repeated until all SNPs had p-values lower than 0.2. In the case of 772 

segments 7, 16, and 25, this iterative pruning process led to a rapidly declining model, so we 

elevated the SNP pruning p-value from 0.05 to 0.1 to account for instability in these models. 774 

Once the model refinement was complete (i.e. all SNPs had p < 0.2), we designated the SNPs 

with p < 0.05 as significantly contributing to variance within the segment. 776 
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In general, the number of model parameters generated by the final refined SEM model 

for each segment ranged between 92 and 217, depending on the number of shape PCs and SNPs 778 

included in each model. As 8,246 participants were used, this led to a range of 38-90 participants 

per parameter, which is well above recommendations81. Additional statistical power was lent to 780 

our models by having a large number of samples and input variables per latent factor82. Of the 63 

segments, the SEM models for 13 segments were discarded because they did not converge on a 782 

solution, which normally occurs when variants are non-informative for that particular segment or 

the variance of the segment is low. For each of the 50 SEM models where the refinement process 784 

was successful, we evaluated the fit of each model by instituting cutoffs on the following indices: 

Chi-square (p-value < 0.05), comparative fit index (CFI > 0.90), root mean square error of 786 

approximation (RMSEA < 0.08), and standardized root mean square residual (SRMR < 

0.08)83,84, which generally indicate the strength of how well the SEM models the data. 18 models 788 

passed all recommended model fit parameters and 32 models passed all but one of the fit indices, 

leading to the conclusion that the refined SEM models fit our data well. Final model fit indices 790 

and model parameter estimates are provided in Table S6. Reassuringly, for segments that are 

closely related in the segmentation hierarchy (i.e. segments 5, 11, 23, and 47) there is an average 792 

overlap of 46% of the variants meeting the p < 0.05 cutoff for significance, compared to 13.6% 

average overlap for non-hierarchically related segments (i.e. segments 5 and 6). The H3K27ac 794 

activity across all cell types was compared for significant variants both within and between 

segments using Spearman’s rho (Fig. S13).  796 

 

Epistasis Analysis 798 
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 We additionally used the univariate latent variable and the variants passing the p < 0.05 

significance cutoff from the final 50 refined SEM models (p < 0.1 for segments 7, 16, and 25) to 800 

assess whether interactions between genotypes increase or decrease the distribution of the latent 

variable. For each segment, the effect on the latent variable of all diplotype combinations of 802 

variants were assessed via a chi-square analysis in Plink 1.954. After correcting for multiple 

testing, four SNP pairs were significant at p < 0.05 (Table 1). For these four pairs, the nine 804 

diplotype combinations and their normalized phenotypic and marginal distributions were plotted 

(Fig. 5; Fig. S14) to assess the genotypic contribution to epistatic masking (i.e. the combination 806 

of two variants reduce the output phenotype) and boosting (i.e. the combination of two variants 

elevate the output phenotype). This was performed using the R packages Agricolae, Cowplot, 808 

ggplot2, ggpubr, gridExtra, gtable, grid, Hmisc, psych, and data.table85–94. For each diplotype 

combination, the marginal phenotypic medians of the singular genotypes were averaged in order 810 

to visualize the predicted phenotypic distribution that would occur if the two genotypes were 

acting independently (dashed blue lines). This average was compared to the medians of the 812 

combined diplotypes (solid black lines). Significance testing was performed using Mood’s 

Median test95 with one degree of freedom. Follow up data mining on the four epistatic SNP pairs 814 

was performed using VarElect96, StringDB97, and Encode98,99. 

 816 
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