Range reduction of the Oblong Rocksnail, *Leptoxis compacta*, shapes riverscape genetic patterns

4 Aaliyah D. Wright¹, Nicole L. Garrison², Ashantye' S. Williams³, Paul D. Johnson⁴, Nathan V.
5 Whelan^{2,3}

7	¹ Tuskegee	University,	Tuskegee.	Alabama.	USA
,	Tuskegee	Oniversity,	Tuskegee,	mabailia,	0011

- 8
 9 ²School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn
 10 University, Auburn, Alabama USA

³Southeast Conservation Genetics Lab, Warm Springs Fish Technology Center, United States
 Fish and Wildlife Service, Auburn, Alabama, USA

- --
- ⁴Alabama Aquatic Biodiversity Center, Alabama Department of Conservation and Natural
- 16 Resources, Marion, Alabama, USA.

- 19 Corresponding Authors:
- 20 Aaliyah D. Wright¹
- 21 Tuskegee University, Tuskegee, Alabama, USA
- 22 Email address: awright1863@tuskegee.edu
- 24 Nathan V. Whelan^{2,3}
- 25 203 Swingle Hall, Auburn, AL 36849, USA
- 26 Email address: nathan_whelan@fws.gov

46 Abstract

Many freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Leptoxis compacta does not display an isolation by distance pattern, contrasting patterns seen in many riverine taxa. Our findings also indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.

92 Introduction

Freshwater gastropods of the United States suffer one of the highest imperilment rates of 93 94 any taxonomic group in North America (Johnson et al., 2013). Despite being critical components of many freshwater ecosystems, freshwater gastropods are grossly understudied compared to 95 freshwater fish, mussels, and crayfish (Covich, Palmer & Crowl, 1999; Huryn, Benke & Ward, 96 97 1995; Strong et al., 2008). This creates a situation where desperately needed conservation efforts 98 are hindered by a lack of information (Johnson et al., 2013). For example, data on the current range of many freshwater gastropods is lacking (Lydeard et al., 2004), but conservation 99 assessments and effective management plans require detailed historical and contemporary range 100 data (Potter & Thomas, 1983; USFWS, 2018). Population genetics data on freshwater gastropods 101 are also needed to inform management efforts and provide basic understanding of freshwater 102 ecosystems (Lysne et al., 2008). 103

104 The freshwater gastropod family Pleuroceridae is one group that suffers from a high imperilment rate (79%) and little research attention (Brown, Lang & Perez, 2008; Johnson et al., 105 2013; Perez & Minton, 2008). Pleurocerids are found east of the Rocky Mountains in North 106 107 America, with most of their diversity concentrated in the southeastern United States (Lydeard & 108 Mayden, 1995; Strong & Köhler, 2009). Pleurocerids lack a highly vagile veliger larval stage seen in many aquatic gastropod groups, and they are thought to move large distances only when 109 washed downstream (Whelan et al., 2019; Whelan, Johnson & Harris, 2015). Only one study has 110 been published on landscape and conservation genetics of pleurocerids, and that study focused 111 exclusively on a single species, Leptoxis ampla (Whelan et al., 2019). Many freshwater species, 112 113 including L. ampla, display common riverscape genetic patterns such as increased genetic diversity in downstream populations and isolation by distance (Hughes, Schmidt & Finn, 2009; 114 Paz-Vinas et al., 2015). However, few studies have tested for such patterns in riverine species 115 116 that have undergone drastic range reduction, and no such study has been done for a range restricted pleurocerid. 117

One pleurocerid in need of more research is the Oblong Rocksnail, Leptoxis compacta 118 (Figs. 1,2). This species is a narrow range endemic known historically from the middle Cahaba 119 River and a single tributary in central Alabama, USA (Fig. 2; Goodrich, 1922). Until recently, 120 Leptoxis compacta was considered extinct as it had not been collected, or at least identified 121 122 correctly, from 1935 to 2011 (Goodrich, 1941; Johnson et al., 2006; Whelan, Johnson & Harris, 2012). As early as 1941, the decline of L. compacta was documented (Goodrich, 1941), and the 123 species now occupies less than 5% of its historical range (Fig. 2; Whelan, Johnson & Harris, 124 125 2012). As a narrow range endemic with few historical collections, little is known about the species aside from recent survey efforts and limited life history data (Whelan, Johnson & Harris, 126 2012). Yet, the rediscovery of L. compacta in 2011 resulted in an emergency petition to list the 127 species under the US Endangered Species Act (Kurth, 2017). For management agencies to assess 128 the status of L. compacta and design effective conservation plans, detailed survey work and 129 population genetics research are required. Modern population genomic tools such as restriction 130 site associated DNA sequencing (RAD-seq) can provide data that will enhance L. compacta 131 management options (Andrews et al., 2016). As a result of having a narrow range along a single 132 river path, an effective recovery strategy for L. compacta will likely require reintroduction 133 efforts to previously occupied habitat(s). Maintaining genetic diversity of imperiled species is 134 important for mitigating extinction risk (Frankham, 2005; Frankham, 2010), and reintroduction 135 efforts will require detailed population genetics data to inform broodstock selection for 136 maximizing genetic diversity of captively reared offspring. 137

138 In this study, we generated a dataset of thousands of single nucleotide polymorphisms

(SNPs) to answer questions about conservation and riverscape genetics of *L. compacta*. Given

140 the drastic range decline suffered by *L. compacta*, we set out to test the following hypotheses: 1)

141 *Leptoxis compacta* has undergone a severe genetic bottleneck and 2) genetic diversity of *L*.

142 *compacta* is considerably lower than *L. ampla*, a sympatric and wider ranging species. We also

examined how genetic diversity of *L. compacta* varies across its current range, specifically

- 144 assessing whether broad patterns seen in many other riverine taxa like isolation by distance and 145 strong genetic structure are seen in *L. compacta*.
- 145 strong g

147 Materials & Methods

148 Sample Collection

Leptoxis compacta was collected during two trips to the Cahaba River in June 2018 and
 June 2019. We performed survey work at four sites, and all sites except Cahaba River above
 Shades Creek were outside the previously documented contemporary range of *L. compacta* (Fig.
 Whelan et al. 2012). At each location, individuals were collected by hand and identified in the
 field. Despite being a narrow range endemic that has undergone distributional decline, *L. compacta* was locally abundant where found. Based on qualitative observations, we sampled less

than 1% of the population, making our sampling negligible to species survival. Twenty

specimens from each site were transported live to the lab, sacrificed following Fukuda et al.,

157 (2008), and placed in 96-100% ethanol until tissue clips could be taken. Specimens were

collected under an Alabama Department of Conservation and Natural Resources Educational

Scientific Collections Permit (License #2019100990068680) or as an agent of the state (P.D.

Johnson). All shells have been cataloged separately to correspond to associated molecular data

and deposited at the Auburn University Museum of Natural History (AUMNH 45652-45690;
 Table 1, Supplementary Table 1).

162 163

164 *Molecular data generation*

165 Tissue clips from the foot of 20 individuals per collection site were taken and subjected 166 to a standard proteinase K digestion. DNA was extracted with the Qiagen DNeasy Plant Mini Kit 167 with a minor modification to allow for tissue digested with proteinase K. We used a plant kit 168 because it works well on freshwater gastropods that produce large amounts of mucus 169 polysaccharides (Whelan et al., 2019). The integrity of whole genomic DNA was checked on a 170 1% agarose gel and quantified with a Qubit DNA assay. Extracted DNA was standardized to 120 171 ng/µL for 2bRAD library prep.

A reduced representation genomic library was generated for genotyping using the AlfI 172 enzyme and the 2bRAD library prep protocol of Wang et al. (2012). This RAD-seq approach 173 174 uses a type IIB restriction enzyme that has two recognition sites. AlfI recognizes two sites separated by six base pairs and makes two cuts that each have a one base pair overhang 12 base 175 pairs from the 5' and 3' ends of the restriction sites. Following Whelan et al. (2019), we did a 176 1/16th genomic reduction by using adaptors in the ligation step that had an "NC" overhang, thus 177 only binding to AlfI RAD-loci that had a G base pair at the first base pair of each restriction cut 178 overhang. For more details, see Wang et al. (2012) and the lab protocol on the FigShare 179 repository for this study (DOI: 10.6084/m9.figshare.12014619). 180

All samples were dual-indexed for pooling. Sequencing occurred in multiple batches. The
 first batch had 48 *L. compacta* samples pooled in equimolar concentrations and sequenced on a
 single lane. The other individuals were pooled in equimolar concentrations with samples from

184 projects on conservation genomics of other pleurocerid species, and 87 individuals were

sequenced per HiSeq 4000 lane. Although batch effects in RADseq data have been recently

186 noted in studies that used different read lengths among sequencing runs (Leigh, Lischer &

187 Keller, 2018) and in species introgression studies (Lambert et al., 2019), such issues were not

relevant to our sequencing design or study objectives. Nevertheless, we took steps to limit

potential batch effects by implementing strict filtering parameters during dataset assembly (see
 below). Pooled libraries were sequenced on an Illumina HiSeq 4000 with 1 X 75bp chemistry at

191 University of Oregon Genomics and Cell Characterization Core Facility.

Raw Illumina reads were demultiplexed with the STACKS 1.48 (Catchen et al., 2013)
 module *process_radtags*, allowing for one mismatch per barcode. Demultiplexed reads were
 quality filtered with the script QualFilterFastq.pl (http://github.com/Eli-

195 Meyer/sequence_processing) for any read that had five or more base pairs with Phred quality

196 scores less than 20. Reads were processed with scripts from SHRiMP 2.23 (Rumble et al., 2009) 197 and subsequently trimmed to AlfI RAD-loci with the script AlfIExtract.pl (http://github.com/Eli-

198 <u>Meyer/2bRAD_utilities</u>). As this step removes any sequence that is not part of the RAD-locus, 199 adaptor sequences and non-target sequences are removed from the sequencing reads. RAD-loci,

defined as the stretch of DNA cut by the AlfI enzyme, were assembled with the STACKS 1.48
 pipeline *denovo_map.pl* as no reference genome is available for *L. compacta*. For *denovo_map.pl* parameters, we set minimum stack depth to five (-m 5), distance allowed between stacks to three

(-M 3), and distance between catalog RAD-loci to two (-n 2). These parameters were determined
 to be most appropriate for our data following Paris et al. (2017). All other *denovo_map.pl* parameters were set to defaults.

After assembly, RAD-loci were filtered for missing data using the STACKS program *populations*. In order to pass filtering steps, a RAD-locus had to be present in 75% of individuals from any given collection site and also present at three collection sites. RAD-loci that had a minimum minor allele frequency of less than 2.5% or heterozygosity higher than 50% were removed to limit the influence of paralogy and misassembly on final datasets. Sequencing coverage of RAD-loci with SNPs was measured with veftools (Jombart & Ahmed, 2011).

212 Kinship coefficients among individuals were inferred with KING (Manichaikul et al., 2010).

Files output by STACKS were formatted for KING with PLINK 1.9 (Chang et al., 2015), and pairwise kinship coefficients were calculated with the KING flag "--kinship". No individuals

215 were determined to be closely related by KING so no further dataset filtering was done.

After filtering, a dataset that included all SNPs per RAD-locus and a dataset with only one random SNP per RAD-locus were generated. We assume that RAD-loci are unlinked and that the one SNP per RAD-locus dataset had zero linkage disequilibrium. Analyses employed the one SNP per RAD-locus dataset, unless otherwise noted.

220

221 *Population genetics analyses*

Average observed heterozygosity (H_o), expected heterozygosity (H_e), nucleotide diversity (II), and F_{IS} at each collection site were calculated by *populations*. The number of private alleles at each site was also reported by *populations*. Average allelic richness (A_r) was calculated with the R (R Core Team, 2020) package diveRsity (Keenan et al., 2013). An analysis of molecular variance (AMOVA; Excoffier, Smouse & Quattro, 1992) was done with the R packages poppr (Kamvar, Tabima & Grünwald, 2014) to test genetic structure among collection sites. AMOVA was implemented with the function "poppr.amova" using the ade4 method (Dray & Dufour,

229 2007) and 10,000 permutations.

We also tested for a pattern of isolation by distance by measuring the correlation between 230 pairwise F_{ST} values and geographical distance between collection sites. Pairwise F_{ST} values were 231 calculated using the Weir and Cockerham (1984) method with the R package hierfstat (Goudet, 232 233 2005). Stream distance was measured in Google Earth by tracing paths between collection sites along the Cahaba River (see Table 2). River distance was used, rather than straight line distances, 234 because migration over land is impossible for gill breathing pleurocerids. A Mantel test was 235 performed with the R package ade4 (Dray & Dufour, 2007), and significance was tested with 236 1,000 permutations. However, Mantel tests have been criticized as a method for testing isolation 237 by distance (Legendre, Fortin & Borcard, 2015; Meirmans, 2015), so we also performed a 238 multiple regression on distance matrices with 1,000 permutations using the R package ecodist 239 and its MRM function (Goslee & Urban, 2007). In addition to a pattern of isolation by distance, 240 past studies have shown that many freshwater organisms, including pleurocerids, display a 241 pattern of increased genetic diversity in more downstream populations (Paz-Vinas et al., 2015; 242 Whelan et al., 2019). Therefore, to better assess riverscape genetic patterns of L. compacta, we 243 performed linear regression of distance from the most downstream site against H_{0} , H_{e} , A_{r} , and Π . 244 Linear regressions were done in R. 245 We examined clustering of L. compacta genetic data with discriminant analysis of 246 principal components (DAPC). We used the multiple SNPs per RAD-locus dataset and the R 247 package adegenet (Jombart & Ahmed, 2011) to perform DAPC. We first used the adegenet 248 function "find.clusters" testing up to 25 clusters and using Bayesian information criteria (BIC) to 249 identify the best-fit number of clusters for our data. Using the number of clusters with the lowest 250 BIC value, we performed a DAPC with the adegenet function "dapc" and plotted the results in R. 251 We inferred genomic admixture of L. compacta individuals with ADMIXTURE 1.3 252

(Shringarpure et al., 2016). ADMIXTURE assumes zero linkage disequilibrium, so we used the
one SNP per RAD-locus dataset. ADMIXTURE analyses were run with the AdmixPipe pipeline
(Mussmann et al., 2020). To determine the best-fit number of clusters (K) for our data, K values
from 1 to 5 were assessed with 20% cross-validation. Twenty replicates of ADMIXTURE were
run at each K, and the best-fit K was determined as the value that had the lowest average CV
score across replicates. ADMIXTURE results were visualized with Clumpak (Kopelman et al., 2015).

Genomic co-ancestry among individuals was also assessed with fineRADstructure 260 (Malinsky et al., 2018). Unlike ADMIXTURE, fineRADstructure can use linked SNPs and 261 provides additional information on individual genomic background. Thus, the multiple SNPs per 262 RAD-locus dataset was used for fineRADstructure analyses. First, a co-ancestry matrix was 263 inferred with the script RADpainter. Subsequently, clustering was done with the Markov chain 264 Monte Carlo method of fineRADstructure, running for 500,000 generations and sampling every 265 1,000 generations; the first 200,000 generations were discarded as burn-in (non-default 266 parameters: -x 200000 -y 300000 -z 1000). We also inferred a tree for visualization with 267 fineRADstructure using the tree-building algorithm of Lawson et al. (2012) with 10,000 attempts 268 (non-default parameters: -m T -x 10000). fineRADstructure results were plotted with R scripts 269 included in the fineRADstructure package. 270

271

272 *Code and data availability*

All bash and R scripts used for processing and analyzing data are available at
github.com/nathanwhelan. Demultiplexed raw Illumina reads have been uploaded to NCBI under
BioProject PRJNA631794. Assembled datasets in various file formats (e.g., vcf, genepop) and

the 2bRAD library prep protocol are available on FigShare (DOI:

277 10.6084/m9.figshare.12014619).

278

279 **Results**

280 Sample Collection

During survey work, we collected *L. compacta* from Cahaba River at old Marvel slab 281 upstream to Cahaba River at Booth's Ford (Fig. 3). All sites except Cahaba River at Shades 282 Creek are sites where L. compacta was not found during survey work over the least 30 years. 283 284 Our collections represent a 1.83 km downstream range extension and a 4.76 km upstream extension compared to the previously documented contemporary range of L. compacta (Whelan, 285 Johnson & Harris, 2012). While this study was ongoing, 3 putative L. compacta individuals were 286 collected at Cahaba River at Belle Ellen Shoals (Fig. 3) during a general mollusk survey 287 (Johnson, 2019). However, species identification was uncertain and L. compacta appeared 288 exceedingly rare. Therefore, individuals from Cahaba River at Belle Ellen Shoals were not 289 included in our analyses, and we consider this record unconfirmed without additional positive 290 291 survey results.

292

293 Molecular data and population genetics

DNA yields for two individuals were too low for library preparation so only 19 294 individuals were sequenced from Cahaba River at old Marvel Slab and Cahaba River at Booth's 295 Ford. The number of demultiplexed raw reads per individuals varied from 930,062-10,146,649 296 297 (mean = 4.836.812). Much of the variation in raw reads can be attributed to whether the 298 individual was sequenced on a HiSeq 4000 lane with 48 or 87 samples. Aside from raw read number, we saw no evidence of batch affects like individuals from one sequencing run all 299 300 clustering together in analyses (see below). After initial raw-read filtering, the number of reads that passed quality filtering steps ranged from 865,314-9,838,187 (mean = 4,632,510). Assembly 301 with the STACKS denovo map pipeline resulted in 105,542 RAD-loci. Filtering with 302 populations, including removal of 4,009 invariant RAD-loci that passed all filters, resulted in a 303 dataset with 4,962 RAD-loci with at least one SNP. Per individual average sequencing coverage 304 of filtered RAD-loci with at least one SNP, excluding missing genotypes, ranged from 31.7-305 306 343.2. Average sequencing coverage across variable RAD-loci, excluding missing genotypes, was 163.7. Kinship coefficients inferred with KING indicated that no individuals were closely 307 related (i.e., half or full siblings). 308

309 The number of private alleles at each site ranged from 28-262 (Table 1). H_o at each collection site ranged from 0.0963-0.1568, and He ranged from 0.0980 to 0.1801 (Table 1). At 310 each site, H_o was lower than H_e, except at Cahaba River at canoe launch where H_o was 0.001 311 greater than H_e (Table 1). The difference between H_o and H_e was largest at Cahaba River above 312 Shade Creek and Cahaba River at Booth's Ford. Ar and Π ranged from 1.4511-1.8241 and 313 0.1010-0.1829, respectively (Table 1). F_{IS} values ranged from 0.0134-0.1934 (Table 1), with the 314 highest values being at Cahaba River above Shades Creek and Cahaba River at Booth's Ford. 315 Overall, genetic diversity was greatest at the most upstream site. Cahaba River at Booth's Ford, 316

and lowest at the most downstream site, Cahaba River at old Marvel slab. All linear regressions of diversity statistics vs distance from the most downstream site were non-significant ($p \ge$ 0.169).

Pairwise F_{ST} values among sites ranged from 0.0-0.055 (Table 2). We found no evidence of an isolation by distance pattern among sites (Mantel test, p = 0.843; multiple regression, p = 0.428). According to the AMOVA, significant genetic structure was present among collection
sites (p = 0.004), but only 4.16% of variation was explained by collection site. In contrast, 81.8%
of genetic variation was explained by within individual variation, further indicating high
amounts of gene flow among collection sites.

DAPC indicated two genetic clusters were present in our data. Data were explained by a 326 single discriminate function, and results are therefore presented as a frequency histogram (Fig. 327 4). ADMIXTURE analyses indicated that genetic diversity from two ancestral populations were 328 present in our data (K = 2). Most individuals from across the range of L. compacta had a 329 genomic admixture profile that was dominated by a genomic background from a single ancestral 330 population, likely indicating that overall genomic diversity has been lost across the range of L. 331 compacta. Nevertheless, 14 individuals had varying levels of admixture with a second ancestral 332 population (Fig. 3). fineRADstructure analyses corroborated ADMIXTURE analyses as two 333 semi-distinct groupings were recovered by fineRADstructure (Fig. 5, Supplementary Fig. 1). 334 fineRADstructure groupings did not correspond to collection site or any other obvious variable, 335 indicating gene flow among collection sites. Notably, six individuals with comparably high co-336 ancestry proportions (upper right of co-ancestry matrix in Fig. 5) correspond to individuals in 337 ADMIXTURE analyses with a large proportion of genetic background from the less common 338 ancestral population (represented by orange in Fig. 3). 339

341 **Discussion**

340

Our findings provide reasons to be optimistic about the survival of L. compacta. Despite 342 a drastic range reduction in the last 120 years, we found *L. compacta* more widespread than 343 documented in other recent surveys. Furthermore, the remaining sites where L. compacta occurs 344 retain a relatively high amount of genetic diversity. Across its range, L. compacta had similar 345 346 levels of H_0 and Π to L. ampla, a species that is currently found across the historical range of L. compacta and in some tributaries like Shades Creek and Little Cahaba River (Whelan et al., 347 2019). The lowest genetic diversity values observed for L. compacta were greater than the lowest 348 values determined for L. ampla. This observation rejects one of our main hypotheses that L. 349 compacta would have lower genetic diversity than the more widespread L. ampla. Nevertheless, 350 L. compacta is restricted to a 9.2 km stretch of river, and L. compacta has likely lost range-wide 351 352 genetic diversity. This probable loss of evolutionary potential could be detrimental to the longterm survival of the species. 353

Observed L. compacta genetic patterns often conflicted with predictions made by broad-354 355 scale hypotheses about riverscape genetics. For example, we did not see an isolation by distance pattern, which is common among freshwater taxa (Hughes, Schmidt & Finn, 2009) and was 356 documented in L. ampla (Whelan et al., 2019). We also did not uncover a pattern of increased 357 genetic diversity in downstream populations, despite such a pattern being present in numerous 358 plants and animals (Paz-Vinas et al., 2015), including L. ampla (Whelan et al., 2019). Patterns 359 determined for L. compacta are likely explained by a drastic range reduction and the limited 360 scale at which we performed the current study. That is, gene flow across the 9.2 km 361 contemporary range of *L. compacta* explains observed patterns of riverscape genetic diversity. 362

363

364 *Genetic diversity across a small landscape*

The two most distant collection sites in this study were separated by a smaller distance (9.2 km) than all but two sites sampled for *L. ampla* in a previous study (Whelan et al., 2019). Therefore, it is difficult to make direct comparisons between genetic patterns of *L. ampla* and *L.*

compacta. However, we can leverage differences in geographical scale between the two studies 368 to make inferences about fine-scale versus long-distance genetic patterns in pleurocerids. F_{ST} 369 values among L. compacta collection sites (Table 2) were much lower than values determined 370 371 for populations of *L. ampla* (F_{ST} 0.377-0.773; Whelan et al. 2019). Furthermore, even though AMOVA indicated significant genetic structure among L. compacta collection sites, the small 372 amount of genetic variation that is explained by collection site probably limits its biological 373 relevance. Overall, these data indicate that pleurocerid riverscape genetic patterns across small 374 375 distances will not always follow common patterns such as isolation by distance and increased genetic diversity at more downstream collection sites. This is likely attributable to gene flow and 376 random drift that prevent the establishment of genetic patterns typically seen across more 377 geographically separated collection sites. From a historical standpoint, we hypothesize that L. 378 compacta previously displayed an isolation by distance pattern across its range, similar to the 379 patterns determined for L. ampla (Whelan et al., 2019). We think this scenario is likely given 380 limited dispersal abilities of pleurocerids and patterns established for L. ampla, a species that 381 retains a much larger portion of its historic range in the Cahaba River drainage than L. compacta. 382 Whether or not there was a similar historical pattern of increased genetic diversity in downstream 383 384 populations of L. compacta is more difficult to infer, as such a pattern may not be influenced solely by dispersal ability. 385

Given the well-documented decline of L. compacta, a small number of individuals with a 386 387 less common genomic background suggests that the species has lost genetic diversity through bottleneck and drift. Patterns seen in DAPC, ADMIXTURE, and fineRADstructure were not 388 driven by geography as individuals with the less common genomic background were not found 389 390 in adjacent sites (orange in DAPC and ADMIXTURE plots and upper right corner of fineRADstructure plot; Figs. 3-5, Supplementary Fig. 1). Although individuals with some 391 admixture from the uncommon ancestral population may be present in unsampled individuals at 392 393 Cahaba River at old Marvel slab and Cahaba River at canoe launch, they would be uncommon. Recent migration is an unlikely explanation of observed co-ancestry profiles as it would indicate 394 that a sizeable population of L. compacta exists elsewhere in the Cahaba River. The most likely 395 396 hypothesis for explaining observed clustering and co-ancestry profiles (Figs. 3-5) is a genetic bottleneck resulting from species decline in the 20th century. In this scenario, L. compacta was 397 genetically diverse across its historical range prior to decline, but range contraction caused a 398 considerable loss of genetic diversity. In turn, genetic drift resulted in the observed coancestry 399 pattern of one ancestral population being more common in extant individuals (Figs. 3, 5). 400

Broadly, genetic structure across the current range of L. compacta can be characterized 401 by a single population with some subpopulation structure at Cahaba River above Shades Creek 402 and Cahaba River at Booth's Ford (Figs. 3-5; Supplementary Figure 1). The subpopulation 403 structure appears to be causing a Wahlund effect (Whalund, 1928). That is, the Wahlund effect 404 405 predicts the lower H₀ values compared to H_e values and the higher F_{IS} values seen in collection sites with inferred subpopulation structure (Fig. 3; Table 2). An alternative explanation for the 406 observed pattern of F_{IS} and H_e is null alleles. However, null alleles are unlikely as they would 407 increase pairwise F_{ST} values (De Meeûs, 2018) that are uniformly low across populations (Table 408 2). Despite the putative presence of a Wahlund effect, Cahaba River above Shades Creek and 409 Cahaba River at Booth's Ford have greater genomic diversity than the two other sites (Table 1; 410 Figs. 3-5). These sites may have better habitat suitability than the other two, allowing for L. 411 *compacta* to persist with greater genetic diversity as the species declined in the 20th century. 412

414 *Conservation of* Leptoxis compacta

Leptoxis compacta suffered a massive decline during the 20th century, a period of intense 415 mining, forestry, and urban development in the Cahaba River drainage (Onorato, Angus & 416 417 Marion, 2000; Pitt, 2000; Shepard et al., 1994; Tolley-Jordan, Huryn & Bogan, 2015). The decline was so drastic that L. compacta was considered extinct less than a decade ago. 418 Conservation efforts are needed to ensure the long-term survival of L. compacta as the species is 419 420 at risk from both chronic habitat degradation and one-time catastrophic events. Two potential 421 management strategies for *L. compacta* are habitat restoration and reintroduction with captively 422 reared individuals.

In this study, we report an 8.26 km known range extension for L. compacta. One site, 423 Cahaba River at old Marvel Slab, was previously the focus of intense habitat restoration through 424 the removal of a low-level dam (Johnson et al. 2013). The site may have also benefited from 425 improved water quality in Shades Creek (ADEM, 2007; ADEM, 2012) as the site is just below 426 its confluence with the Cahaba River. Since removal of the low-level dam, increases in fish 427 abundance and diversity have been reported (Bennett et al., 2015). Considering L. compacta was 428 429 not found at this site by Whelan, Johnson & Harris (2012), we think habitat either improved from a point where L. compacta could not survive or from a point of considerably lower carrying 430 capacity. As the only undammed, major river in the southeastern United States, the Cahaba River 431 is much less modified than most other systems in the southeast. Our findings suggest that 432 imperiled gastropods will benefit from water quality and habitat improvements even in relatively 433 "pristine" river systems. Improving habitat, or identifying suitable habitat, will be a necessary 434 starting point for L. compacta reintroduction efforts. 435

In addition to having a small range, L. compacta only exists along a single river path. 436 This means that one catastrophic event such as a massive point source pollution event above 437 Cahaba River at Booth's Ford could result in extinction of L. compacta. Such an event is not 438 439 merely a hypothetical. In 2016, a gasoline pipeline spill came perilously close to the Cahaba River (Pillion, 2016). To mitigate the risks of a single catastrophic event, reintroduction efforts 440 should emphasize range expansion outside the mainstem Cahaba River. Of course, reintroduction 441 442 efforts also must be limited by the historical range of any given species. Thus, lower Buck Creek is potentially an ideal reintroduction site if habitat quality is sufficient for the persistence of L. 443 compacta. Once a suitable reintroduction site is chosen, managers will need to choose a 444 broodstock site. This decision should be informed with genetic data. The absence of an isolation 445 by distance effect across the current range of L. compacta indicates that managers do not need to 446 prioritize potential broodstock sites based on whether they are geographically proximate to 447 reintroduction sites. Rather, sites with high genetic diversity and ease of access should be 448 prioritized for broodstock. Therefore, the Cahaba River above Shades Creek is likely an ideal 449 broodstock location. Moreover, L. compacta is easy to sample and relatively easy to distinguish 450 451 from other sympatric species at Cahaba River above Shades Creek, making it ideal from both a genetic and sampling standpoint. 452

453

454 **Conclusions**

Even though *L. compacta* was considered extinct less than a decade ago, we now know more about this species than most other freshwater gastropods. This is helpful for conservation of *L. compacta* as the biggest barrier to effective management strategies for most freshwater gastropods is a lack of data. Future research efforts should focus on differences in dispersal dynamics among pleurocerids and causes of differences in riverscape genetic patterns seen between *L. ampla* and *L. compacta*. As more population genomic data becomes available for
 pleurocerids, we will be better suited to develop strategies to conserve these critically important
 components of many North American riverine ecosystems.

463

464 Acknowledgements

We thank Lauren Allred, Jecca Shumante, and Living River: A Retreat on the Cahaba for
providing access to field sites. Haley Dutton (Auburn University) assisted in the field. Jeffrey
Garner (Alabama Department of Conservation and Natural Resources), Matthew Galaska

- 468 (University of Washington), Kenneth Halanych (Auburn University) and Katherine Bockrath
- 469 (U.S Fish and Wildlife Service) provided advice on multiple components of this work. Rodolfo
- 470 Jaffé, Brian Hand, and an anonymous reviewer provided comments that improved the
- 471 manuscript. The findings and conclusions in this article are those of the authors and do not
- 472 necessarily represent the views of the U.S. Fish and Wildlife Service.
- 473

474 Funding

- This was work funded by a reverted Section 6 grant from Alabama Department of Conservation
- and Natural Resources and by United States Fish and Wildlife Service. This study was also
- 477 supported in part by NSF grant DBI-1658694, the Alabama Agricultural Experiment Station, and
- the Hatch program of the National Institute of Food and Agriculture, U.S. Department of
- 479 Agriculture. This work was also made possible in part by a grant of high-performance computing
- 480 resources and technical support from the Alabama Supercomputer Authority.
- 481

482 **References**

- ADEM. 2007. 2007 rivers and streams monitoring summary report: Shades Creek at Jefferson
 County Road 6. Available at
 <u>http://adem.alabama.gov/programs/water/wqsurvey/table/2007/2007ShadesCk.pdf</u>
 (accessed 15 April 2020)
- ADEM. 2012. 2012 rivers and streams monitoring summary report: Shades Creek at Parkwood
 Road in Jefferson County. Available at
- 489 <u>http://adem.alabama.gov/programs/water/wqsurvey/table/2012/2012ShadesCk.pdf</u>
 490 (accessed 15 April 2020)
- Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. 2016. Harnessing the power of
 RADseq for ecological and evolutionary genomics. *Nature Reviews Genetics* 17:81-92.
 DOI: i:10.1038/nrg.2015.28.
- Bennett MG, Howell JH, Kuhajda BR, Freeman PL. 2015. New upstream records for fishes
 following dam removal in the Cahaba River, Alabama. Southeastern Fishes Council *Proceedings* 55:50-61. DOI:
- Brown KM, Lang B, Perez KE. 2008. The conservation ecology of North American pleurocerid
 and hydrobiid gastropods. *Journal of the North American Benthological Society* 27:484499 495. DOI: 10.1899/07-062.1.
- Catchen JM, Hohenlohe P, Bassham S, Amores A, Cresko W. 2013. Stacks: an analysis tool set
 for population genomics. *Molecular Ecology* 22:3124-3140. DOI: 10.1111/mec.12354.
- Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. 2015. Second-generation
 PLINK: rising to the challenge of larger and richers datasets. *GigaScience* 4:7. DOI:
 10.1186/s13742-015-0047-8.

505	Covich AP, Palmer MA, Crowl TA. 1999. The role of benthic invertebrate species in freshwater
506	ecosystems: zoobenthic species influence energy flows and nutrient cycling. <i>Bioscience</i>
507	49:119-127. DOI: 10.2307/1313537.
508	De Meeûs T. 2018. Revisiting F _{IS} , F _{ST} , Wahlund effecs, and null alleles. <i>Journal of Heredity</i>
509	108:446-456. DOI: 10.1093/jhered/esx106.
510	Dray S, Dufour AB. 2007. The ade4 package: implementing the duality diagram for ecologists.
511	Journal of Statistical Software 22:1-20. DOI: 10.18637/jss.v022.i04.
512	Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from matrix
513	distances among DNA haplotypes: application to human mitochondrial DNA restriction
514	data. <i>Genetics</i> 131:479-491. DOI:
515	Frankham R. 2005. Genetics and extinction. <i>Biological Conservation</i> 126:131-140. DOI:
516	10.1016/j.biocon.2005.05.002.
517	Frankham R. 2010. Challenges and opportunities of genetic approaches to biological
518	conservation. <i>Biological Conservation</i> 143:1919-1927. DOI:
519	10.1016/j.biocon.2010.05.011.
520	Fukuda H, Haga T, Tatara Y. 2008. <i>Niku-nuki</i> : a useful method for anatomical and DNA studies
520	on shell-bearing molluses. Zoosymposia 1:15-38. DOI: 10.11646/zoosymposia.1.1.5.
522	Goodrich C. 1922. The Anculosae of the Alabama River drainage. University of Michigan
523	Museum of Zoology Miscellaneous Publication No 7:63.
523 524	Goodrich C. 1941. Distribution of the gastropods of the Cahaba River, Alabama. <i>Occasional</i>
525	Papers of the Museum of Zoology 426:1-30.
526	Goslee SC, Urban DL. 2007. The ecodist package for dissimilarity-based analysis of ecological
527	data. Journal of Statistical Software 22:1-17. DOI: 10.18637/jss.v022.i07.
528	Goudet J. 2005. HIERFSTAT, a package for R to compute and test hierarchical <i>F</i> -statistics.
529	Molecular Ecology Resources 5:184-186. DOI: 10.1111/j.1471-8286.2004.00828.x.
530	Hughes JM, Schmidt DJ, Finn DS. 2009. Genes in streams: using DNA to understand the
531	movement of freshwater fauna and their riverine habitat. <i>Bioscience</i> 59:573-583. DOI:
532	10.1525/bio.2009.59.7.8.
533	Huryn AD, Benke AC, Ward GM. 1995. Direct and indirect effects of geology on the
534	distribution, biomass, and production of the freshwater snail Elimia. <i>Journal of the North</i>
535	American Benthological Society 14:519-534. DOI: 10.2307/1467538.
536	Johnson PD. 2019. Results of AABC freshwater mollusk survery Cahaba River historic shoal at
537	Belle Ellen Bibb County, AL-7 May 2019. Report Submitted to Alabama Department of
538	Conservation and Natural Resources. Marion, Alabama. 6 pp.
539	Johnson PD, Bogan AE, Brown KM, Burkhead NM, Cordeiro JR, Garner JT, Hartfield PD,
540	Lepitzki DAW, Mackie GL, Pip E, Tarpley TA, Tiemann JS, Whelan NV, Strong EE.
540 541	2013. Conservation status of freshwater gastropods of Canada and the United States.
542	<i>Fisheries</i> 38:247-282. DOI: 10.1080/03632415.2013.785396.
542 543	Johnson PD, Sides JD, McGregor SW, Ahlstedt SA, Garner JT, Butler RS, Novak SF. 2006.
544	Inventory of freshwater mollusks in the Cahaba River Basin, Alabama. Submitted to the
545	Alabama Department of Conservation and Natural Resources. 153 pp.
546	Jombart T, Ahmed I. 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data.
547	Bioinformatics 27:3070-3071. DOI: 10.1093/bioinformatics/btr521.
548	Kamvar ZN, Tabima JF, Grünwald NJ. 2014. Poppr: an R package for genetic analysis of
549	populations with clonal, partially clonal, and/or sexual reproduction. <i>PeerJ</i> 2:e281. DOI:
550	10.7717/peerj.281.
550	10., / 17/ poorj.201.

551	Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA. 2013. diveRsity: an R package for
552	the estimation and exploration of population genetics parameters and their associated
553	errors. <i>Methods in Ecology and Evolution</i> 48:782-788. DOI: 10.1111/2041-210X.12067.
554	Kopelman NM, Mayzel J, Jakobsson M, Rosebnberg NA, Mayrose I. 2015. Clumpak: a program
555	for identifying clustering modes and packaging population structure inferences across K.
556	Molecular Ecology Resources 15:1179-1191. DOI: 10.1111/1755-0998.12387.
557	Kurth JW. 2017. Endangered and threatened wildlife and plants; 90-day findings for five species.
558	Federal Register 82:60362-60366.
559	Lambert SM, Streicher JW, Fisher-Reid MC, Méndez de la Cruz FR, Martínez-Méndez N,
560	García-Vázquez UO, de Oca ANM, Wiens JJ. 2019. Inferring introgression using
561	RADseq and DFOIL: Power and pitfalls revealed in a case study of spiny lizards
562	(Sceloporus). Molecular Ecology Resources 19:818-837. DOI: 10.1111/1755-
563	0998.12972.
564	Lawson DJ, Hellenthal G, Myers S, Falush D. 2012. Inference of population structure using
565	dense haplotype data. PLoS Genetics 8:e1002453. DOI: 10.1371/journal.pgen.1002453.
566	Legendre P, Fortin M-J, Borcard D. 2015. Should the Mantel test be used in spatial analysis.
567	Methods in Ecology and Evolution 6:1239-1247. DOI: 10.1111/2041-210X.12425.
568	Leigh DM, Lischer HEL, Keller LF. 2018. Batch effects in a multiyear sequencing study: false
569	biological trends due to changes in read lengths. Molecular Ecology Resources 18:778-
570	788. DOI: 10.1111/1755-0998.12779.
571	Lydeard C, Cowie RH, Ponder W, F., Bogan AE, Bouchet P, Clark SA, Cummings KS, Frest TJ,
572	Gargominy O, Herbert DG, Hershler R, Perez KE, Roth B, Seddon M, Strong EE,
573	Thompson FG. 2004. The global decline of nonmarine mollusks. <i>BioScience</i> 54:321-330.
574	DOI: 10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2.
575	Lydeard C, Mayden RL. 1995. A diverse and endangered ecosystem of the southeast United
576	States. Conservation Biology 9:800-805. DOI: 10.1046/j.1523-1739.1995.09040800.x.
577	Lysne SJ, Perez KE, Brown KM, Minton RL, Sides JD. 2008. A review of freshwater gastropod
578	conservation: challenges and opportunities. Journal of the North American Benthological
579	Society 27:463-470. DOI: 10.1899/07-061.1.
580	Malinsky M, Trucchi E, Lawson DJ, Falush D. 2018. RADpainter and fineRADstructure:
581	population inference from RADseq Data. Molecular Biology and Evolution 35:1284-
582	1290. DOI: 10.1093/molbev/msy023.
583	Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. 2010. Robust
584	relationship inference in genome-wide association studies. <i>Bioinformatics</i> 26:2867-2873.
585	DOI: 10.1093/bioinformatics/btq559.
586	Meirmans PG. 2015. Seven common mistakes in population genetics and how to avoid them.
587	<i>Molecular Ecology</i> 24:3223-3231. DOI: 10.1111/mec.13243.
588	Mussman, SM, Douglas MR, Chafin TK, Douglas ME. 2020. AdmixPipe: population analyses in
589	ADMIXTURE for non-model organisms. DOI: 10.5281/zenodo.3270852
590	Onorato D, Angus RA, Marion KR. 2000. Historical changes in the ichtyofaunal assemblages of
591	the upper Cahaba River in Alabama associated with extensive urban development in the
592	watershed. Journal of Freshwater Ecology 15:47-63. DOI:
593	10.1080/02705060.2000.9663721.
594	Paris JR, Stevens JR, Catchen JM. 2017. Lost in parameter space: a road map for Stacks.
595	Methods in Ecology and Evolution 8:1360-1373. DOI: 10.1111/2041-210X.12775.

Paz-Vinas I, Loot G, Stevens VM, Blanchet S. 2015. Evolutionary processes driving spatial 596 597 patterns of intraspecific genetic diversity in river ecosystems. *Molecular Ecology* 24:4586-4604. DOI: 10.1111/mec.13345. 598 599 Perez KE, Minton RL. 2008. Practical applications for systematics and taxonomy in North American freshwater gastropod conservation. Journal of the North American 600 Benthological Society 27:471-483. DOI: 10.1899/07-059.1. 601 Pillion D. 2016. Alabama pipeline leak: what we know so far about the spill, gas shortages and 602 more. Available at 603 604 https://www.al.com/news/birmingham/2016/09/how alabama pipeline leak led.html (accessed March 19, 2020). 605 606 Pitt RE. 2000. Water quality conditions in the Cahaba River and likely pollutant sources. Birmingham, Alabama: Department of Civil and Environmental Engineering, University 607 608 of Alabama at Birmingham. Potter JJ, Thomas WL. 1983. Endangered and threatened species listing and recovery priority 609 guidelines. Federal Register 48:43098-43105. DOI: 610 R Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: 611 R Foundation for Statistical Computing. 612 Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brundo M. 2009. SHRiMP: accurate 613 mapping of short color-space reads. *PLoS Computational Biology* 5:e1000386. DOI: 614 615 10.1371/journal.pcbi.1000386. Service NMF. 2018. Interim Endangered and Threatened Speices Recovery Planning Guidance 616 Version 1.4. In: Administration NOaA, editor. Silver Spring, Maryland. p 122. 617 Shepard TE, O'Neil PE, McGregor SW, Harris SC. 1994. Water-quality and biomonitoring 618 619 studies in the upper Cahaba River drainage of Alabama. Geological Survery of Alabama 620 *Bulletin* 160:1-118. DOI: 621 Shringarpure SS, Bustamante CD, Lange K, Alexander DH. 2016. Efficient analysis of large datasets and sex bias with ADMIXTURE. BMC Bioinformatics 17:218. DOI: 622 623 10.1186/s12859-016-1082-x. Strong EE, Gargominy O, Ponder W, F., Bouchet P. 2008. Global diversity of gastropods 624 (Gastropoda; Mollusca) in freshwater. Hvdrobiologia 595:149-166. DOI: 625 10.1007/S10750-007-9012-6. 626 Strong EE, Köhler F. 2009. Morphological and molecular analysis of 'Melania jacqueti' 627 628 Dautzenberg and Fischer, 1906: from anonymous orphan to critical basal offshoot of the Semisulcospiridae (Gastropoda: Cerithioidea). Zoologica Scripta 38:483-502. DOI: 629 10.1111/j.1463-6409.2008.00385.x. 630 Tolley-Jordan LR, Huryn AD, Bogan AE. 2015. Effects of land-use change on a diverse 631 632 pleurocerid snail assemblage. Aquatic Conservation: Marine and Freshwater Ecosystems 25:235-249. DOI: 10.1002/agc.2474. 633 634 Wahlund S. 1928. Zusammensetzung von population und korrelationserscheinung vom standpunkt der vererbungslehre aus betrachtet. Hereditas 11:65-106. [English translation. In: 635 Weiss KM, Ballonoff PA, editors. 1975. Demographic Genetics. Dowden, Hutchinson 636 and Ross, Stroudsburg. p. 224–263] 637 638 Wang S, Meyer E, McKay JK, Matz MV. 2012. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nature Methods 9:808-810. DOI: 10.1038/nmeth.2023. 639 640 Weir BS, Cockerham CC. 1984. Estimating *F*-statistics for the analysis of population structure. Evolution 38:1358-1370. DOI: 10.1111/j.1558-5646.1984.tb05657.x. 641

642 643	Whelan NV, Galaska MP, Sipley BN, Weber JM, Johnson PD, Halanych KM, Helms BS. 2019. Riverscape genetic variation, migration patterns, and morphological variation of the
644	threatened Round Rocksnail, <i>Leptoxis ampla. Molecular Ecology</i> 28:1593-1610. DOI: 10.1111/mag.15022
645	10.1111/mec.15032.
646	Whelan NV, Johnson PD, Harris PM. 2012. Rediscovery of <i>Leptoxis compacta</i> (Anthony, 1854)
647 648	(Gastropoda: Cerithioidea: Pleuroceridae). <i>PLoS One</i> 7:e42499. DOI: 10.1371/journal.pone.0042499.
648	10.15717Journal.pone.0042499.
649	Whelan NV, Johnson PD, Harris PM. 2015. Life-history traits and shell morphology in the genus
650	Leptoxis Rafinesque, 1819 (Gastropoda: Cerithioidea: Pleuroceridae). Journal of
651	Molluscan Studies 81:85-95. DOI: 10.1093/mollus/eyu058.
652	
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	
663	
664	
665	
666	
667	
668	
669	
670	
671	
672	
673	
674 675	
675 676	
677	
678	
5,0	

680 Tables

681	Table 1: Summary statistics and AUMNH catalog numbers of <i>L. compacta</i> at each collection site.

	Private						
Collection Site	alleles	H_{o} (sd)	H _e (sd)	A _r (sd)	П (sd)	F _{is}	AUMNH #
Cahaba River at Booth's Ford	43	0.1568 (0.1349)	0.1801 (0.1222)	1.8241 (0.2742)	0.1855 (0.1261)	0.1319	45691-45709
Cahaba River at canoe launch	32	0.1046 (0.1552)	0.1045 (0.1421)	1.4511 (0.4518)	0.1075 (0.1459)	0.0134	45709-45729
Cahaba River above Shades Creek	262	0.1363 (0.1334)	0.1779 (0.1245)	1.8072 (0.2883)	0.1829 (0.1281)	0.1934	45671-45690
Cahaba River at Old Marvel Slab	28	0.0963 (0.1400)	0.0981 (0.1343)	1.4606 (0.4387)	0.1010 (0.1382)	0.0226	45652-45670
682							
683							
604 Table 2. Deimusia Ferrand d	lictorood	(km) botwoon gita	Er balow diago	al and distances of	hove diagonal		

Table 2: Pairwsie Fst and distances (km) between sites. Fst below diagonal and distances above diagonal

	Booth's Ford	boat launch	above Shades Creek	old Marvel slab
Cahaba River at Booth's Ford	-	4.62	5.55	9.2
Cahaba River at canoe launch	0.04	-	0.98	4.57
Cahaba River above Shades Creek	0	0.05	-	3.64
Cahaba River at old Marvel slab	0.03	0.04	0.03	-

690 Figures

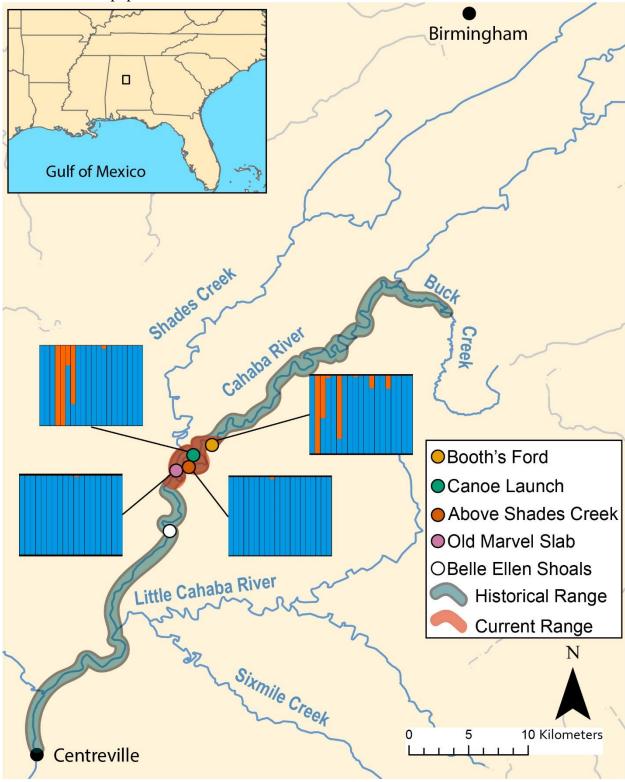

691 Figure 1: Photograph of live *L. compacta*. Photo Credit: Thomas Tarpley, ADCNR.

Figure 2: Shells of representative individuals that we sequenced. A) Cahaba River at Canoe Launch, B) Cahaba River at Booth's Ford, C) Cahaba River above Shades Creek, D-F) Cahaba River at old Marvel slab. Scale bar = 1 cm

Figure 3: Map of known historical and current range of *L. compacta*, collection sites, and other
landmarks. Lines from collection sites lead to ADMXITURE plots with K = 2 for each
site. Each column is an individual with ADMIXTURE proportions of the two inferred
ancestral populations.

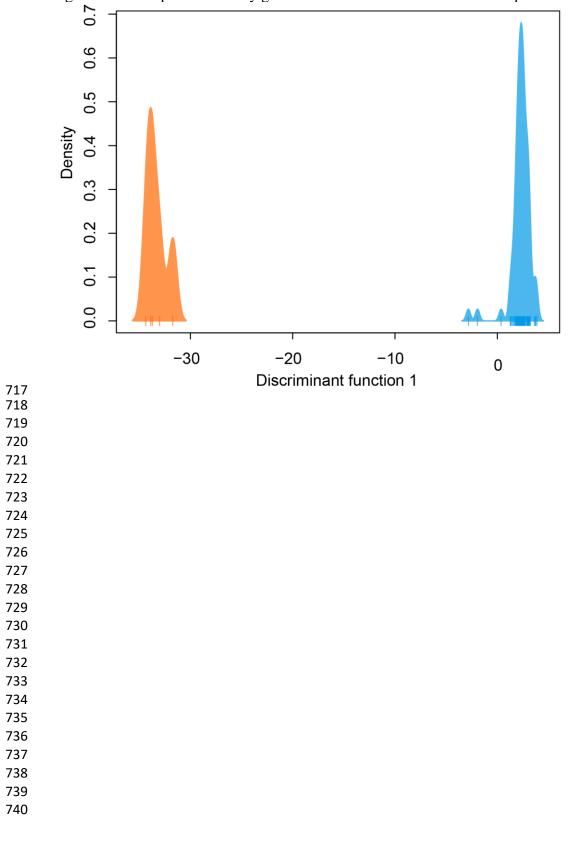
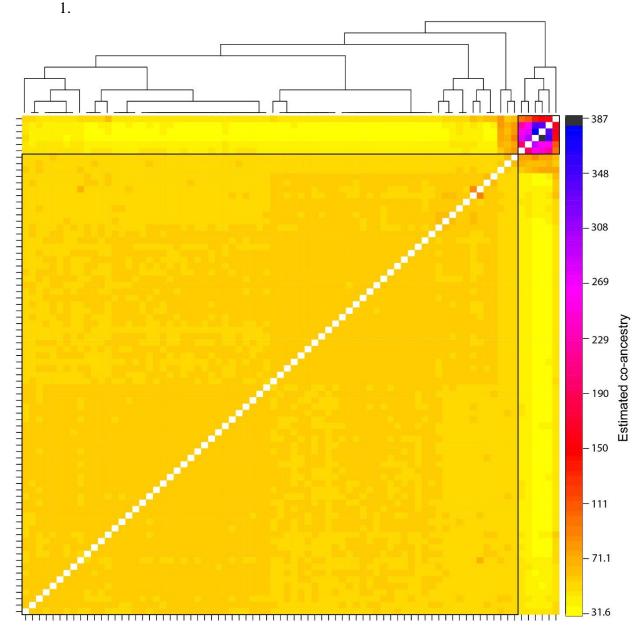
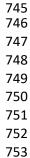
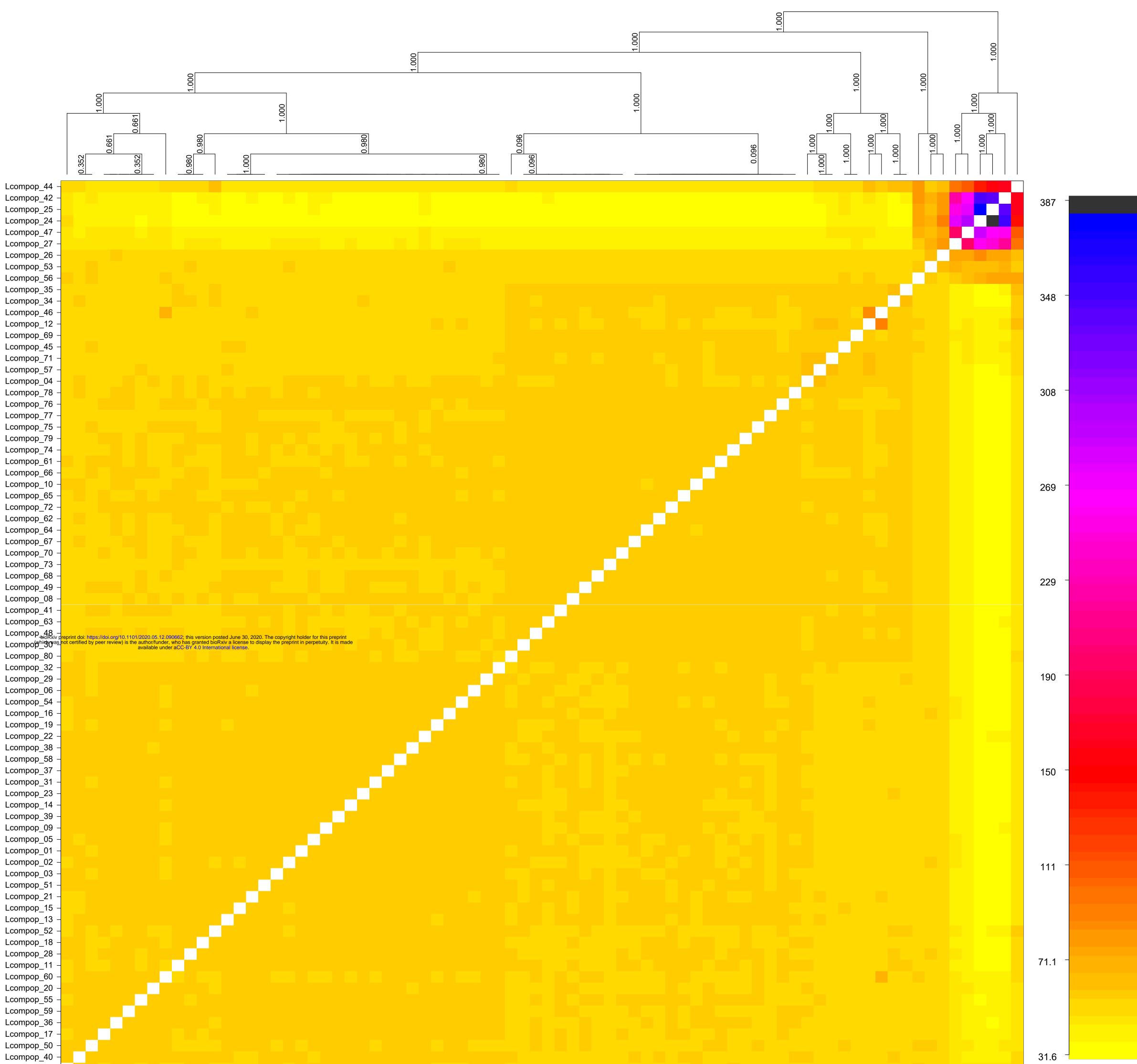
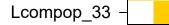




Figure 4: DAPC plot colored by genetic cluster. Tick marks on x-axis represent individuals.

Figure 5: Pairwise co-ancestry matrix and simple tree inferred with fineRADstructure. Boxes

- surround the two main groupings. Tick marks represent individuals, but labels have been
- 743 removed for visualization. For a figure with full taxon labels, see Supplementary Figure
- 744


Supplementary Table 1: Collection localities, Auburn University Museum of Natural History,


756 and SRA accession numbers.

Lab Number	Locality	AUMNH Catalog Number	NCBI SRA accession
Lcom_pop01	Cahaba River at old Marvel slab	45652	SRR11773571
Lcom_pop02	Cahaba River at old Marvel slab	45653	SRR11773570
Lcom_pop03	Cahaba River at old Marvel slab	45654	SRR11773559
Lcom_pop04	Cahaba River at old Marvel slab	45655	SRR11773548
Lcom_pop05	Cahaba River at old Marvel slab	45656	SRR11773537
Lcom_pop06	Cahaba River at old Marvel slab	45657	SRR11773604
Lcom_pop08	Cahaba River at old Marvel slab	45658	SRR11773593
Lcom_pop09	Cahaba River at old Marvel slab	45659	SRR11773582
Lcom_pop10	Cahaba River at old Marvel slab	45660	SRR11773573
Lcom_pop11	Cahaba River at old Marvel slab	45661	SRR11773572
Lcom_pop12	Cahaba River at old Marvel slab	45662	SRR11773569
Lcom_pop13	Cahaba River at old Marvel slab	45663	SRR11773568
Lcom_pop14	Cahaba River at old Marvel slab	45664	SRR11773567
Lcom_pop15	Cahaba River at old Marvel slab	45665	SRR11773566
Lcom_pop16	Cahaba River at old Marvel slab	45666	SRR11773565
Lcom_pop17	Cahaba River at old Marvel slab	45667	SRR11773564
Lcom_pop18	Cahaba River at old Marvel slab	45668	SRR11773563
Lcom_pop19	Cahaba River at old Marvel slab	45669	SRR11773562
Lcom_pop20	Cahaba River at old Marvel slab	45670	SRR11773561
Lcom_pop21	Cahaba River at above Shades Creek	45671	SRR11773560
Lcom_pop22	Cahaba River at above Shades Creek	45672	SRR11773558
Lcom_pop23	Cahaba River at above Shades Creek	45673	SRR11773557
Lcom_pop24	Cahaba River at above Shades Creek	45674	SRR11773556
Lcom_pop25	Cahaba River at above Shades Creek	45675	SRR11773555
Lcom_pop26	Cahaba River at above Shades Creek	45676	SRR11773554
Lcom_pop27	Cahaba River at above Shades Creek	45677	SRR11773553
Lcom_pop28	Cahaba River at above Shades Creek	45678	SRR11773552
Lcom_pop29	Cahaba River at above Shades Creek	45679	SRR11773551
Lcom_pop30	Cahaba River at above Shades Creek	45680	SRR11773550
Lcom_pop31	Cahaba River at above Shades Creek	45681	SRR11773549
Lcom_pop32	Cahaba River at above Shades Creek	45682	SRR11773547
Lcom_pop33	Cahaba River at above Shades Creek	45683	SRR11773546
Lcom_pop34	Cahaba River at above Shades Creek	45684	SRR11773545
Lcom_pop35	Cahaba River at above Shades Creek	45685	SRR11773544
Lcom_pop36	Cahaba River at above Shades Creek	45686	SRR11773543
Lcom_pop37	Cahaba River at above Shades Creek	45687	SRR11773542
Lcom_pop38	Cahaba River at above Shades Creek	45688	SRR11773541
Lcom_pop39	Cahaba River at above Shades Creek	45689	SRR11773540

I com pop40	Cahaba River at above Shades Creek	45690	SRR11773539
Lcom_pop40 Lcom_pop41	Cahaba River at Booth's Ford	45691	SRR11773538
Lcom_pop41	Cahaba River at Booth's Ford	45692	SRR11773536
	Cahaba River at Booth's Ford	45693	SRR11773613
Lcom_pop44	Cahaba River at Booth's Ford	45694	SRR11773612
Lcom_pop45	Cahaba River at Booth's Ford	45695	SRR11773611
Lcom_pop46	Cahaba River at Booth's Ford	45696	SRR11773610
Lcom_pop47	Cahaba River at Booth's Ford	45697	SRR11773609
Lcom_pop48	Cahaba River at Booth's Ford	45698	SRR11773608
Lcom_pop49	Cahaba River at Booth's Ford	45699	SRR11773607
Lcom_pop50	Cahaba River at Booth's Ford	45099	SRR11773606
Lcom_pop51			
Lcom_pop52	Cahaba River at Booth's Ford	45701	SRR11773605
Lcom_pop53	Cahaba River at Booth's Ford	45702	SRR11773603
Lcom_pop54	Cahaba River at Booth's Ford	45703	SRR11773602
Lcom_pop55	Cahaba River at Booth's Ford	45704	SRR11773601
Lcom_pop56	Cahaba River at Booth's Ford	45705	SRR11773600
Lcom_pop57	Cahaba River at Booth's Ford	45706	SRR11773599
Lcom_pop58	Cahaba River at Booth's Ford	45707	SRR11773598
Lcom_pop59	Cahaba River at Booth's Ford	45708	SRR11773597
Lcom_pop60	Cahaba River at Booth's Ford	45709	SRR11773596
Lcom_pop61	Cahaba River at Lebron canoe launch	45710	SRR11773595
Lcom_pop62	Cahaba River at Lebron canoe launch	45711	SRR11773594
Lcom_pop63	Cahaba River at Lebron canoe launch	45712	SRR11773592
Lcom_pop64	Cahaba River at Lebron canoe launch	45713	SRR11773591
Lcom_pop65	Cahaba River at Lebron canoe launch	45714	SRR11773590
Lcom_pop66	Cahaba River at Lebron canoe launch	45715	SRR11773589
Lcom_pop67	Cahaba River at Lebron canoe launch	45716	SRR11773588
Lcom_pop68	Cahaba River at Lebron canoe launch	45717	SRR11773587
Lcom_pop69	Cahaba River at Lebron canoe launch	45718	SRR11773586
Lcom_pop70	Cahaba River at Lebron canoe launch	45719	SRR11773585
Lcom_pop71	Cahaba River at Lebron canoe launch	45720	SRR11773584
Lcom_pop72	Cahaba River at Lebron canoe launch	45721	SRR11773583
Lcom_pop73	Cahaba River at Lebron canoe launch	45722	SRR11773581
Lcom_pop74	Cahaba River at Lebron canoe launch	45723	SRR11773580
Lcom_pop75	Cahaba River at Lebron canoe launch	45724	SRR11773579
Lcom_pop76	Cahaba River at Lebron canoe launch	45725	SRR11773578
Lcom_pop77	Cahaba River at Lebron canoe launch	45726	SRR11773577
Lcom_pop78	Cahaba River at Lebron canoe launch	45727	SRR11773576
Lcom_pop79	Cahaba River at Lebron canoe launch	45728	SRR11773575
Lcom_pop80	Cahaba River at Lebron canoe launch	45729	SRR11773574

Supplementary Figure 1: Pairwise co-ancestry matrix and simple tree inferred with fineRADstructure. Tick marks represent individuals. Lcompop_01-20: Cahaba River at old Marvel slab; Lcompop_21-40: Cahaba River above Shades Creek; Lcompop_41-60: Cahaba River at Booth's Ford; Lcompop_61-80: Cahaba River at canoe launch

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, e 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0	45030774524
0 0 0 10 17 17 17 10 17 10 10 10 10 10 10 10 10 10 10 10	つ つ つ つ つ の ぶ ㅜ ゔ ю ぃ ぃ ぃ ぃ ぃ っ ~ い い い ぃ ぉ ゃ ゃ っ ゃ っ ゃ っ ぃ ゃ っ ぃ っ ぃ っ ぃ っ ぃ ぃ ぃ ぃ	ω, ω, ω, ω, α, α, 4, α, α, 4, 4,
		E E E E E E E E E E E E E E E E E E E
		<u> </u>