
 1 

Cereulide synthetase acquisition and loss events within the evolutionary history of Group 1 

III Bacillus cereus sensu lato facilitate the transition between emetic and diarrheal 2 

foodborne pathogen 3 

Laura M. Carrolla*, Martin Wiedmanna# 4 

 5 

aDepartment of Food Science, Cornell University, Ithaca, NY, USA 6 

*Current address: Structural and Computational Biology Unit, EMBL, Heidelberg, Germany 7 

#Correspondence: Martin Wiedmann, martin.wiedmann@cornell.edu  8 

 9 

Word Count (Abstract): 238 (Abstract) + 142 (Importance) 10 

Word Count (Main Text): 4,990  11 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.12.090951doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.090951
http://creativecommons.org/licenses/by/4.0/


 2 

Abstract 12 

Cereulide-producing members of Bacillus cereus sensu lato (B. cereus s.l.) Group III, also 13 

known as “emetic B. cereus”, possess cereulide synthetase, a plasmid-encoded, non-ribosomal 14 

peptide synthetase encoded by the ces gene cluster. Despite the documented risks that cereulide-15 

producing strains pose to public health, the level of genomic diversity encompassed by “emetic 16 

B. cereus” has never been evaluated at a whole-genome scale. Here, we employ a phylogenomic 17 

approach to characterize Group III B. cereus s.l. genomes which possess ces (ces-positive) 18 

alongside their closely related ces-negative counterparts to (i) assess the genomic diversity 19 

encompassed by “emetic B. cereus”, and (ii) identify potential ces loss and/or gain events within 20 

the evolutionary history of the high-risk and medically relevant sequence type (ST) 26 lineage 21 

often associated with emetic foodborne illness. Using all publicly available ces-positive Group 22 

III B. cereus s.l. genomes and the ces-negative genomes interspersed among them (n = 150), we 23 

show that “emetic B. cereus” is not clonal; rather, multiple lineages within Group III harbor 24 

cereulide-producing strains, all of which share a common ancestor incapable of producing 25 

cereulide (posterior probability [PP] 0.86-0.89). The ST 26 common ancestor was predicted to 26 

have emerged as ces-negative (PP 0.60-0.93) circa 1904 (95% highest posterior density [HPD] 27 

interval 1837.1-1957.8) and first acquired the ability to produce cereulide before 1931 (95% 28 

HPD 1893.2-1959.0). Three subsequent ces loss events within ST 26 were observed, including 29 

among isolates responsible for B. cereus s.l. toxicoinfection (i.e., “diarrheal” illness). 30 

Importance 31 

“B. cereus” is responsible for thousands of cases of foodborne disease each year worldwide, 32 

causing two distinct forms of illness: (i) intoxication via cereulide (i.e., “emetic” syndrome) or 33 

(ii) toxicoinfection via multiple enterotoxins (i.e., “diarrheal” syndrome). Here, we show that 34 
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“emetic B. cereus” is not a clonal, homogenous unit that resulted from a single cereulide 35 

synthetase gain event followed by subsequent proliferation; rather, cereulide synthetase 36 

acquisition and loss is a dynamic, ongoing process that occurs across lineages, allowing some 37 

Group III B. cereus s.l. populations to oscillate between diarrheal and emetic foodborne pathogen 38 

over the course of their evolutionary histories. We also highlight the care that must be taken 39 

when selecting a reference genome for whole-genome sequencing-based investigation of emetic 40 

B. cereus s.l. outbreaks, as some reference genome selections can lead to a confounding loss of 41 

resolution and potentially hinder epidemiological investigations.   42 
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Introduction 43 

The Bacillus cereus group (also known as B. cereus sensu lato [s.l.]) is a complex of 44 

closely related, Gram-positive, spore-forming members of the genus Bacillus, which vary in their 45 

ability to cause illness in humans (1). Members of B. cereus s.l. were estimated to be responsible 46 

for more than 256,000 foodborne intoxications worldwide in 2010 (2), although this is likely an 47 

underestimate due to the mild symptoms frequently associated with this illness (1). Foodborne 48 

“B. cereus” intoxication (i.e., “emetic” illness) is caused by cereulide, a highly heat- and pH-49 

stable toxin, which is pre-formed in a food matrix prior to consumption. These intoxications have 50 

a relatively short incubation period (typically 0.5 – 6 h) and are often accompanied by symptoms 51 

of vomiting and nausea (1, 3-5). This can be contrasted with “B. cereus” toxicoinfection (i.e., 52 

“diarrheal” illness), a different form of illness in which multiple enterotoxins produced within 53 

the host small intestine yield diarrheal symptoms which typically onset after 8 – 16 h (1, 6). 54 

Notably, emetic and diarrheal symptoms are not always congruent with “B. cereus” emetic and 55 

diarrheal syndromes, respectively, as both vomiting and diarrheal symptoms may be reported 56 

among cases (7, 8).  57 

Production of cereulide, the toxin responsible for emetic “B. cereus” foodborne illness, 58 

can be attributed to cereulide synthetase, a non-ribosomal peptide synthetase encoded by the 59 

cereulide synthetase biosynthetic gene cluster (ces) (9, 10). ces has been detected in two major B. 60 

cereus s.l. phylogenetic groups (assigned using the sequence of pantoate-beta-alanine ligase 61 

[panC] and a seven-group typing scheme): Group III and Group VI of B. cereus s.l. (10-16). 62 

While cereulide-producing Group VI strains, also known as “emetic B. weihenstephanensis”, 63 

have been isolated on rare occasions (14, 15, 17-19), the bulk of cereulide-producing strains 64 

belong to Group III (8, 10, 13, 16). Often referred to as “emetic B. cereus", cereulide-producing 65 
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Group III strains often harbor ces on plasmids (9, 10, 19), and have been linked to outbreaks 66 

around the world (5, 7, 8, 20). It is essential to note that Group III B. cereus s.l. isolates do not 67 

belong to the B. cereus sensu stricto (s.s.) species (i.e., B. cereus s.l. Group IV) (7, 21). A 68 

recently proposed taxonomic reorganization of B. cereus s.l. (21) refers to Group III B. cereus 69 

s.l. as B. mosaicus; however, the use of “Group III B. cereus s.l.” throughout the remainder of 70 

this study is intentional, as, at the present time, it is likely more interpretable to microbiologists 71 

than the recently proposed nomenclature. 72 

Despite the documented risks that cereulide-producing strains pose to public health, the 73 

level of genomic diversity encompassed by “emetic B. cereus” has not been evaluated at a 74 

whole-genome scale. Furthermore, potential heterogeneity in cereulide production capabilities 75 

among lineages encompassed by “emetic B. cereus” has never been assessed; plasmid-encoded 76 

ces and, thus, the ability to produce cereulide, can hypothetically be gained or lost within a 77 

lineage, although the extent to which this happens is unknown. Here, we employ phylogenomic 78 

approaches to characterize Group III B. cereus s.l. genomes that possess ces (ces-positive) 79 

alongside their closely related ces-negative counterparts to (i) assess the genomic diversity 80 

encompassed by cereulide-producing Group III strains (i.e., “emetic B. cereus”), and (ii) identify 81 

potential ces loss and/or gain events within the “emetic B. cereus” evolutionary history. 82 

Results 83 

Cereulide-producing members of Group III B. cereus s.l. are distributed across multiple 84 

lineages and share a common ancestor incapable of synthesizing cereulide. Of the 2,261 B. 85 

cereus s.l. genomes queried here (see Supplemental Table S1), 60 genomes belonged to panC 86 

Group III and possessed cereulide synthetase-encoding cesABCD (referred to hereafter as “ces-87 

positive” genomes). Overall, 31 STs assigned using in silico multi-locus sequence typing 88 
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(MLST) were observed among the 150 Group III isolates included in this study, with ces-89 

positive isolates represented by five STs (ST 26, 144, 164, 869, and 2056; Figure 1 and 90 

Supplemental Table S1). Four of these STs (ST 26, 144, 164, and 869) also encompassed one or 91 

more isolates that lacked cereulide synthetase (referred to hereafter as “ces-negative isolates”; 92 

Figure 1 and Supplemental Table S1). 93 

The 150 Group III genomes queried here (which included all 30 publicly available ces-94 

positive genomes, as well as 30 ces-positive genomes from a 2016 emetic foodborne outbreak) 95 

were distributed into three major clusters and nine sub-clusters using RhierBAPs, with ces-96 

positive isolates present in two and five clusters and sub-clusters, respectively (Figure 1). When 97 

PopCOGenT was used to delineate populations using recent gene flow, genomes were 98 

distributed among two sub-clusters (i.e., populations), with ces-positive genomes present in both 99 

sub-clusters. All genomes were assigned to a single “main cluster”, a unit that has been proposed 100 

to mirror the “species” definition applied to plants and animals (Figure 1) (22). Congruent with 101 

these findings, pairwise average nucleotide identity (ANI) values calculated between the 150 102 

genomes confirmed that all cereulide-producing Group III strains would be considered to be 103 

members of the same genomospecies using any previously proposed genomospecies threshold 104 

for B. cereus s.l. (i.e., 92.5-96 ANI) (21, 23-26). However, considerable genomic diversity 105 

existed among cereulide-producing isolates, as ces-positive genomes could share as low as 97.5 106 

ANI with others (Figure 2). 107 

The common ancestor of all ces-positive Group III genomes was predicted to not possess 108 

cesABCD and, thus, not be capable of cereulide production, regardless of outgroup or use of core 109 

or majority SNPs (ces-negative state posterior probability [PP] 0.86-0.89; Figure 1, 110 

Supplemental Figures S1 and S2, and Supplemental Table S2). For STs 144, 164, 869, and 2056, 111 
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a single ces-positive isolate was present among genomes assigned to the ST (Figure 1). 112 

Consequently, a single acquisition event was predicted to be responsible for the presence of ces-113 

positive lineages within each of these STs, and the common ancestor shared by each ST 114 

encompassing more than one genome was predicted to lack ces (Figure 1, Supplemental Figures 115 

S1 and S2, and Supplemental Table S2).  116 

 ST 26 first acquired the ability to cause emetic foodborne illness in the twentieth century. 117 

ST 26 was the only ST that encompassed multiple ces-negative and ces-positive strains (Figure 118 

1); therefore, the dynamics of cereulide synthetase loss and gain could be analyzed among 119 

members of this lineage. ST 26 isolates in this study were predicted to have evolved from a 120 

common ancestor that existed circa 1904 (estimated node age of 1904.3, with a 95% highest 121 

posterior density [HPD] interval of 1837.1-1957.8 for common ancestor node heights; Figure 3) 122 

with an estimated evolutionary rate of 3.04 ´ 10-7 substitutions/site/year (95% HPD 1.47 ´ 10-7 - 123 

4.74 ´ 10-7 substitutions/site/year ). Ancestral state reconstruction within ST 26 indicated that the 124 

ST 26 common ancestor did not possess cereulide synthetase (ces-negative state PP 0.60-0.93; 125 

Figure 4, Supplemental Figure S3, and Supplemental Table S2). Rather, cesABCD were 126 

predicted to have been first acquired within ST 26 between »1904 and »1931 (95% HPD 1837.1-127 

1957.8 and 1893.2-1959.0 for common ancestor node heights, respectively; Figures 3 and 4 and 128 

Supplemental Figure S3). Subsequent losses of cesABCD among ST 26 were predicted to have 129 

occurred on three occasions: (i) one after 1946 (common ancestor node height 95% HPD 1914.5-130 

1971.0); (ii) one after 1962.9 (common ancestor node height 95% HPD 1938.1-1985.0); and (iii) 131 

one between 1961.6 and 1966.7 (95% HPD 1934.7-1983.0 and 1941.6-1987.7, respectively; 132 

Figures 3 and 4 and Supplemental Figure S3) (16). 133 
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Choice of emetic Group III B. cereus s.l. reference genome for reference-based SNP calling 134 

affects ST 26 phylogenomic topology. SNP identification using reference-based approaches and 135 

subsequent phylogeny construction are critical methods used in foodborne pathogen surveillance 136 

and outbreak investigation efforts. To determine if choice of emetic reference genome could 137 

affect the topology of the ST 26 phylogeny, SNPs were identified among all 64 ST 26 genomes 138 

using four reference-based SNP calling pipelines and six emetic reference genomes, which 139 

encompassed all observed Group III emetic STs (Table 1). Notably, the emetic Group III genome 140 

that was most distantly related to ST 26 (ST 869) did not yield sufficient resolution to produce a 141 

phylogeny when it was used as a reference for BactSNP/Gubbins and Snippy/Gubbins (Tables 1 142 

and 2). For the BactSNP pipeline, the emetic ST 2056 genome additionally did not yield an 143 

alignment of SNPs among ST 26 isolates when it was used as a reference (Tables 1 and 2).  144 

 For the remaining SNP calling pipeline/reference genome combinations, the resulting 145 

phylogeny was compared to the phylogeny produced using the respective pipeline and the 146 

chromosome of ST 26 str. AH187 as a reference. In addition to being a well-characterized emetic 147 

strain for which a closed genome is available, str. AH187 was closely related to the 64 ST 26 148 

isolates queried here and has previously been shown to serve as an adequate reference genome 149 

for SNP calling within ST 26 (7). For all SNP calling pipelines, phylogenies produced using the 150 

genomes of emetic ST 26 str. IS195 and emetic ST 164 str. AND1407 as references were more 151 

topologically similar to those produced using str. AH187 than would be expected by chance 152 

(Kendall-Colijn P < 0.05 after a Bonferroni correction; Table 1). However, the topology of 153 

phylogenies produced using Parsnp and Snippy with emetic ST 144 str. MB.17 differed from that 154 

produced using str. AH187 (Kendall-Colijn P > 0.05 after a Bonferroni correction; Table 1). 155 

Lyve-SET was the only pipeline that produced phylogenies that were more topologically similar 156 
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to that produced using str. AH187 than would be expected by chance, regardless of emetic 157 

reference (Kendall-Colijn P < 0.05 after a Bonferroni correction; Table 1). 158 

 Despite producing phylogenies that resembled the AH187 phylogeny for five of six 159 

emetic reference genomes (Kendall-Colijn P < 0.05 after a Bonferroni correction; Table 1), core 160 

SNP alignments produced with Parsnp yielded relatively large pairwise SNP distances between 161 

emetic ST 26 genomes from a known outbreak (7). Regardless of reference genome selection, 162 

the difference between the minimum number of SNPs shared between outbreak and non-163 

outbreak isolates and the maximum number of SNPs detected between two outbreak isolates was 164 

less than the maximum number of SNPs shared between two outbreak isolates (Table 2). A 165 

similar phenomenon was observed when Snippy was used with a distant emetic ST 2056 strain 166 

as a reference (Table 2). 167 

Discussion 168 

Group III B. cereus s.l. isolates capable of causing emetic foodborne illness are not clonal. 169 

Cereulide-producing B. cereus s.l. strains are responsible or suspected to be responsible for 170 

thousands of cases of foodborne illness each year worldwide (2), including rare but severe forms 171 

of illness which may result in death (27-31). While efforts to characterize this important 172 

pathogen using whole-genome sequencing have begun only recently, the amount of publicly 173 

available genomic data derived from “emetic B. cereus” has been increasing (21). Consequently, 174 

the current dogma regarding the evolutionary history of this group of organisms must be 175 

revisited; while prior studies assert that cereulide-producing Group III members represent a 176 

highly clonal complex within B. cereus s.l. (10, 16), other efforts have hinted that “emetic B. 177 

cereus” showcases a considerable degree of genomic diversity (21, 32-34). 178 
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Using all publicly available emetic Group III B. cereus s.l. genomes and the non-emetic 179 

genomes interspersed among them, we show on a whole-genome scale that “emetic B. cereus” is 180 

not clonal. Emetic toxin production capabilities within Group III are not the result of a single 181 

cereulide synthetase gain event followed by subsequent proliferation; rather, the common 182 

ancestor of all cereulide-producing Group III isolates was likely incapable of producing 183 

cereulide, and emetic toxin production capabilities resulted from at least five independent 184 

cereulide synthetase acquisition events (at least one in each of STs 26, 144, 164, 869, and 2056; 185 

Figures 1 and 4). Pairwise ANI values calculated between emetic Group III strains were as low 186 

as 97.5 ANI; for comparison, all members of the highly similar B. anthracis lineage commonly 187 

attributed to anthrax illness share ³99.9 ANI with one another (21, 35), while genomes 188 

belonging to Salmonella enterica subspecies enterica (which is not considered to be clonal) can 189 

share pairwise ANI values as low as 97.0 (calculated between 425 genomes described by 190 

Worley, et al., using FastANI v. 1.0 as described in the Methods section) (36).  191 

These findings are important, as unexpected diversity can confound bioinformatic 192 

analyses used to identify outbreaks from genomic data. For example, an evolutionarily distant 193 

reference genome can affect which SNPs are identified during reference-based SNP calling 194 

among bacterial genomes (7, 37-40). This can, in turn, affect metrics used to determine whether 195 

an isolate should be included or excluded from an outbreak (e.g., the topology of a resulting 196 

phylogeny, pairwise SNP cut-offs) (7, 38-40). Here, we showed that emetic Group III isolates are 197 

considerably diverse, so much so that the use of some “emetic B. cereus” genomes as references 198 

for SNP calling can lead to a topologically confounding loss of resolution. The use of 199 

BactSNP/Gubbins and Snippy/Gubbins with distant emetic ST 869 as a reference, for example, 200 

yielded SNPs that could not reliably differentiate ST 26 genomes from each other. In an outbreak 201 
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scenario, these approaches would incorrectly place non-outbreak isolates among outbreak ones, 202 

potentially confounding an investigation. It is thus essential that the diversity of “emetic B. 203 

cereus” is acknowledged and accounted for to ensure that epidemiological investigations are not 204 

hindered. 205 

One pathogen, two illnesses: ST 26 B. cereus s.l. has oscillated between “emetic” and 206 

“diarrheal” foodborne pathogen throughout the twentieth century. “B. cereus” was first 207 

established as the causative agent of a diarrheal form of foodborne illness in the 1950s (20, 41). 208 

Notably, prior to the 1970s, illnesses attributed to “B. cereus” were of the diarrheal type (i.e., 209 

toxicoinfection characterized by symptoms of watery diarrhea that onset 8-16 h after ingestion) 210 

(20). However, in the 1970s, a novel type of “B. cereus” illness, emetic intoxication, began to be 211 

reported (20). Characterized by symptoms of vomiting and nausea and a relatively short 212 

incubation time (i.e., 0.5-6 h), “B. cereus” emetic illness was first described in the United 213 

Kingdom in 1971, and was linked to the consumption of rice served at restaurants and take-away 214 

outlets (20). It has been hypothesized that emetic toxin production may confer a selective 215 

advantage (16), and the results reported here support the hypothesis that cereulide synthetase was 216 

acquired by some Group III lineages relatively recently in their evolutionary histories (16). Here, 217 

we show that ST 26, which has frequently been associated with emetic foodborne illness (7, 32, 218 

42, 43), first acquired cereulide synthetase and, thus, the ability to cause emetic illness in the 219 

twentieth century, likely between 1904 and 1931 (95% HPD interval of 1837.1-1959.0). This 220 

indicates that cereulide-producing B. cereus s.l. may have been responsible for cryptic cases of 221 

emetic intoxication prior to the 1970s; however, it is unsurprising that these cases would go 222 

undetected or unattributed to B. cereus s.l., due to the mild and transient symptoms typically 223 

associated with this illness (1, 44). 224 
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The temporal characterization of cereulide synthetase acquisition and loss provided here 225 

additionally showcases that ST 26 has transitioned between an emetic and non-emetic pathogen 226 

over the course of its evolutionary history. This is important, as ces-negative members of ST 26 227 

still present a relevant public health and food safety risk, as they may still be capable of causing 228 

diarrheal illness. For example, the lineage to which ST 26 str. NVH 0075-95 belongs lost ces 229 

between »1962 and 1967. While previously shown to be incapable of producing cereulide, this 230 

strain produces diarrheal non-hemolytic enterotoxin (Nhe), is highly cytotoxic, and was isolated 231 

from vegetable stew associated with a diarrheal outbreak in Norway (16, 45, 46). Additionally, 232 

cereulide-producing strains can be high producers of diarrheal enterotoxins (8). It has been 233 

hypothesized that the simultaneous ingestion of food contaminated with cereulide alongside the 234 

cereulide- and enterotoxin-producing strains themselves may be responsible for a mixture of 235 

diarrheal and emetic symptoms among some cases of B. cereus s.l. foodborne illness (8), and this 236 

may partially explain why these illnesses may not always present within a strictly “emetic-vs-237 

diarrheal” dichotomy (7, 8).  238 

Heterogeneous emetic phenotype presentation among diverse Group III B. cereus s.l. 239 

isolates can yield taxonomic inconsistencies: the “emetic B. cereus” problem. Recent 240 

inconsistencies have arisen in the B. cereus s.l. taxonomic space: B. paranthracis, a novel 241 

species proposed in 2017 (26), was found to encompass all cereulide-producing Group III B. 242 

cereus s.l. strains at conventional species thresholds (21). Using multiple metrics for species 243 

delineation (i.e., ANI-based genomospecies assignment, methods querying recent gene flow), we 244 

confirm that all cereulide-producing Group III isolates, along with B. paranthracis and the other 245 

ces-negative isolates queried here (excluding outgroup genomes), belong to a single 246 

genomospecies. However, using “B. paranthracis” to describe cereulide-producing Group III 247 
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members is problematic, as B. paranthracis was only recently proposed as a novel species, is not 248 

well-recognized outside the small B. cereus s.l. taxonomic space, and hence would not typically 249 

be equated with a foodborne pathogen (21).  250 

 Referring to cereulide-producing Group III lineages as “emetic B. cereus”, however, is 251 

also problematic. Because cereulide synthetase is often plasmid-encoded (1, 9, 10, 47), it may be 252 

possible for emetic toxin production capabilities to be lost, gained, present across multiple 253 

lineages, and absent within individual lineages (21). Here we show that this is not just a 254 

hypothetical scenario: even with the limited number of genomes presently available, we 255 

observed five cereulide synthetase gain events across Group III, and three loss events within ST 256 

26 alone, indicating that cereulide synthetase loss and gain is a dynamic and ongoing process. 257 

Additionally, a taxonomic label of  “B. cereus” as it is applied to Group III B. cereus s.l. is 258 

misleading, as Group III strains are not actually members of the B. cereus sensu stricto (s.s.) 259 

species, regardless of which previously proposed genomospecies threshold for B. cereus s.l. is 260 

used to define species (i.e., 92.5-96 ANI) (7, 21, 23-26).  261 

Taxonomic labels used to refer to ces-negative isolates interspersed among cereulide-262 

producing Group III isolates (i.e., the ces-negative isolates queried here) are even more 263 

ambiguous. Some of these ces-negative isolates are capable of causing diarrheal illness (16, 45, 264 

46) and are thus relevant threats to global public health; however, prior to 2020, there was no 265 

standardized nomenclature with which these isolates could be described. For example, the 266 

following names have been used to refer to ces-negative, Group III strains: (i) “emetic-like B. 267 

cereus”, (ii) “B. cereus”, (iii) “Group III B. cereus”, (iv) “B. paranthracis”, or (v) “B. cereus 268 

sensu stricto”/“B. cereus s.s”, although it should be noted that B. cereus s.s. is a misnomer; as 269 

mentioned previously, Group III strains do not fall within the genomospecies boundary of the B. 270 
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cereus s.s. type strain and thus are not actually members of the B. cereus s.s. species (12, 16, 26, 271 

48-51).  272 

It is thus essential that microbiologists, clinicians, public health officials, and industrial 273 

professionals find common ground and adhere to a standardized nomenclature when describing 274 

Group III B. cereus s.l. Recently, we have proposed a taxonomic framework which can account 275 

for emetic heterogeneity among B. cereus s.l. genomes through the incorporation of a 276 

standardized collection of biovar terms (21), including the biovar term “Emeticus”. Using this 277 

framework, all cereulide-producing members of B. cereus s.l. (including “emetic B. 278 

weihenstephanensis”) can be referenced using the name B. Emeticus. All cereulide-producing 279 

Group III lineages are B. mosaicus subspecies cereus biovar Emeticus (full name) or B. cereus 280 

biovar Emeticus (shorted subspecies notation), while the ces-negative isolates interspersed 281 

among them are B. mosaicus subsp. cereus (full name) or B. cereus (shortened subspecies 282 

notation) (21). Note that “sensu stricto” or “s.s.” is not appended to these names; as mentioned 283 

above, Group III B. cereus s.l. lineages do not belong to the same species as Group IV B. cereus 284 

s.s. type strain ATCC 14579 (7, 21). 285 

This study is the first to offer insight into the temporal dynamics of cereulide synthetase 286 

loss and gain among Group III B. cereus s.l., and it showcases the importance of accounting for 287 

emetic heterogeneity among Group III lineages. As genomic sequencing grows in popularity and 288 

more Group III genomes are sequenced, the estimates provided here can be further refined and 289 

improved. Furthermore, it is likely that additional cereulide synthetase loss and gain events will 290 

be observed, and that previously uncharacterized emetic Group III lineages will be discovered. 291 

Methods 292 

Acquisition of Group III B. cereus s.l. genomes and metadata. All genomes submitted to 293 
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NCBI RefSeq (52) as a published B. cereus s.l. species (21, 23-26, 53) were downloaded (n = 294 

2,231; accessed November 19, 2018). The ANI function in BTyper v. 2.3.3 (13) was used to 295 

calculate ANI values between each genome and the type strain/species reference genomes of 296 

each of the 18 published B. cereus s.l. species as they existed in 2019 (7). Genomes that (i) most 297 

closely resembled B. paranthracis and (ii) shared an ANI value ³ 95 with B. paranthracis were 298 

used in subsequent steps (n = 120), as this set of genomes contained all Group III genomes that 299 

possessed genes encoding cereulide synthetase (described in detail below). These genomes were 300 

supplemented with 30 genomes of strains isolated in conjunction with a 2016 emetic outbreak 301 

(7), resulting in 150 Group III B. cereus s.l. genomes (Supplemental Table S1). FastANI v. 1.0 302 

(35) was used to confirm that all 150 genomes (i) shared ³ 95 ANI with the B. paranthracis type 303 

strain genome, and (ii) most closely resembled the B. paranthracis type strain genome when 304 

compared to the 18 B. cereus s.l. type strain/reference genomes. 305 

 Metadata for each of the 150 genomes were obtained using publicly available records, 306 

and BTyper was used to assign each genome to a ST using the seven-gene MLST scheme 307 

available in PubMLST (Supplemental Text) (54). To assess the emetic potential of each genome, 308 

BTyper was used to detect cereulide synthetase genes cesABCD in each genome, first using the 309 

default coverage and identity thresholds (70 and 50%, respectively), and a second time with 0% 310 

coverage to confirm that cesABCD were absent from genomes in which they were not detected 311 

(the only genome affected by this was one of the outbreak isolates, FSL R9-6384, which had 312 

cesD split on two contigs). Isolates in which cesABCD were not detected were given a 313 

designation of ces-negative. BTyper was additionally used to detect cesABCD in each of the 314 

2,111 B. cereus s.l. genomes not included in this study, as well as to assign all genomes to a 315 

panC group using the typing scheme described by Guinebretiere, et al (12). All 150 genomes 316 
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selected for this study were assigned to panC Group III, and all Group III genomes possessing 317 

cesABCD were confirmed to have been included in this study. The only other genomes that 318 

possessed cesABCD belonged to panC Group VI and most closely resembled B. mycoides/B. 319 

weihenstephanensis (i.e., “emetic B. weihenstephanensis”) (21).  320 

Construction of Group III B. cereus s.l. maximum likelihood phylogenies and ancestral 321 

state reconstruction. kSNP3 v. 3.1 (55, 56) was used to identify (i) core and (ii) majority SNPs 322 

among the 150 genomes described above, plus one of two outgroup genomes (to ensure that 323 

choice of outgroup did not affect ancestral state reconstruction; Supplemental Text), using the 324 

optimal k-mer size determined by Kchooser (k = 21 for both). For each of the four SNP 325 

alignments (i.e., each combination of outgroup and either core or majority SNPs), IQ-TREE v. 326 

1.6.10 (57-60) was used to construct a maximum likelihood (ML) phylogeny (Supplemental 327 

Text). 328 

To ensure that ancestral state reconstruction would not be affected by genomes over-329 

represented in RefSeq (e.g., genomes confirmed or predicted to have been derived from strains 330 

isolated from the same outbreak), potential duplicate genomes were removed using isolate 331 

metadata and by assessing clustering in the phylogenies described above. One representative 332 

genome was selected from clusters that likely consisted of duplicate genomes and/or isolates 333 

derived from the same source. For example, this procedure reduced 30 closely related isolates 334 

from an outbreak (7) to one isolate. Overall, this approach yielded a reduced, de-replicated set of 335 

71 genomes (Supplemental Table S1). kSNP3 and IQ-TREE were again used to identify core and 336 

majority SNPs and construct ML phylogenies among the set of 71 de-replicated genomes, plus 337 

each of the two outgroup genomes, as described above, but with k adjusted to the optimal k-mer 338 

size produced by Kchooser (k = 23 for both). 339 
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 To estimate ancestral character states of internal nodes in the Group III phylogeny as they 340 

related to cereulide production (i.e., whether a node represented an ancestor that was ces-positive 341 

or ces-negative), the presence or absence of ces within each genome was treated as a binary state. 342 

Each of the four phylogenies constructed using the de-replicated set of 71 genomes as described 343 

above was rooted at its respective outgroup, and stochastic character maps were simulated on 344 

each phylogeny using the make.simmap function in the phytools package (61), the all-rates-345 

different (ARD) model, and one of two root node priors (eight total combinations of two root 346 

node priors and four phylogenies; Supplemental Text and Supplemental Table S2).  347 

Assessment of Group III B. cereus s.l. population structure. Core SNPs detected among the 348 

71 de-replicated Group III genomes using kSNP3 (see section “Construction of Group III B. 349 

cereus s.l. maximum likelihood phylogenies and ancestral state reconstruction” above) were used 350 

as input for RhierBAPS (62) to identify clusters, using two levels. The same set of 71 genomes 351 

was used as input for PopCOGenT (downloaded October 5, 2019) to identify gene flow units and 352 

populations (Supplemental Text) (22). 353 

Construction of Group III B. cereus s.l. ST 26 temporal phylogeny. Snippy v. 4.3.6 (63) was 354 

used to identify core SNPs among the de-replicated set of 23 ST 26 genomes (see section 355 

“Construction of Group III B. cereus s.l. maximum likelihood phylogenies and ancestral state 356 

reconstruction” above), using the closed chromosome of emetic ST 26 str. AH187 (NCBI 357 

RefSeq Assession NC_011658.1) as a reference genome (Supplemental Text). Gubbins v. 2.3.4 358 

(64) was used to remove recombination from the resulting alignment, and snp-sites (65) was 359 

used to obtain core SNPs among the 23 genomes. IQ-TREE was used to construct a phylogeny 360 

(Supplemental Text), and the temporal signal of the resulting ML phylogeny was assessed using 361 

TempEst v. 1.5.3 (R2 = 0.26 using the best-fitting root) (66). 362 
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Using the ST 26 core SNP alignment as input, BEAST v. 2.5.1 (67, 68) was used to 363 

construct a tip-dated phylogeny (Supplemental Text). The Standard_TVMef nucleotide 364 

substitution model implemented in the SSM package (69) was used with 5 Gamma categories, 365 

and an ascertainment bias correction was applied to account for the use of solely variant sites 366 

(Supplemental Text) (70). A relaxed lognormal molecular clock (71) was used with an initial 367 

clock rate of 1.0 ´ 10-9 substitutions/site/year, and a broad lognormal prior was placed on the 368 

ucldMean parameter (in real space, M = 1.0 ´ 10-3 and S = 4.0) (Supplemental Text). A serial 369 

Birth-Death Skyline population model (72) was used to account for potential sampling biases 370 

stemming from the overrepresentation of strains isolated in recent years (Supplemental Text). 371 

Five independent runs using the model described above were performed, using chain 372 

lengths of at least 100 million generations, sampling every 10,000 generations. For each 373 

independent replicate, Tracer v. 1.7.1 (73) was used to ensure that each parameter had mixed 374 

adequately with 10% burn-in, and LogCombiner-2 was used to combine log and tree files from 375 

each independent run (Supplemental Text). TreeAnnotator-2 (74) was used to produce a 376 

maximum clade credibility tree from the combined tree files, using Common Ancestor node 377 

heights (Supplemental Text). 378 

Cereulide synthetase ancestral state reconstruction for ST 26 genomes. Ancestral state 379 

reconstruction as it related to cereulide production was performed using the temporal ST 26 380 

phylogeny as input (see section “Construction of Group III B. cereus s.l. ST 26 temporal 381 

phylogeny” above). Stochastic character maps were simulated on the phylogeny using the 382 

make.simmap function, the ARD model, and one of three priors on the root node (Supplemental 383 

Text). 384 
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Evaluation of the influence of reference genome selection on ST 26 phylogenomic topology. 385 

To determine if choice of reference genome affected ST 26 phylogenomic topology, SNPs were 386 

identified among all 64 ST 26 genomes using four different reference-based SNP calling 387 

pipelines, chosen for their ability to utilize assembled genomes or both assembled genomes and 388 

Illumina reads as input: (i) BactSNP v. 1.1.0 (75), (ii) Lyve-SET v. 1.1.4g (76), (iii) Parsnp v. 1.2 389 

(77), and (iv) Snippy v. 4.3.6. For alignments produced using BactSNP and Snippy, Gubbins v. 390 

2.3.4 (64) was used to filter out recombination events; for Parsnp, PhiPack (78) was used to 391 

remove recombination (Supplemental Text).  392 

 Each of four SNP calling pipelines was run six separate times, each time using one of six 393 

emetic Group III reference genomes (Table 1 and Supplemental Text). The tested reference 394 

genomes represented all available Group III STs in which cesABCD were detected. For each 395 

SNP calling pipeline, the phylogeny constructed using SNPs identified with emetic ST 26 str. 396 

AH187 as a reference genome was treated as a reference tree, as this genome was closely related 397 

to all ST 26 isolates in the study and has previously been shown to serve as an adequate 398 

reference genome for ST 26 (7). For each of the four SNP calling pipelines, the Kendall-Colijn 399 

(79, 80) test described by Katz et al. (76) was used to compare the topology of each tree to the 400 

pipeline’s respective AH187 reference phylogeny, using midpoint-rooted trees, a lambda value 401 

of 0 (to give weight to tree topology, rather than branch lengths), and a background distribution 402 

of 100,000 random trees (Supplemental Text) (76). Pairs of trees were considered to be more 403 

topologically similar than would be expected by chance (76) if a significant P-value resulted 404 

after a Bonferroni correction was applied (P < 0.05).  405 

Data availability. Accession numbers for all isolates included in this study are available in 406 

Supplemental Table S1. The raw BEAST 2 XML file, the code used to perform ancestral state 407 
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reconstruction, and all phylogenies are available at: 408 

https://github.com/lmc297/Group_III_bacillus_cereus.  409 
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TABLES 788 
 789 
Table 1. Topological comparisons of B. cereus s.l. ST 26 phylogenies constructed using various SNP calling pipeline/reference 790 
genome combinations. 791 

Reference Genomes Kendall-Colijn Test P-values 

Strain NCBI RefSeq 
Accession 

Assembly 
Level 

MLST 
STa 

ANI Range 
(Mean)b 

BactSNP Lyve-SET Parsnp Snippy 

AH187c NC_011658.1 Complete 
Genome 

26 99.8-100.0 (99.9) 0 0 0 0 

IS195 GCF_000399225.1 Scaffold 26 99.6-100.0 (99.7) 0 0 0 0 
AND1407 GCF_000290995.1 Scaffold 164 98.9-99.2 (99.1) 0 0 0 0 
MB.17 GCF_001566445.1 Contigs 144 98.8-99.1 (99.0) 0 0 1.0 1.0 
MB.18 GCF_001566385.1 Contigs 2056 97.4-97.8 (97.6) NAd 0 0 0 
MB.22 GCF_001566535.1 Contigs 869 97.4-97.7 (97.6) NAe 0 0 NAe 

aSeven-gene multi-locus sequence typing (MLST) sequence type (ST) determined in silico using BTyper v. 2.3.3  792 
bRange and mean of average nucleotide identity (ANI) values calculated between the respective reference genome and all 64 Group III B. cereus s.l. genomes 793 
assigned to ST 26, calculated using FastANI v. 1.0 794 
cFor each reference-based SNP calling pipeline (i.e., BactSNP, Lyve-SET, Parsnp, Snippy), the phylogeny produced using SNPs identified among 64 B. cereus 795 
s.l. ST 26 isolates using the respective SNP calling pipeline and the chromosome of B. cereus s.l. ST 26 str. AH187 as a reference genome was used a reference 796 
tree for the Kendall-Colijn test, as the chromosome of str. AH187 has been shown to be an adequate reference genome for reference-based SNP calling among 797 
emetic ST 26 genomes (7) 798 
dNo SNPs could be identified among the 64 B. cereus s.l. ST 26 genomes using the respective SNP calling pipeline/reference genome combination 799 
eSNPs identified using the respective SNP calling pipeline/reference genome combination were not diverse enough for use with Gubbins/IQ-TREE 800 
  801 
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Table 2. Pairwise SNP differences calculated between 64 B. cereus s.l. ST 26 isolates, including 30 emetic isolates from a 2016 802 
foodborne outbreak in New York State (NYS), using various SNP calling pipeline/reference genome combinations. 803 

SNP 
Calling 
Pipeline 

Reference 
Strain 

MLST 
STa 

ANI Range 
(Mean)b 

Within NYS 
Outbreak Range 
(Median; Mean) 

Between NYS Outbreak 
and Non-NYS Outbreak 
Range (Median; Mean) 

Within Non-NYS 
Outbreak Range 
(Median; Mean) 

Min(Between Outbreak)-
Max(Within Outbreak)c 

BactSNP    
 AH187d 26 99.8-100.0 (99.9) 0-8 (2; 2.7) 58-381 (127; 149.6) 0-477 (162; 183.3) 50 
 IS195 26 99.6-100.0 (99.7) 0-8 (2; 2.7) 58-385 (128; 153.9) 0-483 (167; 187.7) 50 
 AND1407 164 98.9-99.2 (99.1) 0-8 (2; 2.7) 56-378 (125; 147.3) 0-472 (157; 178.1) 48 
 MB.17 144 98.8-99.1 (99.0) 0-7 (2; 2.3) 57-370 (123; 144.3) 0-448 (153; 175.3) 50 
 MB.18 2056 97.4-97.8 (97.6) NAe NAe NAe NAe 

 MB.22 869 97.4-97.7 (97.6) NAf NAf NAf NAf 

Lyve-SET 
 AH187d 26 99.8-100.0 (99.9) 0-7 (2; 2.6) 61-1840 (169; 510.4) 0-2246 (198; 520.9) 54 
 IS195 26 99.6-100.0 (99.7) 0-6 (2; 2.3) 61-1421 (174; 428.1) 0-1834 (192; 447.7) 55 
 AND1407 164 98.9-99.2 (99.1) 0-5 (2; 2.3) 56-1622 (147; 449.0) 0-1943 (167; 451.7) 51 
 MB.17 144 98.8-99.1 (99.0) 0-5 (2; 2.0) 56-1479 (144; 419.2) 0-1830 (168; 429.7) 51 
 MB.18 2056 97.4-97.8 (97.6) 0-4 (1; 1.6) 47-1336 (114; 367.2) 0-1578 (126; 363.0) 43 
 MB.22 869 97.4-97.7 (97.6) 0-4 (1; 1.6) 44-1323 (115; 363.3) 0-1576 (127; 360.0) 40 
Parsnp    
 AH187d 26 99.8-100.0 (99.9) 0-44 (9; 12.0) 59-2404 (190; 697.4) 0-3250 (260; 754.1) 15 
 IS195 26 99.6-100.0 (99.7) 0-43 (9; 12.1) 62-2414 (209; 705.3) 0-3280 (269; 762) 19 
 AND1407 164 98.9-99.2 (99.1) 0-44 (9; 11.8) 59-2399 (185; 642.9) 0-2832 (249-647.1) 15 
 MB.17 144 98.8-99.1 (99.0) 0-42 (9; 11.8) 63-2130 (189; 583.5) 0-2527 (245; 585.9) 21 
 MB.18 2056 97.4-97.8 (97.6) 0-41 (8; 10.6) 56-2191 (170; 593) 0-2551 (226; 596.3) 15 
 MB.22 869 97.4-97.7 (97.6) 0-37 (8; 10.5) 57-2180 (167; 595.1) 0-2567 (227; 597.3) 20 
Snippy    
 AH187d 26 99.8-100.0 (99.9) 0-7 (2; 2.6) 57-372 (146; 155.5) 0-444 (157; 177.6) 50 
 IS195 26 99.6-100.0 (99.7) 0-7 (2; 2.6) 58-370 (145; 153.6) 0-436 (157; 176.2) 51 
 AND1407 164 98.9-99.2 (99.1) 0-18 (5; 4.9) 55-368 (143; 152.9) 0-434 (156; 173) 37 
 MB.17 144 98.8-99.1 (99.0) 0-20 (4; 4.4) 60-373 (138; 151.8) 0-436 (153; 171.9) 40 
 MB.18 2056 97.4-97.8 (97.6) 0-50 (5; 9.3) 55-350 (128; 145.7) 0-401 (133; 159.5) 5 
 MB.22 869 97.4-97.7 (97.6) NAf NAf NAf NAf 

aSeven-gene multi-locus sequence typing (MLST) sequence type (ST) determined in silico using BTyper v. 2.3.3  804 
bRange and mean of average nucleotide identity (ANI) values calculated between the respective reference genome and all 64 Group III B. cereus s.l. genomes 805 
assigned to ST 26, calculated using FastANI v. 1.0 806 
cMaximum no. of SNPs identified between two outbreak isolates, subtracted from the minimum no. of SNPs between an outbreak and non-outbreak isolate 807 
dAH187 has previously been shown to be an adequate reference genome for reference-based SNP calling among emetic ST 26 genomes (7) 808 
eNo SNPs could be identified among the 64 B. cereus s.l. ST 26 genomes using the respective SNP calling pipeline/reference genome combination 809 
fSNPs identified using the respective SNP calling pipeline/reference genome combination were not diverse enough for use with Gubbins/IQ-TREE810 
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FIGURE LEGENDS 811 
 812 

Figure 1. Maximum likelihood phylogeny constructed using core SNPs identified among 71 813 

emetic Group III B. cereus s.l. genomes and their closely related, non-emetic counterparts, plus 814 

outgroup genome B. cereus s.l. str. AFS057383. Tip labels of genomes possessing cereulide 815 

synthetase encoding genes cesABCD are annotated with a pink square. Clade labels correspond 816 

to (i) RhierBAPs level 2 cluster assignments, denoted as Cluster 1 to 9, with number of isolates 817 

assigned to a cluster (n) and sequence type (ST) determined using in silico multi-locus sequence 818 

typing (MLST) listed in parentheses; (ii) RhierBAPs level 1 cluster assignments, denoted as 819 

Cluster A, B, and C; (iii) PopCOGenT sub-cluster assignments, denoted as I and II. Tree edge 820 

and node colors correspond to the posterior probability (PP) of being in a ces-negative state, 821 

obtained using an empirical Bayes approach, in which a continuous-time reversible Markov 822 

model was fitted, followed by 1,000 simulations of stochastic character histories using the fitted 823 

model and tree tip states. Equal root node prior probabilities for ces-positive and ces-negative 824 

states were used. Node labels denote selected PP values, chosen for readability. The phylogeny 825 

was rooted along the outgroup genome, and branch lengths are reported in substitutions/site.  826 

Figure 2. Pairwise average nucleotide identity (ANI) values calculated between Group III B. 827 

cereus s.l. genomes in which (i) both the query and reference genome lacked cesABCD (ces-828 

negative; n = 90); (ii) both the query and reference genome possessed cesABCD (ces-positive; n 829 

= 60); (iii) the query genome possessed cesABCD and the reference genome lacked cesABCD 830 

and vice versa (mixed). Pairwise ANI values were calculated using FastANI version 1.0. Lower 831 

and upper box hinges correspond to the first and third quartiles, respectively. Lower and upper 832 

whiskers extend from the hinge to the smallest and largest values no more distant than 1.5 times 833 
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the interquartile range from the hinge, respectively. Points represent pairwise distances that fall 834 

beyond the ends of the whiskers. 835 

Figure 3. Rooted, time-scaled maximum clade credibility (MCC) phylogeny constructed using core SNPs 836 

identified among 23 Group III B. cereus s.l. genomes belonging to sequence type (ST) 26. Tip label 837 

colors denote ces-positive (pink) and ces-negative (teal) genomes predicted to be capable and incapable of 838 

producing cereulide, respectively. Tip labels of isolates that could be associated with a known B. cereus 839 

s.l. illness in the literature (emetic, diarrheal, or stool colonization) are annotated on the right side with a 840 

pink, teal, or blue circle, respectively (note that additional isolates were associated with illness; however, 841 

these are not annotated, as the type of illness could not be confirmed from the available literature). Branch 842 

labels denote posterior probabilities of branch support. Time in years is plotted along the X-axis, with 843 

branch length reported in substitutions/site/year. Node bars denote 95% highest posterior density (HPD) 844 

intervals for common ancestor node heights. Core SNPs were identified using Snippy version 4.3.6. The 845 

phylogeny was constructed using the results of five independent runs using a relaxed lognormal clock 846 

model, the Standard_TVMef nucleotide substitution model, and the Birth Death Skyline Serial population 847 

model implemented in BEAST version 2.5.1, with 10% burn-in applied to each run. LogCombiner-2 was 848 

used to combine BEAST 2 log files, and TreeAnnotator-2 was used to construct the phylogeny using 849 

common ancestor node heights. 850 

Figure 4. Rooted, time-scaled maximum clade credibility (MCC) phylogeny constructed using 851 

core SNPs identified among 23 Group III B. cereus s.l. genomes belonging to sequence type (ST) 852 

26. Branch color corresponds to posterior density, denoting the probability of a lineage being in a 853 

ces-negative state as determined using ancestral state reconstruction. Pie charts at nodes denote 854 

the posterior probability (PP) of a node being in a ces-negative (teal) or ces-positive (pink) state. 855 

Arrows along branches denote a ces gain event. Labels along branches denote a ces gain or loss 856 

event (denoted by + ces or – ces, respectively). Node labels correspond to node ages in years, 857 
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while branch lengths are reported in substitutions/site/year. Core SNPs were identified using 858 

Snippy version 4.3.6. The phylogeny was constructed using the results of five independent runs 859 

using a relaxed lognormal clock model, the Standard_TVMef nucleotide substitution model, and 860 

the Birth Death Skyline Serial population model implemented in BEAST version 2.5.1, with 861 

10% burn-in applied to each run. LogCombiner-2 was used to combine BEAST 2 log files, and 862 

TreeAnnotator-2 was used to construct the phylogeny using common ancestor node heights. 863 

Ancestral state reconstruction was performed using a prior on the root node in which the 864 

probability of the ST 26 ancestor being ces-positive or ces-negative was estimated using the 865 

make.simmap function in the phytools package in R. For ancestral state reconstruction results 866 

obtained using different root node priors, see Supplemental Figure S3. 867 

 868 

 869 

  870 
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SUPPLEMENTAL MATERIAL LEGENDS 871 

Supplemental Figure S1. Maximum likelihood phylogenies of 71 emetic Group III B. cereus 872 

s.l. genomes and their closely related, non- emetic counterparts, plus outgroup genomes (A and 873 

B) B. anthracis str. Ames, and (C) B. cereus s.l. str. AFS057383. Phylogenies were constructed 874 

using (A) core, and (B and C) majority SNPs. Tree edge and node colors correspond to the 875 

posterior probability (PP) of being in a ces-negative state, obtained using an empirical Bayes 876 

approach, in which a continuous-time reversible Markov model was fitted, followed by 1,000 877 

simulations of stochastic character histories using the fitted model and tree tip states. Equal root 878 

node prior probabilities for ces- positive and ces-negative states were used. Each phylogeny was 879 

rooted along its respective outgroup genome, and branch lengths are reported in 880 

substitutions/site.  881 

Supplemental Figure S2. Maximum likelihood phylogenies of 71 emetic Group III B. cereus 882 

s.l. genomes and their closely related, non-emetic counterparts, plus outgroup genomes (A) B. 883 

anthracis str. Ames, and (B) B. cereus s.l. str. AFS057383. Phylogenies were constructed using 884 

(1) core, and (2) majority SNPs. Tree edge and node colors correspond to the posterior 885 

probability (PP) of being in a ces-negative state, obtained using an empirical Bayes approach, in 886 

which a continuous-time reversible Markov model was fitted, followed by 1,000 simulations of 887 

stochastic character histories using the fitted model and tree tip states. Root node prior 888 

probabilities for ces-positive and ces-negative states were estimated using the make.simmap 889 

function in the phytools package in R. Each phylogeny is rooted along its respective outgroup, 890 

and branch lengths are reported in substitutions/site.  891 

Supplemental Figure S3. Rooted, time-scaled maximum clade credibility (MCC) phylogenies 892 

constructed using core SNPs identified among 23 Group III B. cereus s.l. genomes belonging to 893 
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sequence type (ST) 26. Ancestral state reconstruction was performed using the following priors 894 

on the root node: (A) probability of the root node belonging to a ces-positive or ces-negative 895 

state set to 0.5 each; or (B) probability of the root node being in a ces-positive or ces- negative 896 

state set to 0.2 and 0.8, respectively. Branch color corresponds to probability of a lineage being 897 

in a ces-negative state. Pie charts at nodes denote the posterior probability (PP) of a node being 898 

in a ces-negative (teal) or ces-positive (pink) state. Branch length is reported in 899 

substitutions/site/year. Core SNPs were identified using Snippy version 4.3.6. The phylogenies 900 

were constructed using the results of five independent runs using a relaxed lognormal clock 901 

model, the Standard_TVMef nucleotide substitution model, and the Birth Death Skyline Serial 902 

population model implemented in BEAST version 2.5.1, with 10% burn-in applied to each run. 903 

LogCombiner-2 was used to combine BEAST2 log files, and TreeAnnotator-2 was used to 904 

construct the phylogeny using common ancestor node heights.  905 

Supplemental Table S1. Genomic data and metadata used in this study (n = 150). 906 

Supplemental Table S2. Results of cereulide synthetase ancestral state reconstruction. 907 

Supplemental Text. Detailed descriptions of all methods, plus references. 908 

 909 
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ANI CZSK 1992 paranthracis ST164 cesNegative GCF 002147125

ANI PL 2000 paranthracis ST26 cesPositive GCF 000399225
ENV AQ 2005 paranthracis ST26 cesPositive GCF 000291235
FOO US 2016 paranthracis ST26 cesPositive R9−6393
XXX FR 2016 paranthracis ST26 cesPositive GCF 900176925
FOO DE 2014 paranthracis ST26 cesPositive GCF 001566375
FOO DE 2014 paranthracis ST26 cesPositive GCF 001566465
HUM JP 1994 paranthracis ST26 cesPositive GCF 000283675
HUM UK 1972 paranthracis ST26 cesPositive GCF 000021225
FOO US 2001 paranthracis ST26 cesPositive GCF 000743195
HUM US 2005 paranthracis ST26 cesNegative GCF 002807375
XXX FR 2016 paranthracis ST26 cesPositive GCF 900176895
FOO DE 2014 paranthracis ST26 cesPositive GCF 001566435
FOO DE 2014 paranthracis ST26 cesPositive GCF 001566455
FOO NO 1995 paranthracis ST26 cesNegative GCF 001044825
FOO DE 2014 paranthracis ST26 cesPositive GCF 001566515
XXX FR 2016 paranthracis ST26 cesNegative GCF 900176975
FOO NL 2012 paranthracis ST26 cesNegative GCF 001008695
HUM CN 2015 paranthracis ST26 cesPositive GCF 002530625
HUM US 2016 paranthracis ST26 cesPositive GCF 002200075
FOO DE 2014 paranthracis ST26 cesPositive GCF 001566525
FOO NL 2012 paranthracis ST26 cesNegative GCF 001008575
FOO NL 2013 paranthracis ST26 cesNegative GCF 001619465
FOO US 2016 paranthracis ST26 cesNegative GCF 002530785

ANI UK 2013 paranthracis ST171 cesNegative GCF 002912125
ANI US 1999 paranthracis ST171 cesNegative GCF 002146625
XXX XX 2009 paranthracis ST171 cesNegative GCF 000190515
ENV CL 2011 paranthracis ST2030 cesNegative GCF 000948325

ENV US 2014 outgroup SToutgroup cesNegative GCF 002574215

ENV AQ 2005 paranthracis ST938 cesNegative GCF 000291275
FOO NL 1971 paranthracis ST1989 cesNegative GCF 001044635
FOO US 2016 paranthracis ST1989 cesNegative GCF 002530775
FOO DE 2015 paranthracis ST1989 cesNegative GCF 001044795
ENV HK 2015 paranthracis ST205x cesNegative GCF 003270025
ENV US 2013 paranthracis ST205 cesNegative GCF 002565055
FOO US 2015 paranthracis ST205 cesNegative GCF 001913465
ENV IN 2014 paranthracis ST1066 cesNegative GCF 002835635
FOO BR 1987 paranthracis ST45 cesNegative GCF 000003645
FOO US 2015 paranthracis ST205 cesNegative GCF 001901885
FOO US 2012 paranthracis ST1084 cesNegative GCF 001583705
FOO US 2015 paranthracis ST1084 cesNegative GCF 001719025
HUM XX 2015 paranthracis ST185 cesNegative GCF 001044475
ENV PK 2013 paranthracis ST205 cesNegative GCF 003151055
FOO DE 2014 paranthracis ST2056 cesPositive GCF 001566385
ENV CN 2015 paranthracis ST2057 cesNegative GCF 002290105
FOO US 2015 paranthracis ST2087 cesNegative GCF 001913295
ENV GP 2009 paranthracis ST1443 cesNegative GCF 000290875
XXX TH 2001 paranthracis ST1538 cesNegative GCF 002147755

ENV IN 2016 paranthracis ST2184 cesNegative GCF 002896915
ENV US 2014 paranthracis ST2047 cesNegative GCF 002553235
HUM CN 2013 paranthracis ST975 cesNegative GCF 003439755
ENV US 2006 paranthracis ST205 cesNegative GCF 001982895

ENV PO 2003 paranthracis ST761 cesNegative GCF 001883995
XXX FR 2016 paranthracis ST549 cesNegative GCF 900176985
ENV US 2006 paranthracis ST1667 cesNegative GCF 001982935
XXX FR 2016 paranthracis ST2104 cesNegative GCF 900176835
ENV US 2014 paranthracis ST122 cesNegative GCF 002570465
ENV US 2007 paranthracis ST1065 cesNegative GCF 001982815
FOO US 2015 paranthracis ST1943 cesNegative GCF 001913535
ENV US 2006 paranthracis ST2085 cesNegative GCF 001982805
ENV US 2006 paranthracis ST869 cesNegative GCF 001982885

FOO DE 2014 paranthracis ST869 cesPositive GCF 001566535
FOO US 2015 paranthracis ST2082 cesNegative GCF 001913325

ENV CN 2008 paranthracis ST266 cesNegative GCF 000013065
ENV US 2016 paranthracis ST266 cesNegative GCF 002199475

FOO DE 2014 paranthracis ST144 cesPositive GCF 001566445
FOO NL 2012 paranthracis ST144 cesNegative GCF 001008585

FOO DE 2014 paranthracis ST164 cesNegative GCF 001566365

FOO DE 1993 paranthracis ST164 cesNegative GCF 001044895
FOO DK 2002 paranthracis ST164 cesPositive GCF 000290995
HUM NL 1999 paranthracis ST164 cesNegative GCF 001044735

ENV UK 1950 paranthracis ST164 cesNegative GCF 000743865

0 1PP(state=cesNegative)

length=0.351

Figure 1. Maximum likelihood phylogeny constructed using core SNPs identified among 
71 emetic Group III B. cereus s.l. genomes and their closely related, non-emetic 
counterparts, plus outgroup genome B. cereus s.l. str. AFS057383. Tip labels of genomes 
possessing cereulide synthetase encoding genes cesABCD are annotated with a pink square. 
Clade labels correspond to (i) RhierBAPs level 2 cluster assignments, denoted as Cluster 1 
to 9, with number of isolates assigned to a cluster (n) and sequence type (ST) determined 
using in silico multi-locus sequence typing (MLST) listed in parentheses; (ii) RhierBAPs
level 1 cluster assignments, denoted as Cluster A, B, and C; (iii) PopCOGenT sub-cluster 
assignments, denoted as I and II. Tree edge and node colors correspond to the posterior 
probability (PP) of being in a ces-negative state, obtained using an empirical Bayes 
approach, in which a continuous-time reversible Markov model was fitted, followed by 
1,000 simulations of stochastic character histories using the fitted model and tree tip states. 
Equal root node prior probabilities for ces-positive and ces-negative states were used. Node 
labels denote selected PP values, chosen for readability.
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Figure 2. Pairwise average nucleotide identity (ANI) values calculated between Group III 
B. cereus s.l. genomes in which (i) both the query and reference genome lacked cesABCD
(ces-negative; n = 90); (ii) both the query and reference genome possessed cesABCD (ces-
positive; n = 60); (iii) the query genome possessed cesABCD and the reference genome 
lacked cesABCD and vice versa (mixed). Pairwise ANI values were calculated using 
FastANI version 1.0. Lower and upper box hinges correspond to the first and third quartiles, 
respectively. Lower and upper whiskers extend from the hinge to the smallest and largest 
values no more distant than 1.5 times the interquartile range from the hinge, respectively. 
Points represent pairwise distances that fall beyond the ends of the whiskers.
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Figure 3. Rooted, time-scaled maximum clade credibility (MCC) phylogeny constructed using core SNPs identified among 23 Group III B. cereus s.l. genomes belonging to 
sequence type (ST) 26. Tip label colors denote ces-positive (pink) and ces-negative (teal) genomes predicted to be capable and incapable of producing cereulide, respectively. 
Tip labels of isolates that could be associated with a known B. cereus s.l. illness in the literature (emetic, diarrheal, or stool colonization) are annotated on the right side with a 
pink, teal, or blue circle, respectively (note that additional isolates were associated with illness; however, these are not annotated, as the type of illness could not be confirmed 
from the available literature). Branch labels denote posterior probabilities of branch support. Time in years is plotted along the X-axis, with branch length reported in 
substitutions/site/year. Node bars denote 95% highest posterior density (HPD) intervals for common ancestor node heights. Core SNPs were identified using Snippy version 
4.3.6. The phylogeny was constructed using the results of five independent runs using a relaxed lognormal clock model, the Standard_TVMef nucleotide substitution model, 
and the Birth Death Skyline Serial population model implemented in BEAST version 2.5.1, with 10% burn-in applied to each run. LogCombiner-2 was used to combine 
BEAST 2 log files, and TreeAnnotator-2 was used to construct the phylogeny using common ancestor node heights.
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Figure 4. Rooted, time-scaled maximum clade credibility (MCC) phylogeny constructed using core SNPs identified 
among 23 Group III B. cereus s.l. genomes belonging to sequence type (ST) 26. Branch color corresponds to posterior 
density, denoting the probability of a lineage being in a ces-negative state as determined using ancestral state 
reconstruction. Pie charts at nodes denote the posterior probability (PP) of a node being in a ces-negative (teal) or ces-
positive (pink) state. Arrows along branches denote a ces gain event. Labels along branches denote a ces gain or loss 
event (denoted by + ces or – ces, respectively). Node labels correspond to node ages in years, while branch lengths are 
reported in substitutions/site/year. Core SNPs were identified using Snippy version 4.3.6. The phylogeny was 
constructed using the results of five independent runs using a relaxed lognormal clock model, the Standard_TVMef
nucleotide substitution model, and the Birth Death Skyline Serial population model implemented in BEAST version 
2.5.1, with 10% burn-in applied to each run. LogCombiner-2 was used to combine BEAST 2 log files, and 
TreeAnnotator-2 was used to construct the phylogeny using common ancestor node heights. Ancestral state 
reconstruction was performed using a prior on the root node in which the probability of the ST 26 ancestor being ces-
positive or ces-negative was estimated using the make.simmap function in the phytools package in R. For ancestral 
state reconstruction results obtained using different root node priors, see Supplemental Figure S3.
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