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Abstract 

Many of the economically most costly forms of unethical behavior such as tax evasion, stock 

manipulations or movie and music piracy relate to the moral domain of (dis)honesty, in which 

unethical behavior is not targeted at a clearly identifiable victim. While large individual differences 

in (dis)honesty are evident, the neurocognitive determinants of this heterogeneity remain elusive. We 

combined connectome-based predictive modelling (CPM) on resting state functional connectivity 

patterns with a novel experimental task, which measures spontaneous and voluntary cheating 

inconspicuously, to investigate how these task-independent neural patterns shape our (dis)honest 

choices. Our analyses revealed that functional connectivity in a network of regions, including the 

dorsolateral prefrontal cortex and the inferior frontal gyrus, commonly linked to cognitive control 

processes, but also the medial prefrontal cortex and temporal pole, associated with self-referential 

thinking, and the caudate nucleus, linked to reward processing, are of central importance in 

promoting honesty. In a leave-one-out cross-validation analysis, we show that this neural model can 

reliably and accurately predict how much an unseen participant will cheat on our task. Participants 

who cheated the most, also scored highest on several impulsivity measures, which highlights the 

ecological validity of our task. Notably, when comparing neural and self-report measures, the neural 

measures were found to be significantly more important in predicting cheating. Our findings suggest 

that a person’s dis(honest) decisions depend on how well the self-referential thinking network is 

functionally connected to the control and reward networks.  
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Introduction 

Cheating and dishonesty, manifested in diverse behaviors such as financial fraud, scientific 

misconduct and software piracy, is more prevalent than ever and represents one of the economically 

most costly forms of unethical behavior. However, it is evident that not everybody is a cheater: there 

are substantial individual differences in (dis)honesty, ranging from people who embody integrity and 

remain honest even when it comes at their own cost, such as Abraham ‘honest Abe’ Lincoln, to 

individuals such as Jordan ‘Wolf of Wallstreet’ Belfort, who greedily engaged in fraudulent stock 

market manipulations that led to investor losses of more than 200 million US Dollars. 

In addition to such anecdotal evidence, several studies have shown that, when given the opportunity, 

individuals indeed differ considerably in how frequently they cheat (Gino et al., 2012; 2014, Speer, 

Smidts & Boksem, 2020). As in the example of the ‘Wolf of Wallstreet’, a greedy personality 

appears to be associated with dishonesty: research in social and personality psychology has found 

that greedy people indeed find a variety of moral transgressions more acceptable and engage in such 

unethical behaviors more frequently than less greedy people do (Seuntjens et al., 2019). 

Yet, people do not only care about their own financial gains, which is evident from the omnipresence 

of prosocial behaviors such as altruism, reciprocity and honesty. When exposed to an opportunity to 

cheat, the way we view ourselves, our self-concept (Aronson 1969; Baumeister 1998; Bem 1972), 

may motivate us to refrain from cheating. People highly appreciate integrity and honesty in others 

and also have strong convictions of their own moral standards (Dhar & Wertenbroch, 2012). 

Violations of these moral standards would require a negative update of one’s self-concept and people 

are motivated to avoid this (Berthoz et al., 2006). As a result, people often tend to uphold their self-

concept even if it means forgoing financial gains (Mazar, Amir, & Ariely, 2008). 

The extent to which an individual focusses on their positive self-concept versus their greedy desires, 

and how this influences their moral decisions, may be associated with stable personality traits. For 
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instance, the extent to which fairness concerns or social norms influence our judgement and 

decision-making may be linked to heterogeneity in (dis)honesty (Houser, Vetter & Winter, 2012; 

Cohn, Marechal & Noll, 2015; Cohn, Fehr & Marechal, 2014), while impulsivity and sensation-

seeking have been associated with cheating (Anderman et al., 2009). In addition, it has been found 

that creative people cheat more (Gino et al., 2012, 2014), which may be driven by a greater creative 

ability to justify moral transgressions. 

However, the neuro-cognitive processes underlying these individual differences have remained 

elusive. Insight into these mechanisms may provide us with a better and more detailed understanding 

of the processes responsible for the observed individual differences in dishonesty, and how they 

interact to shape our moral choices. A promising approach of investigating individual differences in 

(dis)honesty is to identify its neural correlates using resting state functional magnetic resonance 

imaging (rsfMRI). Since all individuals are unique, it is reasonable to expect that brain functional 

organization varies between individuals as well. Indeed, a study on a large dataset from the Human 

Connectome Project revealed that functional connectivity profiles can be used as a ‘fingerprint’ to 

identify individuals (Finn et al., 2015). Specifically, it has been shown that variability in whole brain 

functional connectivity is substantial across individuals, and that an individual’s functional 

connectome is robust and reliable across resting-state and task-based sessions over time and can even 

be reproduced between task and rest (Cao et al., 2014; Zuo and Xing, 2014; Finn et al., 2015). In 

previous research, rsfMRI has been employed to successfully link functional connectivity to 

individual differences in personality (Nostro et al., 2018; Cai et al., 2020) and social decision making 

and behavior, such as impulsivity in economic decision-making (Li et al., 2013), trust behavior 

(Hahn et al., 2014), reciprocity of a gift-giving (Caceda et al., 2015) and preference for social 

information (Zhang and Mo, 2016). In light of these findings, rsfMRI may provide added value to 

personality questionnaires as it provides direct access to the underlying cognitive and psychological 

sources driving this heterogeneity that is not distorted by social desirability bias (Grimm, 2010). 
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These underlying psychological and cognitive sources may not even be consciously accessible to the 

participants and may thus not be measurable with questionnaires. 

Based on the great promise of resting state functional connectivity for investigating the 

underpinnings of individual differences in personality and decision making, this study examined 

whether the resting functional connectome can predict an individual’s propensity to cheat. 

Recent neuroscientific evidence tends to support the notion of two opposing forces of greed and 

moral self-concept that steer us towards (dis)honesty. In a recent fMRI study (Speer, Smidts & 

Boksem, 2020), it was found that activity in the nucleus accumbens (Nacc), associated with reward 

anticipation and greed (Ballard & Knutson, 2009; Knutson, Adams, Fong, & Hommer, 2001; Abe & 

Greene, 2014), promotes cheating, particularly for individuals who tend to cheat a lot, whereas a 

network consisting of Posterior Cingulate Cortex (PCC), bilateral Temporoparietal Junctions (TPJ) 

and Medial Prefrontal Cortex (MPFC), associated with self-referential thinking processes (Gusnard 

et al, 2001; Meffert et al., 2013; Van Buuren et al., 2010), promotes honesty, particularly in 

individuals who are generally honest. In addition, numerous studies have proposed that cognitive 

control is needed to resolve this tension between reward and self-concept (Abe & Greene, 2014; 

Gino, Schweitzer, Mead, & Ariely, 2011; Greene & Paxton, 2009; Maréchal, Cohn, Ugazio, & Ruff, 

2017; Mead, Baumeister, Gino, Schweitzer, & Ariely, 2009). In accordance with these findings, the 

study by Speer et al. (2020) revealed that activity in cognitive control regions, namely the anterior 

cingulate cortex (ACC) and the inferior frontal gyrus (IFG; Swick et al., 2008; Carter & Van Veen, 

2007) were recruited to resolve the conflict between self-interest and self-image. 

In light of this previous research, we hypothesize that higher functional connectivity within the self-

referential thinking network, including the MPFC, TPJ, PCC and temporal poles will be predictive of 

honesty. Similarly, we expect that higher connectivity between cognitive control regions, such as the 

dlPFC, ACC or IFG on the one hand and the self-referential thinking network on the other hand will 
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be additionally predictive of honesty, by further enhancing the influence of our self-concept on moral 

decisions. Conversely, higher connectivity within reward regions, such as the Nacc, caudate nucleus 

and ventromedial prefrontal cortex (vmPFC), is hypothesized to predict dishonesty, while a negative 

coupling between cognitive control and reward networks may be additionally predictive of 

dishonesty. 

To test these hypotheses, we used a sample of 99 participants who completed a resting state scan and 

the ‘Spot-The-Difference Task’ (see Gai & Puntoni, 2017; Speer, Smidts & Boksem, 2020). This is 

an innovative task in which participants could cheat repeatedly, deliberately and voluntarily without 

suspicion of the real purpose of the task. We employed connectome-based predictive modeling 

(CPM) to investigate whether (dis)honesty can be reliably predicted from an individual’s unique 

pattern of functional connectivity. CPM has recently been developed to predict individual differences 

in human behavior (e.g., cognitive abilities & personality traits) from patterns of whole-brain 

functional connectivity (Finn et al., 2015; Rosenberg et al., 2016; Shen et al., 2017). Specifically, the 

predictive power of CPM has been illustrated in research on fluid intelligence (Finn et al., 2015), 

sustained attention (Rosenberg et al., 2016), and creativity (Beaty et al., 2018) revealing reliable 

prediction of these behavioral variables in participants whose data were not used in model fitting. 

Importantly, this approach differs from methods implemented in previous rsfMRI studies as it uses 

cross-validation to assess predictive accuracy instead of just establishing correlational relationships. 

As the standard CPM approach does not allow to identify the importance of each of the individual 

connections, we extended the CPM by integrating multiple regression and lasso-regression. This 

allowed us to determine which individual connections are the most important ones in predicting an 

individual’s propensity to cheat. Moreover, this extended CPM approach, combined with 

permutation importance analysis, enabled us to directly compare the importance of personality 

questionnaire measures with functional connectivity measures in predicting cheating propensity. 
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Methods 

 

Participants. The reported analyses are based on 99 participants (67 females; 24 

nationalities; age 18-44 years; M = 24.3, SD = 4.26) from three separate studies. The reason 

for running three studies was driven by our motivation to obtain a large and diverse sample 

size. The first sample of participants consisted of a student sample (N=49, 37 females; age 

18-35 years; M = 24.4, SD = 3.34) from now on referred to as Study 1. The second sample 

was collected from a student sample at another university in a different scanner (N=9, 8 

females; age 21-24 years; M = 21.8, SD = 1.12). The third sample (Study 3) consisted of a 

general population sample from a different city recruited via flyers around town and online 

via Facebook (N=41, 23 females; age 18-43 years; M = 24.8, SD = 5.4) and resting state data 

was collected in a different scanner. No significant differences in demographics (age and 

gender) were identified between the samples. All participants were right-handed with normal 

or corrected to normal vision, and no record of neurological or psychiatric diseases. The 

studies were approved by the respective university Ethics Committees and were conducted 

according to the Declaration of Helsinki. 

Task and Stimuli 

Spot-The-Difference Task 

As described in a previous study by Speer, Smidts and Boksem (2020), in the Spot-The-

Difference task, participants were presented with pairs of images and were instructed that 

there were always three differences present between the image pairs. Differences consisted of 

objects that were added to or removed from an image, or objects that differed in color 

between images. However, images could actually contain one, two, or three differences. 

Participants were requested to find three differences between the images. Since reward (see 

below) was contingent on participants reporting that they had found all three differences, 
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without having to point them out, this design allowed and encouraged cheating behavior (i.e., 

reporting having found all three, even when objectively fewer than three differences were 

present in the images). 

Participants were instructed that the purpose of the study was to investigate the underlying 

neural mechanisms of visual search for marketing purposes such as searching for a product in 

an assortment or information on a webpage. In order to increase credibility of this cover story 

a simple visual search task was added at the beginning of the experiment (see Appendix 1). 

Further, participants were instructed that the neurocognitive effect of motivation, elicited by 

monetary reward, on speed and accuracy of visual search would be investigated. Although 

participants were told that there were three differences in all trials, in 25% of the trials there 

were only two differences and in 25% there was only one difference. All stimuli were 

standardized in size and were presented on a white background on a computer screen. The 

ratio of 50% - 50% (three differences vs less than three differences) was chosen based on the 

results of pilot studies that indicated this ratio to be optimal in reducing suspicion that the 

pairs did not always contain three differences. 

Trials were further categorized into normal (50%), hard (25%) and very hard trials (25%), for 

which participants could receive 5cts, 20cts, and 40cts, respectively. All the trials with three 

differences (the filler trials) were categorized as normal trials, whereas trials with less than 

three differences (the trials of interest) were randomly categorized as hard or very hard trials. 

Consequently, the reward was independent of the number of differences in the image pair for 

the trials of interest, which is important in order to be able to disentangle the effects of reward 

and cheating magnitude (the actual number of differences) on cheating behavior. The 

different levels of difficulty were added to reduce suspicion about the real purpose of task. It 

was assumed that if trials are labeled as hard or very hard, it would be more credible to the 

participant that the image pair actually contained three differences, but they were just too 
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hard to spot. In addition, levels of difficulty were introduced to eliminate possible demand 

effects: we wanted participants to cheat for monetary reward and not to prevent seeming 

incompetent, which may be associated with different underlying neural mechanisms and 

consequently confound the analysis. 

To further reduce suspicion about the purpose of the study, approximately 10% of all trials 

were point-and-click trials. In these trials, participants had to click on the location in the 

images where they spotted the differences using a joy-stick. Consequently, cheating was not 

possible on the point-and-click trials. Participants always knew prior to the start of a trial 

whether it was a point-and-click trial indicated by a screen requesting participants to click on 

the image. This ensured that participants would not refrain from cheating on all other trials, 

while still reducing the suspicion about the real purpose of the study. Participants were told 

that only 10% of trials were point-and-click trials because it would take too much time to 

point out the differences for every pair. In sum, there were 144 regular trials (of which 72 

cheatable trials) and 12 point-and-click trials. The maximum amount of money earned, in 

case a participant cheated on all cheatable trials was approximately 35 Euros, whereas in case 

a participant would not cheat at all he or she would earn approximately 7.50 Euros. To be fair 

to all participants, after completion of the full study, participants were debriefed and they 

were all paid out the maximum amount, irrespective of their actual cheating behavior. 

Each trial started with a fixation cross which was presented for a variable amount of time 

between 1-3s (see Figure 1). Subsequently, the Level of Difficulty screen was presented for 2 

seconds informing the participants about the level of difficulty of the upcoming trial. This 

screen also displayed how much money could be earned on that trial. As a result, participants 

were constantly aware of the potential gains of cheating. Next, an image pair was presented 

for 6s, a length determined by the behavioral pilots, and participants engaged in the visual 

search. Afterwards, the participants were asked whether they spotted all three differences 
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(yes/no response). On this decision phase screen, again the potential reward for this trial was 

presented, in order to make the reward more salient and increase cheating behavior. After 3s, 

the response phase started in which participants’ responses were recorded. In the decision 

phase and the response phase the current balance was also shown, which was done to 

demonstrate to the participants that if they stated that they had found the three differences, 

their current balance increased immediately. It was assumed that this direct noticeable effect 

of behavior on the increase of the current balance, would further motivate participants to 

cheat. 

The buttons corresponding to “Yes” and “No” were switched across trials to reduce the 

response bias for the dominant hand. Once the participants responded, the choice was 

highlighted by a blue box for 500ms to indicate that the response was recorded, and the trial 

ended. If no response was made, the trial ended after 3s. In addition, there were five practice 

trials, in which participants could get acquainted with the task. Stimulus presentation and data 

acquisition was performed using Presentation® software (Version 18.0, Neurobehavioral 

Systems, Inc., Berkeley, CA, www.neurobs.com). 

 

Figure 1. One trial of the Spot-The-Differences paradigm. Participants viewed a screen 

indicating the difficulty and value of the trial, then the image pair appeared for six seconds 

and then participants had to indicate whether or not they spotted all three differences. 

Stimuli 
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Stimuli for the task consisted of 144 Spot-The-Difference image pairs that were downloaded 

from the Internet. Cartoon images of landscapes containing several objects were selected, to 

make them engaging and challenging enough for the participants. Landscapes were chosen as 

they generally satisfied the necessary criterion of containing several different objects. The 

stimuli consist of pairs of images that are identical apart from a certain number (1-3) of 

differences that were created using Adobe Photoshop. Differences consisted of objects added 

to or removed from the landscape picture or changed colors of objects. Differences were fully 

randomized across all pairs of images, which means that all image pairs could be presented 

with either one, two or three differences. To make sure that participants would be able to find 

the differences between the images in a reasonable amount of time, we ran a pilot study on 

Amazon’s Mechanical Turk (N=205) to test the difficulty to spot the differences between the 

images and to determine the optimal duration of picture presentation (see Appendix 2). 

Experimental procedure 

All participants were first informed about and checked on the safety requirements for MRI 

scanning. They then completed the resting state scan. Before the Spot-The-Difference task 

started, participants were then introduced to the cover story, and the tasks and they signed the 

informed consent form. Subsequently, they completed practice trials for both visual search 

tasks. Afterwards, the participants completed the simple visual search task (5 min) followed 

by the Spot-The-Difference task which took approximately 40 minutes. After completing the 

two tasks participants filled-in a short questionnaire including questions about their thoughts 

on the purpose of the task. 

After completion of the experimental session, participants received an email with a link to a 

Qualtrics questionnaire including measures for impulsivity, greed, creativity,   

manipulativeness and sensitivity to different moral foundations (explained below), which 
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they were allowed to fill out at home. First, in the test battery, we included four impulsivity 

scales: a) the Brief Sensation Seeking Scale (BSSS; Hoyle, Stephenson, Palmgreen, Lorch & 

Donohew, 2002), b) the BisBas scale to assess dispositional inhibition and approach behavior 

(Carver & White, 1994), c) the short version of the UPPS-P Impulsive Behavior scale 

(Cyders, Littlefield, Coffey, & Karyadi, 2014) and d) a Risk seeking scale implementing a 

standard risk preference elicitation method where one can choose between a certain amount 

of money and a risky gamble. To quantify risk preference, participants were presented with 

sequence of binary choices between a certain amount of money for sore or a gamble with a 

fifty percent chance of winning 30€ for sure and a fifty percent of not winning anything. 

Whereas the gamble remains the same for each question the amount gained for sure increases 

at each step. A person’s risk preference could thus be established by identifying the amount 

of money for sure at which the person switches from the gamble to certain payout (example 

item: “Would you prefer 13€ for sure or 0€ or 30€ with a 50-50% chance”). These 

impulsivity scales were selected because dishonesty and cheating has been linked to 

impulsivity as a personality trait (Anderman et al., 2009). 

Second, we measured how an individual’s sensitivity to different moral foundations, namely 

Care vs. Harm, Fairness vs. Cheating, Loyalty vs. Betrayal, Authority vs. Subversion, 

Sanctity vs. Degradation and Liberty vs. Oppression, may influence cheating by including 

two such measures: a) the Moral Foundations Questionnaire (MFQ; Graham et al., 2011) and 

b) the Moral Foundations Vignettes (Clifford, Iyengar, Cabeza & Sinnott-Armstrong, 2015). 

Third, as greed is assumed to drive cheating behavior (Seuntjens et al., 2019), the 

Dispositional Greed Scale was added (Seuntjens et al., 2015). Fourth, an individual’s 

creativity was measured by means of three scales: a) the Remote Associates Test (Mednick, 

1968), b) Gough’s Creative Personality Scale (gough, 1979), and c) Hovecar’s Creative 

Behavior Inventory (Hovecar, 1979), as it has been found that more creative people tend to 
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cheat more (Gino et al., 2012). Fifth, the MACH-IV test (Christie & Geis, 1970) to measure 

manipulativeness was added as Machiavellianism has also often been associated with 

unethical behavior (Tang & Chen, 2008). Participants were informed that they would only 

receive their payment once they completed the questionnaires. 

FMRI acquisition 

For Study 1, the functional magnetic resonance images were collected using a 3T Siemens 

Verio MRI system. Functional scans were acquired by a T2*-weighted gradient-echo, echo-

planar pulse sequence in descending interleaved order (3.0 mm slice thickness, 3.0 × 3.0 mm 

in-plane resolution, 64 × 64 voxels per slice, flip angle = 75°). TE was 30ms and TR was 

2030ms. A T1-weighted image was acquired for anatomical reference (1.0 × 0.5 × 0.5 mm 

resolution, 192 sagittal slices, flip angle = 9°, TE = 2.26ms, TR = 1900ms). 

For Study 2, the functional magnetic resonance images were collected using a 3T MRI 

system (General Electric). Functional scans were acquired by a T2*-weighted gradient-echo, 

echo-planar pulse sequence in ascending interleaved order (3mm slice thickness, 3.5 mm 

slice gap, 3 × 3 mm in-plane resolution, 64 × 64 voxels per slice, flip angle = 75°, TE = 

30ms, TR = 2030ms). A T1- weighted image was acquired for anatomical reference (1.0 × 

1.0 × 1.0 mm resolution, 160 sagittal slices, TE = 2.35ms, TR = 7.21ms). 

For Study 3, the functional magnetic resonance images were collected using a 3T Phillips 

Achieva MRI system. Functional scans were acquired by a T2*-weighted gradient-echo, 

echo-planar pulse sequence in descending interleaved order (3.0 mm slice thickness, 3.0 × 3.0 

mm in-plane resolution, 64 × 64 voxels per slice, flip angle = 76°). TE was 27ms and TR was 

2000ms. A T1-weighted scan was acquired using 3D fast field echo (TR: 82�ms, TE: 

38�ms, flip angle: 8°, FOV: 240�×�188�mm, in-plane resolution 240 × 188, 220 slices 

acquired using single-shot ascending slice order and a voxel size of 

1.0�×�1.0�×�1.0�mm). 
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For all studies, the stimuli were presented using Presentation® software (Version 18.0, 

Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com).  

Preprocessing 

Data was preprocessed using the standard pipeline of the CONN toolbox 

(https://www.nitrc.org/projects/conn) in MATLAB. This pipeline includes realignment of the 

functional data using SPM12’s realign & unwarp procedure (Anderson et al., 2001), where all 

scans are coregistered and resampled to a reference image (first scan of the first session) 

using b-spline interpolation. Subsequently, outlier detection was performed from the 

observed global BOLD signal and the amount of subject-motion in the scanner. Acquisitions 

with framewise displacement above 0.9mm or global BOLD signal changes above 5 SD are 

marked as potential outliers. Framewise displacement is computed at each timepoint by 

considering a 140x180x115mm bounding box around the brain and estimating the largest 

displacement among six control points placed at the center of this bounding-box faces. 

Afterwards, both the functional and the anatomical data are normalized into standard MNI 

space and segmented into grey matter, white matter, and CSF tissue classes using SPM12’s 

unified segmentation and normalization procedure (Ashburner and Friston, 2005). As a last 

step, functional data is smoothed using spatial convolution with a Gaussian kernel of 8mm 

full width half maximum (FWHM), in order to increase BOLD signal-to-noise ratio and 

reduce the influence of residual variability in functional and gyral anatomy across subjects. 

As a next step denoising of the functional data was performed again using the standard 

pipeline from the CONN toolbox. For each participant, CONN implemented CompCor, a 

method for identifying principal components associated with segmented white matter (WM) 

and cerebrospinal fluid (CSF). In a first-level analysis, aCompCor components (Behzadi et 

al., 2007) and first-order derivatives of motion were entered as confounds and regressed from 
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the BOLD signal. In addition, preprocessing steps included temporal band-pass filtering 

(0.008 Hz – 0.09 Hz), linear detrending, and regression of outlying functional volumes 

(>97th percentile in normative sample; global-signal z-value threshold = 5, subject-motion 

mm threshold = 0.09) identified using the artifact removal toolbox (ART) (https:// 

www.nitrc.org/projects/artifact_detect/). 

Functional Network Construction. To define brain regions of interest we used dictionary 

learning (Mensch et al., 2016, Mensch et al., 2018) to extract 80 components from the 

denoised resting state data. Dictionary learning is a sparsity-based decomposition method for 

extracting spatial maps. It extracts maps that are naturally sparse and usually cleaner than 

ICA (Mensch et al., 2016), and it has been found to be the method that leads to the highest 

predictive success in a comparison of different connectome-based prediction pipelines (Dadi 

et al., 2019). In addition, the authors found that 80 components are the optimal amount for 

predictive performance. Subsequently, a Random-walk based extraction of regions from the 

brain networks obtained by the dictionary learning algorithm was used as proposed in 

Abraham et al. (2014) resulting in 142 regions. To estimate functional connectivity between 

these 142 regions efficiently, we use the Ledoit-Wolf regularized shrinkage estimator (Ledoit 

and Wolf, 2004; Varoquaux and Craddock, 2013), which gives a closed form expression for 

the shrinkage parameter. For parametrization of the functional interactions, Pearson’s 

correlation was used. 
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Figure 2. A total of 80 components extracted from the dictionary learning algorithm 

Connectome-Based Predictive Modeling. The main analysis utilized CPM to predict 

participants’ propensity to cheat from whole-brain resting state functional connectivity 

patterns. CPM is a recently developed tool for identifying functional brain connections 

related to a behavioral variable of interest, which are then used to predict behavior in unseen 

participants (i.e., participants whose data were not used in the training of the model; Shen et 

al., 2017). CPM was introduced and described in recent neuroimaging literature in a series of 

studies reporting its successful implementation in prediction of cognitive variables such as 

fluid intelligence, attention control and creativity (Finn et al., 2015; Rosenberg et al., 2016; 

Shen et al., 2017, Beaty et al., 2018). The MATLAB syntax used for CPM is freely available 

online (https://www.nitrc.org/projects/bioimagesuite/). 

We implemented the CPM procedure in Python since the functional network construction 

steps were also performed in Python with use of the Nilearn package (Abraham et al., 2014b). 

We extended the standard procedure, described in detail below. As in the standard CPM 

approach (Shen et al. 2017), as a first step, the level of honesty which is the reverse of the 

number of times a participant cheated on the Spot-The-Difference task (the cheatcount), was 

correlated with each edge (i.e., correlation of mean BOLD signals between a given pair of 

brain regions) in the functional connectivity matrix of each participant (see Figure 3A&B). 

Subsequently, a threshold was applied to the connectivity matrix to keep only the edges that 

were significantly positively or negatively correlated with honesty (p<0.001, see Figure 3C). 

The positive edges, from now on referred to as the honesty network (as these edges are 

positively correlated with honesty) and the negative edges, referred to as the dishonesty 

network (as these are negatively correlated with honesty), will from this stage onwards be 

analyzed separately.  
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In our extended procedure, we then fit a multiple regression model and a lasso regression 

model on the significant edges, to derive beta coefficients for each of the edges (see Figure 

3D). This allows us to assess the importance of the different edges that are entering the 

predictive model. Afterwards, a linear regression model was specified to estimate the 

relationship between the cheatcount predicted by the model and the observed cheatcount. 

Lastly, as in the standard approach, the model was applied to unseen participants in a leave-

one-out cross validation scheme (see Figure 3E). Specifically, all steps described, including 

correlating edges with honesty and feature selection (thresholding) and model estimation, 

were implemented on n – 1 participants connectivity matrices and cheatcount scores, and then 

the fitted model was tested on the left-out participant.  

Due to the fact that feature selection is performed inside the cross-validation loop, slightly 

different edges may be selected at each iteration which result in slight variations in the 

predictive models. The predictive power of the model is assessed by means of the statistical 

significance of the Pearson correlation between the predicted honesty scores and the observed 

scores. Statistical significance of this correlation is estimated by means of permutation testing 

where honesty scores are permuted and the CPM procedure is repeated 1000 times. The 

empirical score is then compared against the null distribution to derive a p-value.  

To estimate feature importance for the multiple regression and Lasso models, a permutation-

importance approach was implemented (Breiman, 2001). Specifically, in each cross 

validation iteration of the CPM procedure, the estimation of the predictive model was 

repeated and each of the predictors (edges) were permuted 5 times in sequence and the 

average prediction across the 100 permutations was recorded for each of the predictors. 

Finally, after CPM was performed, only the predictors that occurred in each prediction fold 

were selected and the reduction in correlation associated with permuting each coefficient (as 

compared to the correlation including the unpermuted predicted) at each fold was computed. 
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Feature importance was then calculated as the difference in correlation between predicted and 

actual level of honesty between the baseline model (no permuted predictors) and the 

permuted model. Consequently, the higher the difference, the more important the predictor 

was. 

 

Figure 3. Adapted CPM procedure: A-B) As a first step, the correlation between each edge in 

the connectivity matrix and level of honesty is computed. C) Next, the correlations are 

thresholded and only the significant edges are retained. D) We then fit a (lasso) regression 

model using the selected edges to the level of honesty on the participants in the training set. 

E) As a last step, we use the model to predict the level of honesty of the left-out subject 

(whether someone is more a saint = honest participant or a devil = person who cheats a lot/ 

cheater). 
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Results 

Behavioral results 

Substantial individual differences in the total amount of cheating were observed (Mean= 

37%, Median=28%, SD=32%; see Figure 4): some participants cheated only on one or two 

trials (11% of participants), whereas others only missed one or two opportunities to cheat (4 

%). 

To assess suspicion about the real purpose of the study, participants were asked what the goal 

of the experiment was. Participants mentioned marketing research, consumer decision-

making and visual search as our general cover story suggested that visual search is important 

for quickly locating one’s favorite brand or product in a supermarket. However, 12 

participants mentioned dishonesty, moral decision making or related concepts, which 

suggests that they were suspicious of the real goal of the study. Importantly, no significant 

differences in cheatcount were found between suspicious and unsuspicious participants (t = 

0.11, p=0.91), which suggests that suspicion about the purpose of the study did not have 

significant effects on cheating behavior. To assess the robustness of our findings, the neural 

analyses were conducted with all participants included and with the suspicious participants 

removed. The robustness checks revealed that CPM predictions remain significant also 

without suspicious participants (see Appendix 3). 
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Figure 4. Individual differences in proportion of cheating on the Spot-The-Difference task. N 
= 99. 

 

We tested whether the magnitude of (dis)honesty we measure with our task generalizes to 

stable personality characteristics, to explore the ecological validity of the Spot-The-

Difference task. To test this, we correlated the individual differences in (dis)honesty with 

scores from measures of impulsivity, moral foundations, greed, creativity and 

manipulativeness, respectively. We found that levels of honesty (reverse cheatcount) 

negatively correlated (for all correlations see Appendix 4) with four measures of impulsivity: 

a) The Brief Sensation Seeking Scale (r = -0.23, p < 0.05; Example item: “I would like to try 

bungee jumping”;  Hoyle, Stephenson, Palmgreen, Lorch & Donohew, 2002), b) the positive 

urgency subscale of the short version of the UPPS-P Impulsive Behavior scale (r = -0.24, p < 
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0.05; Example item: “I tend to act without thinking when I am really excited.”), c)  the lack 

of premeditation subscale (r = -0.21, p < 0.05; Example item: “I like to stop and think things 

over before I do them.”, reverse coded) of the short version of the UPPS-P Impulsive 

Behavior scale (Cyders, Littlefield, Coffey, & Karyadi, 2014), and d) the Risk seeking scale 

(r = -0.25, p < 0.05; Example item: “Would you prefer 13€ for sure or 0€ or 30€ with a 50-

50% chance”). In accordance with previous literature (Anderman et al., 2009), these findings 

suggest that cheating is associated with higher impulsivity.  

Unexpectedly, we also found that more honest participants scored higher on reward 

responsiveness of the BisBas scale than more dishonest participants (r = 0.21, p < 0.05; 

Example item: “When I get something I want, I feel excited and energized.”). In addition to 

impulsivity, and perhaps surprisingly, honesty also correlated negatively with how sensitive 

participants reported themselves to be to social norms (r = -0.32, p < 0.05; Example item: 

“You see a woman answering a phone call with the word “goodbye” instead of “hello”, 5 

point response scale: not at all wrong – extremely wrong; Clifford, Iyengar, Cabeza & 

Sinnott-Armstrong, 2015), and to violations of purity  (r = -0.25, p < 0.05; Example item: 

“Chastity is an important and valuable virtue”). 

Predicting (dis)honesty using a resting state functional connectome 

As explained in the methods section, the CPM procedure identifies functional connections 

that are significantly positively related to honesty, which we term the honesty network, and 

edges that are significantly negatively related to honesty, which we term the dishonesty 

network. To identify the most important edges within the networks we used the multiple 

regression CPM and found a strong correlation for the honesty network between predicted 

and actual honesty (r = 0.61, pperm<0.001, see Figure 5C). The higher the functional 

connectivity within the honesty network, consisting of the dorsolateral prefrontal cortex 
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(dlPFC), the medial prefrontal cortex (MPFC), the inferior frontal gyrus (IFG), the 

supplemental motor area (SMA), the temporal pole, the posterior cingulate cortex (PCC) and 

the caudate nucleus, the more honest the participants were (see Figure 5). No significant 

correlations were found for the dishonesty network. Consequently, we will from now on 

focus on how well the functional connections predict honesty (reverse cheatcount). 
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Figure 5.  Higher functional connectivity in the honesty network is linked to more honest 

responses (lower cheatcount) in the Spot-The-Difference task. A) Connectome of the 4 

strongest predictors (edges) of honesty (negative predictor of cheatcount) averaged across 

folds including connectivity between the left caudate and right Temporal Pole, the right 
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dlPFC and MPFC, the PCC and left Temporal Pole and the left IFG and the SMA. B) 

Showing the full connectome including all edges selected during CPM. C) Correlation 

between predicted cheatcount and actual cheatcount. D) Barplot of beta coefficients for all 

edges of the honesty network averaged across folds that were significantly different from 

zero (colors correspond with Plot A; new edges depicted in grey, individual points reflect 

beta at each fold). 

Comparing predictive importance of the questionnaires to the functional connectome 

As a next step, we investigated whether the neural data or the questionnaire data were better 

predictors of honesty in unseen participants. First, we had to establish whether successful 

prediction of honesty in unseen participants was possible using just questionnaire data. Since 

some participants did not complete all questions in the questionnaires, only 91 participants 

were included in this analysis. Similar to the connectome analysis, to identify the most 

important personality measures in predicting out-of-sample honesty, we employed the 

multiple regression CPM, which also led to a significant prediction accuracy (r = 0.42, p 

<0.05). However, the prediction accuracy was significantly lower than for the neural 

predictors (z=-1.77, p<0.05). We found that particularly self-reported impulsivity, namely our 

Risk Seeking scale (standard risk preference elicitation method) and the Positive-Urgency-

subscale of the short UPPS Impulsive behavior scale, are on average (across folds) significant 

negative predictors of honesty (high cheatcount, see Figure 6A). In addition, an individual’s 

sensitivity to social norms was observed to be an important, although perhaps unexpected, 

negative predictor of honesty (see Figure 6A).   

To see whether a model based only on questionnaires, only on neural data, or a combined 

model performs best in predicting out-of-sample honesty, we then directly compared these 

different models. As this analysis is concerned with selecting only the most important 
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predictors among several competing candidates, we used a lasso regression approach. The 

lasso regression adds a penalty term to the equation which shrinks coefficients in the model 

to zero and thus reduces complexity of the model and multicollinearity of predictors 

(Tibshirani, 1996). In this way it also selects the most important predictors in the model. The 

lasso-CPM on the questionnaire data alone resulted in a significant prediction (r = 0.36, p < 

0.05; see figure 6B). Using lasso-regression on only the neural data using the eight significant 

connections identified above (see Figure 5C), a significantly higher (as compared to the 

questionnaire data: z = -2.88, p<0.005) out of sample prediction was observed (r = 0.67, p < 

0.05; see figure 6B), as compared to the questionnaire data. 

Next, we implemented a combined lasso where both the neural (the eight significant 

predictors from the multiple regression CPM, see Figure 5C) and questionnaire predictors 

were added to the lasso regression model and we observed a similar out-of-sample prediction 

score as for the neural-only model (r = 0.64, p < 0.05). Thus, the neural model clearly 

outperforms the questionnaire model and adding the questionnaire measures to the neural 

model to form a combined model does not further improve out-of-sample prediction (z=-0.35, 

p=0.35). 

To test the contribution more formally, we also used a permutation importance approach (as 

explained in the method section) to explore which predictors contribute most to the out-of-

sample prediction accuracy. This permutation importance analysis revealed that the neural 

predictors are indeed more important for the predictive performance (correlation between 

predicted and actual honesty) than the questionnaire data (See Figure 6D). In particular, 

removing the functional connectivity between the right dlPFC and the MPFC resulted in a 

reduction of the correlation with 0.08, which is twice as large as any of the other predictors 

and highlights the importance of this predictor. In addition, the connectivity between the right 

Temporal Pole and the left Caudate Nucleus, and the connectivity between the Angular Gyrus 
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and the Insula, were important predictors of honesty (see Figure 6D). The reason for some of 

the edges showing negative permutation importance may be due to multicollinearity between 

the predictors as can be seen in the Appendix 5 (see Figure 9). 
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Figure 6. Comparing the contribution of the functional connectome and questionnaires as 

predictors of honesty. A) Barplot depicting the beta coefficients of the negative predictors 

from the model predicting honesty, fitted on questionnaires only, averaged across folds, that 

were significantly different from zero (individual points reflect beta at each fold). B) 

Correlation between predicted and actual level of honesty for the questionnaire, neural and 
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combined model in comparison. C) Barplot of beta coefficients averaged across folds from 

the combined model (Neuro + Questionnaires) predicting honesty, that were significantly 

different from zero (individual points reflect beta at each fold). D) Feature importance as 

calculated as the reduction in correlation between predicted and actual honesty when 

removing a given predictor for all predictors of the combined model that were nonzero at 

each fold. 

 

Discussion 

 

Many of the economically most costly forms of unethical behavior such as tax evasion, stock 

manipulations or movie and music piracy relate to the moral domain of (dis)honesty, in 

which unethical behavior is not targeted at a clearly identifiable victim. Large individual 

differences in (dis)honesty have been observed in this type of behaviour (Gino et al., 2012; 

2014, Speer, Smidts & Boksem, 2020), but as of yet, the neural manifestation of this 

heterogeneity has remained elusive. 

Employing connectome based predictive modelling (CPM) in combination with our novel 

Spot-The-Differences task which exposes participants to the opportunity to cheat, we 

identified a functional connectome that is predictive of (dis)honesty at the individual level. 

More precisely, we were able to accurately predict how much an unseen participant would 

cheat based on her brain’s functional organization. Specifically, we observed a correlation 

between predicted and actual cheatcount (r = 0.61) that substantially exceed the typical range 

of correlations (between r = 0.2 and r = 0.5) reported in previous studies employing CPM 

(Shen et al., 2017). To further test the predictive accuracy of the resting state network we also 

performed binary classification using several different splits and classifiers to determine 

whether a participant is a cheater or not and again found high and significant classification 
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accuracies (up to 89%, see Appendix 7). Notably, the predictive accuracy was significantly 

higher using the brain’s functional connectome than using personality questionnaires. 

By combining CPM with (regularized) multiple regression models, we were able to 

demonstrate that particularly functional connectivity between the MPFC and the right dlPFC 

was predictive of honesty. This connection was twice as important than any other region in 

the honesty network. In addition, connectivity between the left caudate and the right temporal 

pole, the left angular gyrus and the left insula, the midcingulate cortex and the intraparietal 

sulcus, the PCC and the left temporal pole, the motor cortex and the midcingulate cortex, the 

left IFG and the SMA, and the MPFC and the left temporal pole contributed significantly to 

predicting honesty. 

In light of previous research on moral decisions, the regions we identified can be associated 

with three networks frequently found to be involved in moral decisions making. Firstly, the 

right dlPFC, which has been associated with inhibiting selfish impulses (Speer & Boksem, 

2019; Yamagishi et al., 2016; Strang et al., 2014; Steinbeis et al., 2012) and increasing 

honesty (Marechal, Cohn, Ugazio, & Ruff, 2017), and the left IFG, linked to inhibition of 

predominant responses (Wager et al., 2005; Verbruggen and Logan, 2008; Sharp et al., 2010; 

Stokes et al., 2011), can be considered nodes in the cognitive control network. In contrast, the 

MPFC, the temporal pole, the PCC, the Angular Gyrus and the intraparietal sulcus have 

consistently been associated with self-referential thinking (Gusnard et al, 2001; Meffert et al., 

2013; Van Buuren et al., 2010). This self-referential thinking network has previously been 

found to be more strongly activated when honest people are exposed to an opportunity to 

cheat and more strongly interconnected when honest people make an honest decision (Speer, 

Smidts & Boksem, 2020). Lastly, the caudate nucleus, which has been found to be involved 

in anticipation and valuation of rewards (Ballard & Knutson, 2009; Knutson, Adams, Fong, 

& Hommer, 2001; Abe & Greene, 2014) can be considered important nodes in the reward 
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network (Bartra et al., 2013). Participants with higher levels of activation in the reward 

network, in anticipation of rewards, have indeed been found to be more dishonest (Abe & 

Greene, 2014; Speer, Smidts & Boksem, 2020).  

To confirm that the identified regions indeed belong to the networks proposed, we conducted 

a conjunction analysis between our results and meta-analytically derived maps associated 

with self-referential thinking, reward, and cognitive control, obtained using Neuroquery 

(Dockes et al., 2020). The conjunction analysis revealed that there is substantial neural 

overlap between our results and the meta-analytically derived maps (see Appendix 6), which 

validates our interpretation of the observed functional networks and reduces the reverse 

inference problem (Poldrack, 2006). 

Our findings suggest how neurocognitive processes shape individual differences in moral 

choices. Specifically, we found that honest participants exhibited higher connectivity within 

the self-referential thinking network, but also between self-referential thinking and cognitive 

control and reward regions. Firstly, these findings suggest that the self-referential thinking 

network may represent the moral self-concept and may be engaged in self-concept 

maintenance when exposed to an opportunity to cheat (Mazar, Amir & Ariely, 2008). 

Secondly, our results suggest that increased resting state functional connectivity between self-

referential thinking and cognitive control regions may enhance cognitive control processes to 

facilitate achieving the long-term goal of maintaining a positive self-concept. Lastly, stronger 

connectivity at rest between self-referential thinking regions and reward regions may reflect 

integration of the appeal of maintaining a positive self-concept into a representation of value. 

Collectively, our findings suggest that a person’s moral choices depend on how well the self-

referential thinking network is functionally connected to cognitive control and reward 

networks. Stated differently, stronger interaction between our self-concept, cognitive control 
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and reward processes may be essential for honest behavior. While these inferences need to 

remain speculative, as we can not determine the directionality of these functional 

connections, these findings align well with self-concept maintenance theory (Mazar et al., 

2008), as they suggest that self-referential thinking is the main driving force for honesty. 

We did not find evidence supporting our hypothesis that stronger connectivity within the 

reward network or increased negative coupling between the reward and cognitive control 

network are predictive of dishonesty. One explanation for the failure to confirm our 

hypothesis may be that the extent to which we anticipate rewards and incorporate reward 

processes into our (moral) decisions may be similar across individuals, whereas it is the 

extent to which our moral self-concept is developed and the degree to which self-referential 

thinking processes, in concert with cognitive control processes, guide our moral decisions, 

may vary substantially between individuals thus driving heterogeneity in (dis)honesty. 

We also found that several well-established self-report personality measures of impulsivity 

correlated significantly with dishonesty on our task. This highlights the ecological validity of 

the Spot-The-Difference task as a measure of dishonesty, as impulsivity has frequently been 

associated with other forms of cheating such as academic cheating (Cochran et al., 1998; 

Anderman et al., 2009), dishonesty more generally (Gino et al., 2011) and unethical behavior 

(Zimmerman, 2010; Loeber et al., 2014). While we found that these self-reported measures of 

impulsivity were significantly correlated with dishonesty, the predictive power of these 

measures was outperformed by the predictive accuracy of the functional connectome. In a 

direct comparison, the model including only neural measures achieved a correlation between 

predicted and observed rate of dishonesty that was nearly twice as high as the model 

containing self-report measures only. 
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In addition, a permutation importance analysis (Breiman, 2001) revealed that in a model 

combining self-report and neural measures, mainly the neural measures contributed to the 

predictive accuracy. This dominance of neural measures may be in part by due to the fact that 

self-report measures may suffer from social desirability bias particularly in the context of 

dishonesty (Grimm, 2010). Participants may not want to admit that they are impulsive or may 

not even be aware that they are. This social desirability bias might also explain why we 

unexpectedly observed that participants who report to be more sensitive to social norms and 

matters of purity also cheat more. Some participants, particularly the dishonest ones, might 

have overstated how much they care about, and base their decisions on, social norms and 

moral purity. 

The superiority of the neural measures might be attributed to the fact that they are 

uncontaminated by the biases above and may represent neuro-cognitive processes that govern 

our behavior in a way that we often may not be aware of. An individual’s functional 

connectome has been shown to be largely task-independent, robust and reproducible across 

time (Finn et al., 2015). Thus, when combining CPM on rsfMRI data with incentivized tasks 

simulating real world behavior, the functional connectome may be predictive of a range of 

traits and behavioral tendencies. For instance, recent research using CPM has used 

heterogeneity in functional connectivity to predict measures such as intelligence (a well-

established and reliable cognitive trait, Finn et al., 2015), creativity (Beaty et al., 2018), as 

measured by the Alternative Uses task (AUT, Guilford, 1967;  a well-established creativity 

task evoking actual creative behavior), impulsivity in an incentivized delay-discounting task 

(Li et al., 2013), and trust behavior in an incentivized trust game (Hahn et al., 2014). The 

functional connectome at rest, when combined with a reliable and valid measure of behavior, 

seems to provide direct and reliable access to different behavioral tendencies that is not 

distorted by response biases questionnaires are susceptible to. Importantly, it permits 
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measuring the neural manifestation of socially inadmissible behavioral tendencies such as 

dishonesty, that could be concealed in self-report measures. Here, we again demonstrated that 

this approach is particularly useful when studying complex and socially inadmissible 

behaviors such as dishonesty that are not limited to a specific brain region but require 

sophisticated interaction between a distributed network of regions across the brain. Therefore, 

it can be concluded that resting state functional connectivity combined with CPM is a highly 

useful tool for studying individual differences, specifically when these differences pertain to 

socially undesirable behavior. 

Importantly, due to the fact that CPM is based on cross-validation, it is in two ways superior 

to previous correlational research investigating the relationship between functional 

connectivity or personality tests and human behavior: Firstly, from the perspective of 

scientific rigor, cross-validation is a more conservative approach to infer the presence of a 

relationship between brain and behavior than is correlation, due to the fact that it is designed 

to prevent overfitting by means of testing the strength of the relationship in a novel sample. It 

thus increases the replicability of findings in future studies. Secondly, regarding the practical 

perspective, establishing predictive power is crucial to translate neuroimaging insights into 

tools with practical relevance (Shen et al., 2017). Testing performance of models in 

independent samples, in our case individuals, facilitates the evaluation of the generalizability 

of findings and consequently the eventual development of neuroimaging-based biomarkers 

with real-world utility. The practical relevance of combining CPM with resting state fMRI is 

further strengthened by the fact that the acquisition of a resting state scan only requires 7-8 

minutes and has been shown to be reliable and reproducible across time (Cao et al., 2014; 

Zuo and Xing, 2014; Finn et al., 2015), which suggests that only one acquisition is necessary. 

This reduces the financial cost and administrative complications considerably as compared to 

task-based neural measures and emphasizes the potential practical relevance as a biomarker 
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for dishonesty that may be a significant first step in developing more sensitive interventions 

to reduce cheating.  

(Dis)honesty remains a complex behavior that requires further research to reveal its many 

manifestations in the brain. Although honesty is a central moral principle, it is just one of 

several moral foundations (in addition to Honesty/Cheating, other moral foundations relate to 

Harm/Care, Loyalty/Betrayal, Authority/Subversion, Sanctity/Degradation; Graham et al., 

2011). Therefore, an interesting avenue of research would be to explore whether resting state 

functional connectivity can predict unethical behavior in several different domains of 

morality. More specifically, it could be investigated whether heterogeneity in the same 

functional connectomes similarly predict (dis)honesty, harm aversion or loyalty, or whether 

personal tendencies regarding these distinct but related moral domains are represented by 

different functional networks in the brain. 

In summary, our extended CPM model applied to a large and diverse sample revealed that 

self-referential thinking processes in interaction with cognitive control and reward processes 

are of central importance in promoting honesty. We showed that an individual’s propensity to 

cheat depends on how well the self-referential thinking network is connected to cognitive 

control and reward networks at rest. These individual differences in resting state connectivity 

between self-referential thinking, reward and cognitive control network can be used to 

reliably and accurately predict people’s tendency to cheat and substantially exceed the 

predictive accuracy of self-report measures. 
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Appendices 

 

Appendix 1: Visual search task 

To further increase the credibility of our cover story on brain processes underlying visual 

search, we also included the visual search task introduced by Treisman and Gelade (1980) at 

the beginning of our experiment.  Specifically, participants were told that the experiment 

would start with a simple visual task and then proceed to visual searches in more complex 

visual stimuli in the second task. In this first task, the goal was to determine whether a 

specific target was present or absent. In each trial participants were presented with colored 

letters presented in random locations on the screen. If the target was present, then participants 

had to press the left mouse button as quickly as possible. If no target was present, then they 

had to press the right mouse button as quickly as possible. For this task, participants had to 

search for a green T. Participants were instructed to answer as quickly as possible while still 

being as accurate as possible. The task took approximately 5 minutes and was not analysed as 

it was included solely for the purpose of increasing the credibility of our cover story. 

 

Figure 7. One trial of the simple visual search task. Participants have to indicate whether a 
green T is among the letters on the screen. 
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Appendix 2: Validation of the picture set 

Stimuli for the task consisted of 144 Spot-The-Difference image pairs that were downloaded 

from the Internet. Cartoon images of landscapes containing several objects were selected, to 

make them engaging and challenging enough for the participants. Landscapes were chosen as 

they generally satisfied the necessary criteria of containing several different objects, which 

made the task of spotting differences more challenging and engaging. The stimuli consist of 

pairs of images that are identical apart from a certain number (1-3) of differences that were 

created by the experimenter using Adobe Photoshop. Differences consisted of objects added 

to or removed from the landscape picture or changed colors of objects. 

To make sure that participants would be able to find the differences between the images in a 

reasonable amount of time, we ran a pilot study on Amazon’s Mechanical Turk with 205 

subjects using 180 pictures to test the difficulty to spot the differences between the images 

and to determine the optimal duration of picture presentation. Participants were presented 

with cartoon image pairs, presented horizontally next to each other, containing three 

differences and were asked to click on the differences identified in the image on the right 

hand side. They were given 15 seconds to make their response. Using the heatmap function 

provided by Qualtrics, regions of interest were defined around the locations of the differences 

in the image on the right hand side and response times for each of the clicks were recorded. 

This allowed us to test whether participants were able to find all differences in an image pair, 

which differences were particularly difficult to find, and how long it took to identify all 

differences. Based on the responses of these 205 participants, 36 image pairs that took too 

long or had differences that were too difficult or too easy, were removed, resulting in 144 

images that took 92% participants less than 6s to find all three differences  (M=5.4s, SD 

=1.5s). 
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Appendix 3: Connectome Based Predictive Multiple Regression without suspicious 

participants 

To test for the robustness of the CPM model and potential effects of suspicion on the reported 

effects we conducted the same analysis as above on the data of participants who were not 

suspicious of the purpose of the study. The analysis revealed that using the CPM multiple 

regression approach as above we are still able to significantly predict cheatcount from the 

negative connectome (functional connection that are negatively correlated with cheating) 

with high accuracy (r = 0.39, p < 0.05). As before no significant prediction was possible for 

the positive connectome. These findings demonstrate that there does not seem to be a 

significant effect of suspicion about the purpose of the task on the reported effects and 

highlight the robustness of our findings. 
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Appendix 4: Correlations between personality scores and cheatcount 

 

Figure 8. Correlations between all personality measures used and the cheatcount. C = 
Creativity; I = Impulsivity; Ma = Manipulativeness; Mo = morality; GPS= Gough’s 
Personality Scale; HCB = Hovecar’s Creative Behavior; DGS = Dispositional Greed Scale; 
BAS = Behavioral Approach System; BIS = Behavioral Inhibition System; BSSS= Brief 
Sensation Seeking Scale; SUPPS = Short Urgency, Premediation (lack of),Perseverance (lack 
of), Sensation Seeking, Positive Urgency Impulsive Behavior Scale; MACH = MACH-IV 
test of Machiavellianism; MFQ = Moral Foundations Questionnaire; MFV = Moral 
Foundations Vignettes.* = indicates significant correlations (p<0.05 uncorrected). 
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Appendix 5: Multicollinearity of the Combined CPM lasso model 

In order to test why the Questionnaire data does not add additional predictive power to the 

model when combined with the neural predictors, we computed the correlations between all 

nonzero predictors of the combined CPM lasso model. As depicted in the graph below (see 

Figure 9) there is a significant negative correlation between the sensitivity to social norms 

(MFV-SocialNorms) and the functional connectivity between the Angular Gyrus and the left 

Insula (r = -0.33, p < 0.05), the right dlPFC and the MPFC (r = -0.25, p < 0.05) and the PCC 

and the left Temporal Pole (r = -0.24, p < 0.05). In addition, significant correlation was found 

between risk seeking and the functional connectivity between the Motor cortex and the 

midcingulate Cortex (r = -0.29, p < 0.05). Lastly, significant correlations were found between 

the Positive Urgency subscale of the S-UPPS scale and functional connectivity between the 

midcingulate Cortex and intraparietal sulcus (IPS; r = -0.27, p < 0.05), the PCC and the left 

Temporal Pole (r = -0.21, p < 0.05) and the left IFG and SMA (r = -0.24, p < 0.05). These 

correlations may explain why adding the questionnaires data did not improve the model as 

the variance explained by even the most important questionnaire measures (MFV-Social 

Norms, Risk Seeking, S-UPPS Positive Urgency) was already accounted for by the neural 

predictors. 
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Figure 9. Correlation between predictors in the combined CPM lasso model.  
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Appendix 6: Conjunction Analysis to reduce reverse inference 

In order to reduce the reverse inference problem (Poldrack, 2006), we also assessed the 

neural overlap between the regions identified in our analysis and meta-analytically derived 

maps associated with, respectively, self-referential thinking, cognitive control obtained using 

Neuroquery (Dockes et al., 2020). Neuroquery is a new meta-analytic tool for human brain 

mapping that was developed by researchers who were also involved in creating Neurosynth 

(Yarkoni et al., 2011). The advantage of Neuroquery is that it is focused on producing a brain 

map that predicts where in the brain a study on a particular cognitive process is likely to 

report observations, while Neurosynth tests the consistency of observations reported in the 

literature. Prediction, as opposed to statistical testing, is important because it can be 

applied out of sample and is thus more generalizable. The conjunction analysis reveals that 

there is indeed overlap between our results and the meta-analytically derived maps. 

 

Figure 11.  Neural overlap (bottom row) between the regions identified to be important in 

predicting (dis)honesty (top row) and meta analytically derived maps for self-referential 

thinking cognitive control and reward processing (middle row). 
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Appendix 7: Binary Classification Analysis using the top 8 connections 

 

In order to get a better understanding of the predictive accuracy of the predictors identified in 

the multiple regression CPM we conducted a binary classification using the 8 most predictive 

connections. To this end, we first performed several types of splits on the participants’ 

cheatcount: A median split (Median = 20), a 3-way split keeping the lowest 33% and the 

highest 33% (33% = 9, 66% = 35.36), a 4-way split keeping the lowest quartile and the 

highest quartile (25% = 7, 75% = 44), and a 5 -way split keeping the lowest two quintiles and 

the highest two quintiles (20% = 5.6, 40% = 14.2, 60% = 28, 80% = 52.2). The reasoning 

behind this approach was to see how well we can distinguish honest participants from 

cheaters while trading off between sample size (highest using the median split) and 

discriminability (highest in the 4-way split). More precisely, the discriminability is lowest in 

the median split because all participants that are close to the median and are hardest to 

classify are kept, whereas in the 4-way split only the most extreme participants are kept.  

Subsequently, different classifiers commonly used for binary classification, including a 

logistic regression classifier, a random forest classifier (Breiman, 2001) and a support vector 

classifier (Cox & Savoy, 2003) were trained on the functional connectivity patterns of each 

participant to determine whether a participant was a cheater or an honest participant. In order 

to avoid overfitting and inflated prediction accuracy (Vul, Harris, Winkielman, & Pashler, 

2009) this was done using leave-one-out cross-validation as in the CPM analysis in the main 

text. Significance was estimated using permutation testing (N=1000). The classification 

analysis revealed that we could significantly classify an unseen participant as a cheater or an 

honest individual with a classification accuracy ranging between 71% for an SVM trained on 

median split data to a lasso regression model trained on 4-way split data with a classification 

accuracy of 89% (see Table 1). 
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Table 1. Classification scores (%) across different splits and classifiers 

SVM Lasso RandomForest N 

Median 71 77 76 99 

3-way 80 80 77 65 

4-way 85 89 81 48 

5-way 80 84 79 79 

SVM = support vector machine, N = number of subjects left after the split. All classifications 

were significant at p<0.01 estimated using permutation testing (N=1000). 
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