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Abstract

Research into haptic perception typically concentrates on mechanoreceptors and their
supporting neuronal processes. This focus risks ignoring crucial aspects of active perception.
For  instance,  bodily  movements  influence the information  available  to  mechanoreceptors,
entailing that movement facilitates haptic perception. Effortful manual wielding of an object
prompts feedback loops at multiple spatiotemporal scales, rippling outwards from the wielding
hand to the feet, maintaining an upright posture, and interweaving to produce a nonlinear web
of fluctuations throughout the body. Here, we investigated whether and how this bodywide
nonlinearity  engenders  a  flow  of  multifractal  fluctuations  that  could  support  perception  of
object  properties  via  dynamic  touch.  Blindfolded  participants  manually  wielded  weighted
dowels  and  reported  judgments  of  heaviness  and  length.  Mechanical  fluctuations  on the
anatomical  sleeves,  from  hand  to  the  upper  body,  as  well  as  to  the  postural  center  of
pressure,  showed  evidence  of  multifractality  arising  from  nonlinear  temporal  correlations
across  scales.  The  modeling  of  impulse-response  functions  obtained  from  vector
autoregressive (VAR) analysis revealed that distinct sets of pairwise exchanges of multifractal
fluctuations entailed accuracy in heaviness and length judgments. These results suggest that
the  accuracy  of  perception  via  dynamic  touch  hinges  on  specific  flowing  patterns  of
multifractal fluctuations that people wear on their anatomical sleeves.

Keywords: dynamic touch, effortful touch, fractality, multifractality, postural sway, tensegrity
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1. Introduction

1.1  Modulating  the  bodywide  flow  of  mechanical  fluctuations  to  investigate  haptic
perceptual performance

Research into haptic perception typically concentrates on mechanoreceptors and their
supporting  neuronal  processes,  such  as  mechanoreceptor  physiology  and  neuronal
processing of passive somatosensory feedback [1,2]. Despite the significant insights of this
research, this focus risks ignoring crucial aspects of active perception. For instance, bodily
movements influence the information available to mechanoreceptors, entailing that movement
facilitates haptic perception [3–5]. The present work investigated how bodywide mechanical
interactions facilitate “dynamic” or “effortful” perception of heaviness and length of manually-
wielded, visually-occluded objects. Specifically, we test two possibilities: first, that statistical
structure in mechanical fluctuations flows across disparate anatomical locations (i.e., beyond
the wielding hand) to coordinate perceptual judgments and, second, that the structure of this
flow of statistical regularities impacts the accuracy of these judgments.

1.2 The bodywide  multifractal tensegrity (MFT) may simplify the degrees-of-freedom
problem of spatiotemporally organizing afferent activity

The human body is highly complex, consisting of an enormous number of components,
connected, interacting, and evolving via networks spanning multiple space and time scales. In
traditional treatments of nervous-system networks,  mechanoreceptor activity specifying the
states of  joints,  muscles,  and tendons flow through the  spinal  neurons to  the brain.  The
challenge  for  this  treatment  is  how  the  central  executive  can  organize  spatiotemporally
distinct afferent signals to infer states of the whole body, segments, and appendages and to
actively  generate  appropriate  efferent  signals.  This  challenge—called  the  “degrees  of
freedom” problem—is only compounded by the ambiguity and context-sensitivity of motor-unit
and mechanoreceptor activity. This problem follows from a crucial premise about how this
network divides its labor,  that is,  with strictly local  processing at the periphery and global
processing reserved for the center. 

However,  besides  and  cooperating  with  the  central  nervous  system  (CNS),  other
bodywide networks supporting perception allow peripheral and central processes to have an
equal share in global coordination. Underneath our skin, a vast network of connective tissues
and extracellular matrix (ECM) has been imagined as a multifractal tensegrity (MFT) in which
the components hang together under tensional and compressional forces at multiple scales.
This  balance  of  tensional  and  compressional  forces  might  offset  local  mechanical
disturbances  through  the  global  realignment  of  forces [6–11],  producing  perceptual
information ranging from coarse to fine  [12–14]. If effortful perception is founded on action,
then MFT-like cross-scale interactions proceeding through connective tissue may provide the
biophysical  substrate  for  perception  of  the  body,  attachments  to  the  body,  and  surfaces
adjacent  to  the  body  via  dynamic  touch  [15,16].  Such  networks  support  an  “ultrafast”
propagation of mechanical perturbations across vast distances called “preflex”, a faster-than-
reflex response based on mechanical tensions rather than neural transmissions [17,18]. The
situation  of  preflexes  in  the  connective-tissue  network’s  self-similar,  scale-free,  fractal
organization may resolve the degrees-of-freedom problem and support the spatiotemporal
organization of afferent activity [15,16].

Testing whether bodywide MFT supports dynamic touch requires a specific analytical
framework.  Capacity  for  cross-scale  interactions  suggests  the  appearance  of  fractal
organization that should support perceptual responses [15,19,20]. Indeed, fractal fluctuations
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of exploratory movements across the body [e.g., in hand, foot, head and postural center of
pressure  (henceforth,  CoP)]  all  support  the  use  of  available  mechanical  information  for
generating perceptual  judgments via dynamic touch  [21–26].  The predictive role of  fractal
fluctuations appears to even extend across the body. When people manually heft a grasped
object with their hands, the relatively distant measure of postural sway CoP at their feet has a
fractal  signature  that  helps  predict  the  perceptual  judgments  [27,28].  Hence,  fractal
fluctuations provide a window into how specific patterns of movements spread across the
entire body to support perceptual goals that seem—intuitively at least—specifically localized
amidst the anatomical periphery.

1.3 Could flow of multifractal fluctuations support perception via dynamic touch?

Effortful manual wielding of an object prompts feedback loops spreading across the
body at multiple spatiotemporal scales, rippling outwards from the wielding hand to the feet,
maintaining an upright posture. These loops do not unfold in parallel at separate scales but
rather interweave and intermix with each other, generating a nonlinear web of fluctuations
throughout  the  body [23,25,26,29].  These  nonlinearities  generate  multiple  fractal  forms
following no less from spatial hierarchies of connective-tissue and neural networks than from
the contextual constraints shaping action over time. Fractal fluctuations at any point in the
body might spread through the rest of the body like contagion and this multifractal spread
through the body matters for shaping perceptual judgments. Indeed, the bodywide flow of
fractality  indexes the flow of afferent  information used to  derive perceptual  judgments for
manually-hefted,  visually-occluded  objects,  predicting  individual  differences  in  perceptual
judgments from individual differences in bodywide flows of fractal fluctuations [30].

 Hence, the human body is not a single point-mass that can be approximated by one
fractal (i.e., monofractal) form. Instead, the body’s many degrees of freedom can each take
on different monofractal forms. Our previous work used causal network modeling via vector
autoregressive (VAR) analysis [31] to model pairwise exchanges of fractal fluctuations across
13 anatomical locations on the body and a handheld object. This approach opened a novel
view of the human body as a multifractal field in which each degree of freedom might carry its
single fractal  form and through which individual degrees of freedom can influence others’
monofractal form. So, this portrait of the body is only multifractal in the sense that there are
multiple  monofractal  forms  spread  across  the  body,  opening  up  the  capacity  for  fractal
fluctuations to flow and change across the body.

Our previous work of developing a causal network of monofractal fluctuations was the
first step. We now realize that this view was limited: rather than casting the body as a point-
mass of one fractal form, it took a view of the body as a set of point masses, one for each
degree of freedom. This higher-resolution view revealed preliminary insights, but it left the
view of the body still relatively granular and insufficiently fluid; it was multifractal only at the
macroscale  of  the  whole  body.  If  fractal  fluctuations “flow”  within  one degree of  freedom
flexibly forcing or absorbing fluctuations on/from another, then the previous examination of
how monofractal forms change across the body could only have been an initial step. Degrees
of  freedom are  not  point  masses  and  may  themselves  contain  finer-grained  fluctuations
supporting the bodywide flow.

Here,  we  aim  to  revisit  this  notion  of  a  multifractal  bodywide  network  with  the
recognition that a single component  can itself  be multifractal.  That  is,  a single degree of
freedom can exhibit different fractal patterns across time or for different-sized events. For that
matter, perceptual accuracy may depend sooner on the nonlinearity generating multifractal
forms than on nonlinearity generating monofractal forms [24,32–34]. The difference here has
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to do with the fact that monofractal form is only suggestive of a similar pattern observable at
many scales, and it is mute to the reasons for similarity. Meanwhile, the multifractal form is
explicitly  the  result  of  nonlinearities  that  force  interactions  across  scales  and  not  just
coincidental resemblance of parallel but separate mechanisms [35].

The tensegrity proposal rests explicitly on the implication of interactions across scales,
and thus the present multifractal revision of our previously monofractal results is an attempt to
bring the evidence closer into alignment with the theory. The feedback loops  in bodywide
nonlinearities noted above reflect as well that feedback loops carry information amongst local
and global scales: for example, local feedback loops unfolding amongst muscles of the hand
both feed on and support more global feedback loops built between hand and legs planted on
the  ground.  Such  local-to-global  and  global-to-local  flow  of  nonlinearity  entails  that  each
degree of freedom will be shimmering with multifractal form. Our previous work depicted the
body as multifractal in the weak sense of spatially heterogeneous monofractal forms across
the body.  It  construed the  multifractal  tensegrity  as very many monofractal  point  masses
bumping up against each other. However, if interactions across scales support perception,
then it is important to elaborate prior work from monofractal analyses to multifractal analysis.
Doing so will allow a more direct test of two points: 1) whether exchanges amongst individual
degrees  of  freedom deals  in  fully  multifractal  fluctuations  (i.e.,  not  just  spatially  different
monofractal fluctuations) and 2) whether the exchanges of multifractal fluctuations amongst
degrees of freedom support the accuracy of perceptual judgments.

2. Materials and methods

2.1. Participants

Fifteen  healthy  adults  (seven  women,  mean±s.d. age  =  23.4±3.4  years,  all  right-
handed [36]) with no muscular, orthopedic, and neurological disorder participated in this study
after providing verbal and written informed consent.

2.2. Experimental objects

Each  object (n = 6) consisted of an oak, hollow aluminum, or solid aluminum dowel
(l×d = 1.2×75.0 cm; m = 68 g, 109 g, and 266 g, respectively) weighted by 4 or 12 stacked
steel rings (h = 0.8 or 2.4 cm; m = 56 or 168 g; dinner = 1.4 cm, douter = 3.4 cm) attached at 20.0
or 60.0 cm, respectively (table 1, figure 1a). The objects systematically differed in their mass,
m (Object 1 > Object 2, Object 3 > Object 4, Object 5 > Object 6), the static moment,  M
(Object 1 = Object 2 = MS < Object 3 = Object 4 = MM < Object 5 = Object 6 = ML), and the
moment  of  inertia,  I1 and  I3,  reflecting  the  resistance  of  the  object  to  rotation  about  the
longitudinal axis (I1 values: Object 1 , Object 2, Object 3 < Object 4, Object 5 < Object 6). A
cotton  tape  of  negligible  mass  was  enfolded  on  each  dowel  to  prevent  the  cutaneous
perception of its composition.

******************************

Insert table 1 & figure 1

******************************

2.3. Experimental setup and procedure

Each blindfolded participant stood on a pair of force plates (60×40 cm; Bertec Inc.,
Columbus, OH), wielded each object and reported judgments of heaviness and length (figure
1b). To impose constraints on haptic exploration, each participant moved his/her wrist about
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10o ulnar  deviation,  the  neutral  position,  or  10o radial  deviation  (figure  1c).  In  a  static
condition, the participant lifted and held each object static. In two dynamic conditions,  the
participant lifted and wielded each object synchronously with metronome beats at 2 Hz or 3
Hz,  which  added  additional  constraints  on  perceptual  exploration.  Each  participant  was
instructed to minimize torso and upper-hand motion and the amplitude of wielding.

3D motion of three reflective markers (d = 9.5 mm) attached on each object at 30, 45,
and 60 cm and nine reflective markers attached on the participant’s body (table 2, figure 2a)
was tracked at 100 Hz using an eight-camera Qualisys motion-tracking system (Qualisys Inc.,
Boston, MA).

******************************

Insert table 2 & figure 2

******************************

Each participant completed 108 trials (3 Wrist angles × 3 Wrist angular kinematics × 6
Objects × 2 Trials/Object). Each factor of Wrist angle (Radial, Neutral and Ulnar) was crossed
with each factor of Wrist angular kinematics (Static, 2 Hz dynamic and 3 Hz dynamic). The
order of the 12 trials (6 Objects × 2 Trials/Object) was pseudo-randomized for each block.
Before the first and after every six trials, each participant wielded a reference object that was
arbitrarily attributed to a heaviness value of 100 units.  In each trial, after a “lift” signal, the
participant lifted the object by about 5 cm and held it static or wielded it at 2 Hz or 3 Hz. After
5 s, following a “stop” signal, the participant placed the object back and reported (a) perceived
heaviness proportionally higher and lower than 100 to an object perceived heavier and lighter,
respectively, than the reference object; and (b) perceived length by adjusting the position of a
marker on a string-pulley assembly.

2.4. Data processing

2.4.1. CoP planar Euclidean displacement (PED) series

Force plate output was downsampled by 1/20 (i.e., from 2000 Hz to 100 Hz) to match
motion-tracking sampling rates. The ground reaction forces recorded at each trial yielded a
two-dimensional CoP series of 500 samples, describing the position of the CoP along the
participant’s  medial-lateral  and  anterior-posterior  axes.  A one-dimensional  CoP  planar
Euclidean displacement (PED) series of 499 samples was obtained for each downsampled
CoP series, describing CoP displacement along the transverse plane of the body (figure 2b).

2.4.2. Sway spatial Euclidean displacement (SED) series

Motion  tracking  of  each  reflective  marker  (n =  12)  yielded  a  three-dimensional
kinematic series of 500 samples, describing its position along the participant’s medial-lateral,
anterior-posterior  and  superior-inferior  axes.  A  one-dimensional  spatial  Euclidean
displacement (SED) series of  499 samples was obtained for  each marker  describing the
displacement of that marker in 3D (figure 2b).

2.5. Assessing multifractality and interactivity

2.5.1. Direct estimation of multifractal spectrums

Chhabra and Jensen’s direct method estimated multifractal spectrums of CoP PED and
sway SED series  [37]. This method samples series  u (t ) at progressively larger scales such
that the proportion of signal Pi (L ) falling within the ith bin of scale L is
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Pi (L )=

∑
k=(i−1) L+1

iL

u (k )

∑ u (t )

                                                                                                            (1)

As L increases, Pi (L ) represents progressively larger proportion of u (t ),

P (L )∝ Lα                                                                                                                             (2)

suggesting growth of proportion according to one “singularity” strength  α  [38].  P (L ) exhibits
multifractal  dynamics  when  it  grows  heterogeneously  across  time  scales  L according  to
multiple singularity strengths, such that

Pi (L )∝Lαi                                                                                                                            (3)

whereby  each  ith bin  may  show a  distinct  relationship  of  P (L ) with  L.  The  width  of  this
singularity spectrum, Δα(αmax−αmin), indicates the heterogeneity of these relationships [39,40].

Chhabra and Jensen’s method  [37] estimates  P (L ) for  N L nonoverlapping bins of  L-
sizes and transforms them into a “mass” μ using a q parameter emphasizing higher or lower
P (L ) for q>1 and q<1, respectively, as follows

μi (q , L )=
[Pi (L ) ]

q

∑
i=1

N L

[Pi (L ) ]
q .                                                                                                           (4)

α (q ) is the singularity for mass μ(q)-weighted P(L) estimated by

α (q )=− lim
L→∞

1
lnL

∑
i=1

N

μ i (q ,L ) ln Pi (L )

¿ lim
L→0

1
lnL

∑
i=1

N

μ i (q ,L ) ln Pi (L ).                                                                                               (5)

Each estimated value of  α (q ) belongs to the singularity spectrum only when the Shannon
entropy of μ (q , l ) scales with L according to the Hausdorff dimension f (q ), where

f (q )=− lim
L→∞

1
lnL

∑
i=1

N

μ i (q ,L ) ln μi (q , L )

¿ lim
L→0

1
lnL

∑
i=1

N

μ i (q ,L ) ln μi (q , L ).                                                                                            (6)

For values of q yielding a strong relationship between Eqs. (5 & 6)—in this study, exhibited a
correlation  coefficient,  r >  0.9,  the  parametric  curve  (α (q ) , f (q ) ) or  (α , f (α ) ) constitutes  the
singularity spectrum. The singularity spectrum width, Δα=αmax−αmin, was calculated for each
CoP PED and sway SED series (figure 2c).

2.5.2. Surrogate testing

To identify whether nonzero Δα reflected nonlinear temporal correlations [41,42], Δ α of
each  original  series  was  compared  to Δα of  surrogate  series  using  Iterated  Amplitude
Adjusted Fourier  Transformation  (IAAFT)  [43,44].  IAAFT randomizes original  values time-
symmetrically  around  the  autoregressive  structure.  It  thus  generates  surrogates  that
randomize  phase  ordering  of  the  series’  spectral  amplitudes  while  preserving  only  linear
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temporal correlations. If the original Δα exceeds a 95% confidence interval (CI) of Δ α for 32
IAAFT series (i.e., p < 0.05), then the original time series has nonzero nonlinear correlations
quantifiable using the one-sample t-statistic (henceforth,  tMF) comparing  Δ α for the original
series to that for the surrogates.

2.6. Vector autoregression (VAR) analysis

Vector autoregression (VAR) captures linear  interdependencies amongst concurrent
series. We used VAR to model the effects of trial-by-trial Δ α from each marker position to
each other marker position across trials in the study. VAR describes each variable based on
its  own  lagged  value  and  that  of  each  other  variable,  along  with  an  error  term.  Unlike
structural models, VAR modeling does not use any prior knowledge besides a list of variables
that  can be hypothesized to  affect  each other  temporally.  Thus,  VAR analysis  allows for
exploring causal relationships after addressing minimal short-lag relationships [45].

VAR produces  a  system of  m regression  equations  predicting  each  variable  as  a
function of lagged values of itself and of each other variable. In the simplest case of  m=2,
with time series f ( t ) and g (t ) definable at each value of time t=1 to t=N , the structure of a
VAR model is:

f (t )=A1⋅ f t− 1+B2 ⋅g t− 1+¿❑C f ⋅g+ε f ¿,

g (t )=B1⋅ gt −1+A2⋅ f t −1+¿❑Cg ⋅h+εf ¿,

where  A j and  B j quantify the effects of the previous values of  f  and  g, respectively, with  j
indexing the variable to which these previous values contribute, with error terms ε f  and ε g [46].
The above equations describe a 1-lag VAR. Each f  and g is described in terms of values up
to 1 value preceding the predicted values. VAR models can include exogenous variables,
such as the factors of experimental design which stand outside the relationships amongst the
variables  internal  to  the  system.  In  the  above  example,  the  time  series  h (t ) can  induce
changes in f ( t ) or g (t ), but changes in neither f (t ) or g (t ) can induce changes in h (t ). h is an
exogenous  variable,  and  C f  and  C g are  quantify  the  effects  of  h (t ) on  f ( t ) and  g (t ),
respectively. Endogenous variables are variables internal to the system (i.e., f ( t ) or g (t )) which
may respond to and induce changes in other endogenous variables. For the present analysis,
Δα of CoP PED and sway SED series served as an endogenous variable (figure 2d).

VAR models forecast the effects of endogenous variables through impulse-response
functions (IRFs). As opposed to standard regression, which can only evaluate the relationship
between f ( t ) and g (t ), IRFs can evaluate the relationship between f ( t ) and g ( t+τ ), or between
g (t ) and  f ( t+τ ), where  τ  is a whole number. First, orthogonalizing the regression equations
and, second, inducing an “impulse” to the system of regression equations by adding 1s.e.m.
to any single variable, propagating responses across variables. The plot of an IRF describes
how an impulse in one time series changes the later predicted values in a different time series
[46,47]. It is customary to fit the least number of lags that leave independently and identically
distributed residuals.

2.7. Statistical analysis

All  pairwise impulse-response relationships indicated the effects of increases in  Δα
across subsequent trials. A full-factorial regression model [48] of Impulse × Response × Trial
tested the  average effects  and responses of  each marker  position along with  orthogonal
linear, quadratic, and cubic polynomials of Trial, using the “nlme” package for RStudio  [49].
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Impulse  and  Response  served  as  class  variables  indicating  the  locations of  the  impulse
variables and the responding variables, respectively.

Regression  models  of  unsigned  error,  for  example,  absolute(H/Lperceived –  H/Lactual),
tested  the  effects  of  significant  impulse-response relationships  between marker  positions.
Unsigned error for Lperceived was the absolute value of Lperceived minus actual length (i.e., 75 cm).
Because Hperceived was calculated as a percentage rating relative to a 109-g reference object,
Herror was calculated as the absolute value of [Hactual×(Hperceived×109)/100–100] rounded to the
nearest whole-number percentage. For instance, perceiving the heaviness of 236-g Object 2
as 120% entails unsigned error  Herror = absolute(100×[236×(120×109)/100)]/236–100) = 45.
Because  Lerror was  linear  (i.e.,  additive)  and  Herror was  nonlinear  (i.e.,  a  rate),  they  were
modeled using linear mixed-effect (LME) and mixed-effect Poisson regression,  using “nlme”
and “lme4”  packages for Rstudio, respectively [49,50].

Predictors of  unsigned error  included  Wrist  angle,  Object’s  logarithmic moments of
inertia (LogI1 and LogI3), trial order, Δ α of CoP (CoPΔα), and the IRF values forecasting the
first significant response to impulse over subsequent trials for OBJD->RFIN, OBJD->RELB,
OBJD->RUPA,  RWRA->RELB,  RFIN->RUPA,  RELB->RWRA,  RELB->RUPA,  RELB->RSHO,
RUPA->CLAV, CoP->RWRA and RFRM->CoP. LogI3 and trial order improved model fit only for
Herror and Lerror, respectively.

3. Results

3.1. Fluctuations at each anatomical location exhibits multifractality

All  original CoP PED and sway SED series exhibited non-zero singularity-spectrum
widths (i.e., Δ α > 0; range of Δ α: CoP: 0.0085–0.48; OBJT: 0.026–0.85; OBJD: 0.029–0.80;
OBJP:  0.017–0.64;  RFIN:  0.028–0.90;  RWRA:  0.036–0.85;  RWRB:  0.023–0.85;  RFRM:
0.015–1.16; RELB: 0.028–1.41; RUPA: 0.033–1.81; RSHO: 0.024–2.09; CLAV: 0.033–1.89;
STRN: 0.033–1.80).  Δα was wider  for 1412 of 1620 CoP PED series, as well as for each
original sway SED series than the corresponding IAAFT surrogates (figure 3).

******************************

Insert figure 3

******************************

3.2. Multifractal fluctuations flow across the body

First, the IRFs showed pairwise exchanges of multifractality following the sequence of
motor  segments  from a  handheld  object  (OBJD)  to  the  shoulder  (RSHO;  figure  4).  The
strongest effects included multifractality-promoting effects from the object (OBJD) on the most
distal arm segments that become progressively smaller (from RFIN to RWRA to RFRM) and
then  multifractality-diminishing  effects  on  the  proximal  arm  segments  (RELB,  RUPA and
RSHO). Hence, the local contacts with objects at hand have intuitive effects on the chain of
motor  degrees of  freedom, with  multifractal  fluctuations decaying as they propagate from
peripheral  to  central  components.  [The regression  modeling  confirmed that  the  individual
mean differences from zero are significant (Supplementary Table S1).]

******************************

Insert figure 4

******************************
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Collectively, the IRF results suggest functional segregation of forearm from upper arm
in how each mediated exchanges of multifractal fluctuations. The forearm sent multifractal
fluctuations outward to the object, indicating that forearm and object promote each other’s
multifractality. This mutual object-forearm promotion of multifractality came at the expense of
upper-arm multifractality. Perhaps the forearm draws multifractality away from the upper arm
to send downstream to the object.  Certainly,  increases in  RFRM and RFIN multifractality
decreased later RELB and RUPA multifractality, respectively. Conversely, increases in RUPA
and RELB multifractality decreased later OBJD multifractality, with increases in RUPA also
contributing to decreases in multifractality at OBJD.

The joints  played intermediating roles between forearm-like multifractality-promoting
and  upper-arm-like  multifractality-limiting  tendencies.  Exemplifying  the  former,  OBJD  and
RELB  multifractality  decreased  when  the  other  increased,  and  increases  in  RELB
multifractality prompted increases in multifractality across the upper arm (RUPA and RSHO).
Exemplifying the latter,  RELB and RWRA showed mutual positive effects on each other’s
multifractality  as though RELB might  participate in the forearm’s support  of  multifractality.
Similar to RELB, RSHO showed the upper arm’s inverse relationship to increases in OBJD
multifractality and increased with RUPA multifractality in response to RELB multifractality. But
RSHO  also  showed  a  multifractality-promoting  aspect:  increases  in  RSHO  multifractality
prompted later increases in OBJD and RWRA multifractality. 

The IRF effects extended beyond the upper body to include CoP. Increases in CoP
multifractality showed a positive effect on later RWRA and RFRM multifractality.

3.3.  The  flow  of  multifractal  fluctuations  across  the  body  influences  perceptual
accuracy

The flow of multifractal fluctuations differed across individuals and predicted individual
differences  in  accuracy. Herror depended  on  seven  pairwise  exchanges  of  multifractal
fluctuations  in  supporting  perceptual  accuracy  (table  3).  The  GLM  returned  positive
coefficients for IR effects of OBJD on RFIN (b±s.e.m. = 10.54±1.99,  p < 0.001), OBJD on
RUPA (b±s.e.m. = 12.56±3.68, p < 0.001), RFIN on RUPA (b±s.e.m. = 20.75±6.42, p = 0.001),
RELB  on  RUPA (b±s.e.m. =  15.36±5.62,  p =  0.006)  and  RUPA on  CLAV  (b±s.e.m. =
10.10±4.61,  p = 0.028).  It  returned negative coefficients for IR effects of  OBJD on RELB
(b±s.e.m. =  –10.07±3.65,  p =  0.006)  and CoP on RWRA (b±s.e.m. =  –51.54±11.51,  p <
0.001). The negative IR effects of OBJD on RELB and CoP on RWRA entailed that these
pairwise exchanges of multifractal fluctuations entailed decreases in Herror; all other IR effects
entailed increases in  Herror (figure 5, left panels). These effects held above and beyond the
significant effects of wrist angle variations, and of the logarithmic first and third moments of
inertia (table 3). Also,  CoPΔα showed  a positive effect on  Herror (b±s.e.m. = 0.59±0.14,  p <
0.001),  suggesting  that  greater  Δ α led  to  less  accurate  heaviness judgments,  as  shown
previously [28].

******************************
Insert table 3 & figure 5

******************************

Lerror depended on seven pairwise exchanges of multifractal fluctuations in supporting
perceptual accuracy. The LME returned positive coefficients for IR effects of OBJD on RUPA
(b±s.e.m. = 634.85±262.92,  p = 0.047),  RWRA on RELB (b±s.e.m. = 372.31±156.11,  p =
0.049),  RELB  on  RUPA (b±s.e.m. =  5399.79±1023.95,  p =  0.001)  and  RFRM  to  CoP
(b±s.e.m. = 479.31±147.32, p = 0.008). It returned negative coefficients for IR effects RELB
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on  RWRA  (b±s.e.m. =  –973.84±262.91,  p =  0.008),  RELB  on  RSHO  (b±s.e.m. =  –
8205.37±1338.61,  p < 0.001) and RUPA on CLAV (b±s.e.m. = –694.50±174.47,  p = 0.005).
Thus, Lerror decreased with the transfer of multifractal fluctuations from RELB to RWRA, RELB
to RSHO and RUPA to CLAV, and Lerror  increased with the transfer of multifractal fluctuations
from OBJD to RUPA, RWRA to RELB, RELBV to RUPA and RFRM to CoP (figure 5, right
panels). These effects held above and beyond significant effects of wrist angle variations and
of the logarithmic first moment of inertia (table 3).

4. Discussion

We investigated whether and how the flow of multifractal fluctuations entailed in the
bodywide MFT supports perception via dynamic touch. We expected that if perception via
dynamic touch occasions an upstream flow of information from the point of distal stimulation
(i.e., the hand), which sources multifractality from the global dynamics, then not only should
multifractality  at  hand  affect  multifractality  at  the  lower  and  upper  arms  (i.e.,  reflecting
upstream  effects  of  distal  hand  activity)  but  also  multifractality  in  CoP  should  promote
multifractality at hand (i.e., posture is at the forefront of multifractality resources for the distal
body parts). Our findings support this hypothesis.

 The observed multifractality was due to nonlinear interactions across scales reflecting
feedback loops proceeding locally, globally, and interacting across the scales. The impulse-
response forecasting obtained from VAR analysis revealed upstream effects of the distal hand
activity, as multifractal fluctuations at hand promoted multifractal fluctuations at the lower arm
segments and reduced it in the upper arm segments. Multifractality in the global measure of
CoP helped promote multifractal  fluctuations at hand. The strength of these exchanges of
multifractal  fluctuations amongst  degrees of  freedom indexed the  accuracy of  perception.
These results strengthen the view that nonlinear interactions entailed by the bodywide MFT
support  the  flow  of  mechanical  information  supporting  the  coordination  of  perceptual
judgments of object heaviness and length [30].

Collectively, our results offer a window into the bodywide synergy supporting dynamic
touch by the hand.  Multifractality-promoting effects of OBJD on the most distal parts of the
arm  became  progressively  smaller  (from  RFIN  to  RWRA to  RFRM),  and  multifractality-
diminishing effects of  OBJD extend along with the proximal  parts of the arm towards the
shoulder (RELB, RUPA and RSHO). The joints thus played a mediating role between the
upper arm and forearm; for instance, RELB showed a multifractality-limiting effect on OBJD
and  a  multifractality-promoting  effect  on  RWRA,  RUPA and  RSHO.  And  although  RSHO
showed increases in multifractality in conjunction with that of the rest of the upper arm, RSHO
broke ranks with the upper arm and promoted later RWRA multifractality. Finally, increases in
CoP multifractality precede subsequent increases in both RWRA and RFRM multifractality,
situating local fluctuations at hand into a global context.

Our  models  of  absolute  error  showed  that  perceptual  accuracy  in  dynamic  touch
hinges on specific flow of multifractal fluctuations across the body. The strength of IRF effects
served as significant predictors of the absolute error in judgments of both heaviness and
length. Greater flow of multifractality across all pairs of anatomical locations did not always
resulted in more accurate judgments, but the flow of multifractal fluctuations across specific
body segments played a crucial role in perceiving accurately. Hence, we cannot claim the
simple wholesale conclusion that more multifractality entails higher accuracy [27,28]. Instead,
dynamic  touch  hinges  upon  specific  interplay  amongst  many  degrees  of  freedom,  each
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individually  fluctuating  multifractally—that  is,  with  multiple  fractal  forms  across  time  and
fluctuation  size—and  the  flow  of  these  multifractal  fluctuations  may  provide  an  essential
medium for perceptual information [12,14].

Our  findings  strengthen  the  emerging  view that  a  wider-than-neural  set  of  tissues
enable  preflexes,  that  is,  mechanotransduction  of  contextually-specific  responses  flowing
faster  than neural  transmission.  Crucially,  the concept  of  “preflexes”  appears  to  be more
generic to bodywide coordination than specific to local anatomical structures [51–53]. Indeed,
if  the MFT is the architecture of life  [54],  then preflexes must be foundational to how life
perceives and acts.

5. Conclusion

Our  findings  make  a  compelling  case  that  the  study  of  perception  might  not  be
exhausted  by  activity  in  the  CNS.  Instead,  it  must  also  include  the  flow  of  multifractal
fluctuations across the bodywide MFT. Indeed, far from suggesting the latter to the exclusion
of the former, it is incredibly likely that the CNS and MFT are mutually supporting systems
[15]. The network relationships we have presented across the anatomical sleeves of the body
show close resemblance to the resting state network (RSN) dynamics exhibited by the central
nervous system (CNS) [55,56].  What RSN dynamics proposes for networks of neurons, we
suggest the existence of synergies specific to perceptual intent (e.g., object heaviness vs.
length vs. shape) in the flow of multifractality fluctuations in the network of anatomical nodes
across the body.

Future research into the endogenous and exogenous factors affecting the bodywide
flow of multifractal fluctuations might support diverse clinical applications. For instance, fractal
fluctuations  in  exploratory  movements  predict  differences  in  dynamic  touch  capabilities
between children with typical and atypical (attention-deficit hyperactivity disorder and cerebral
palsy)  development  [57,58].  Studying  deficits  in  the  flow  of  multifractality  fluctuations
longitudinally in typical- and atypical-development might provide insights into the chaotic basis
of  deficits  in  perceptual  capabilities.  Orthotic  devices  designed to  accentuate  the  flow of
fluctuations from distal to proximal body parts could help prevent falls in aging populations.
Much like Priplata et al.’s  [59,60] successful attempt at supporting posture in the elderly with
fractally fluctuating vibrotactile stimulation to the foot sole in contact with the ground, the flow
of multifractality  fluctuations across the body could be altered to  enhance coordination in
suprapostural  activities.  Finally,  building  distal  fluctuations  into  the  architecture  of
perceptuomotor  systems could  foster  adaptive,  flexible  chaotic  control  of  robots [61]  with
dynamic touch capabilities. Our work thus begins to open what could be a broader research
program in haptic perception and performance.
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Table 1. Experimental objects.

Object Dowel Attached rings Object parameters

Composition Length
[cm]

Mass
[g]

Mass
[g]

Location
[cm]

Mass,
m [g]

Static moment,
Ma [g·cm2/s2]

Moment of inertia,
I1b [g·cm2]

Moment of inertia,
I3b [g·cm2]

1 Oak wood 75 68 56 60 156 5,791,800 (MS) 278,850 900

2 Oak wood 75 68 168 20 236 5,791,800 (MS) 153,500 3,220

3 Hollow aluminum 75 109 56 60 165 7,298,550 (MM) 321,770 660

4 Hollow aluminum 75 109 168 20 277 7,298,550 (MM) 194,720 1,190

5 Solid aluminum 75 266 56 60 332 13,068,300 (ML) 586,720 3,110

6 Solid aluminum 75 266 168 20 434 13,068,300 (ML) 459,850 5,850
aWe determined the static moment for each object assuming that it was aligned horizontally (i.e., parallel to the ground)
and grasped about its proximal end.
bWe calculated the values of a 3×3 inertia tensor matrix for each object, each value corresponding to rotations about the wrist,
assuming 5-cm distance between the location of grasp and the object’s proximal end. Diagonalizing the 3×3 inertia tensor
matrix using MATLAB function “eig (A)” yielded the eigenvalues of the tensor.
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Table 2. Location of the reflective markers attached to each experimental  object and the
participant’s body.

Marker Location

Experimental object OBJP tip of the object

OBJD 30 cm from the distal end

OBJP 30 cm from the proximal end

Participant’s body RFIN just below the middle knuckle on the right hand

RWRA extended from the thumb side using a wrist bar

RWRB extended from the little finger side using a wrist bar

RFRM on the outside of the lower arm

RELB on the bony prominence on the outside of the elbow joint

RUPA outside of the upper arm

RSHO on the bony prominence on top of the right shoulder

CLAV top of the breast bone

STRN base of the breast bone
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Table 3. Coefficients of  GLM and LME models  examining the effects of CoP multifractality and significant impulse-response
relationships on the absolute error in perceived heaviness, Herror, and perceived length, Lerror, respectively.

Herror
a Lerror

b

Effects b±s.e.m.c z pd b±s.e.m.c t pd

(Intercept) 4.59±0.11 39.99 < 0.001 134.38±6.28 21.41 < 0.001

Wrist angle (Radial – Neutral) 0.039±0.0099 3.92 < 0.001 –0.28±0.48 –0.59 0.552

Wrist angle (Ulnar – Neutral) –0.13±0.010 –12.67 < 0.001 1.80±0.47 3.83 < 0.001

LogI1 –0.60±0.020 –29.62 < 0.001 –17.58±0.95 –18.47 < 0.001

LogI3 0.69±0.013 52.63 < 0.001

Trial order 0.019±0.0062 3.01 0.003

CoPΔα 0.59±0.14 4.34 < 0.001

OBJD->RFIN 10.54±1.99 5.30 < 0.001

OBJD->RELB –10.07±3.65 –2.76 0.006

OBJD->RUPA 12.56±3.68 3.42 < 0.001 634.85±262.92 2.41 0.047

RWRA->RELB 372.31±156.11 2.38 0.049

RFIN->RUPA 20.75±6.42 3.23 0.001

RELB->RWRA –973.84±262.91 –3.70 0.008

RELB->RUPA 15.36±5.62 2.73 0.006 5299.79±1023.95 5.18 0.001

RELB->RSHO –8205.37±1338.61 –6.13 < 0.001

RUPA->CLAV 10.10±4.61 2.19 0.028 –694.50±174.47 –3.98 0.005

CoP->RWRA –51.54±11.51 –4.48 < 0.001

RFRM->CoP 479.31±147.32 3.25 0.008
aFitted model: absolute(Herror) ~ Wrist angle + LogI1 + LogI3 +  CoPΔα + (OBJD->RFIN + OBJD->RELB + OBJD->RUPA + RFIN-
>RUPA + RELB->RUPA + RUPA->CLAV + CoP->RWRA) + (1|Participant).
bFitted model: absolute(Lerror) ~ Wrist angle + LogI1 + Trial order + (OBJD->RUPA +  RWRA->RELB + RELB->RWRA + RELB-
>RUPA + RELB->RSHO + RUPA->CLAV + RFRM->CoP) + (1|Participant).
c95% confidence intervals are calculable as b±1.96s.e.m.
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dBoldfaced values indicate statistical significance at the two-tailed alpha level of 0.05.645
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Figure  1. Schematic  illustration  of  the  experimental  objects,  setup,  and  exploratory
conditions. (a) Each participant wielded six objects with different mass, m, static moment, M,
and the moment of inertia,  I1. (b)  Each participant stood with his/her two feet on separate
force plates, wielded each object for 5 s, and reported his/her judgments of heaviness and
length of that object. (c) Different conditions of wrist angle and wrist angular kinematics.

646
647
648
649
650

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.091702doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.091702
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Overview of data acquisition process and analysis. (a) Locations of the reflective
markers attached to the experimental object and the participant’s body. (b) CoP PED and
sway SED series for a representative trial (Condition: Neutral, 2 Hz dynamic, Object 6). (c)
Singularity spectrums (α, f(α)) of a representative original CoP PED series and two sway SED
series (colored lines), as well as those of their five IAAFT surrogates (gray lines).  (d) The
conceptual structure of the VAR analysis used to model the diffusion of multifractality across
different anatomical locations. The contribution of each location is represented as a series of
trial-by-trial  values  of  the  singularity  spectrum  width  (Δα=αmax−αmin).  Arrows  represent
weights in the model, indicating the effects of  Δα in the previous trail on  Δα in the current
trial.
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Figure  3. Frequency  distributions  of  tMF comparing  the  singularity  spectrum  widths  (
Δα=αmax−αmin) of the original CoP PED and sway SED series and that of their 32 IAAFT
surrogates. The values on the top right in black and gray in each plot describe  mean±s.d.
values of Δα for the original version and 32 IAAFT surrogates of the recorded CoP PED and
sway SED series the number of which is indicated on the top left.  tTM > 0 indicates that the
original  spectrum  was  wider  than  the  surrogate  spectrums  and  vice  versa.  The  dashed
vertical lines indicate the cutoffs for statistical significance at the two-tailed alpha level of 0.05
for 31 DoFs. Most (1412/1620) CoP PED and all sway SED series showed multifractality.
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Figure 4. Mean±s.e.m. (n = 15 participants) responses in  Δα of CoP PED and sway SED
series over ten trials afterward to an impulse in  Δα of each other  series in the current trial.
Each black curve illustrates the later response as it decays over subsequent trials, and each
solid red circle indicates a significant (p < 0.01) response to an impulse in ith trial afterward (1
through 10). The strongest effects included multifractality-promoting effects from the object
(OBJD) on the most distal arm segments that become progressively smaller (from RFIN to
RWRA to RFRM) and then multifractality-diminishing effects on the proximal arm segments
(RELB, RUPA and RSHO); see text for all other significant impulse-response effects.
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Figure 5. Comparisons of absolute errors in perceived heaviness, Herror, and perceived length,
Lerror, for representative participants with weak and strong impulse-response (IR) effects for
selected pairwise relationships. The strong IR effects of OBJD on RELB and CoP on RWRA
entailed decrease in Herror (left panels in bold); all other IR effects entailed increases in Herror

(left panels). The strong IR effects of RELB on RWRA and RELB on RSHO entailed decrease
in Lerror (right panels in bold); all other IR effects entailed increases in Lerror (right panels).
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