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Abstract7

Parallel evolution is consistently observed across the tree of life. How-8

ever, the degree of parallelism between replicate populations in evolution9

experiments is rarely quantified at the gene level. Here we examine par-10

allel evolution as the degree of covariance between replicate populations,11

providing a justification for the use of dimensionality reduction. We ex-12

amine the extent that signals of gene-level covariance can be inferred in13

microbial evolve-and-resequence evolution experiments, finding that devi-14

ations from parallelism are difficult to quantify at a given point in time.15

However, this low statistical signal means that covariance between repli-16

cate populations is unlikely to interfere with the ability to detect diver-17

gent evolutionary trajectories for populations in different environments.18

Finally, we find evidence suggesting that temporal patterns of parallelism19

are comparatively easier to detect and that these patterns may reflect the20

evolutionary dynamics of microbial populations.21
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1 Introduction23

Parallel evolution occurs when independent populations evolve similar phenotypes24

and genotypes. Observed across the tree of life [12, 41, 27], parallel evolution has25

historically been viewed as a singular outcome that is representative of adaptation26

[24]. However, parallelism is not binary [8, 47, 32]. Instead, parallelism is a continuous27

quantity that captures the variation in evolutionary outcomes, allowing for researchers28

to test hypotheses about the extent that evolutionary and ecological forces affect the29

repeatability of evolutionary outcomes relative to a null expectation.30

The idea that parallelism should be viewed as a quantity is particularly suited31

to the experimental study of microbial evolution, where many large populations with32

short generation times can be simultaneously maintained. In microbial systems the33

same evolutionary outcome can repeatedly occur across levels of biological organiza-34

tion, ranging from nucleotide sites repeatedly acquiring the same mutation [7] to phe-35

notypes consistently changing in the same direction and magnitude [17] to predator-36

prey systems repeatedly evolving similar dynamics [18]. The experimental tractability37

of many microbial systems also allows for the degree of parallelism to be examined38

across diverse ecological scenarios. For example, it has been argued that an excep-39

tional degree of parallel outcomes has been observed in evolution experiments where40

microbial populations adapt to high temperatures [50], alternative resources [21], and41

the introduction of new species [45]. The power of experimental microbial evolution42

provides unique opportunities for the degree of variation in evolutionary outcomes to43

be examined across biological hierarchies and environments.44

Parallel evolution can be found across biological scales, though it is not equally45

likely at each scale. Independently evolving bacterial populations are unlikely to ac-46

quire mutations at the same nucleotide site in most evolve-and-resequence experiments47

[13], making it necessary to group mutations together. Under this coarse-graining, ge-48

netic parallelism is examined as the set of genes that acquire more mutations than49

expected by chance. A number of statistical approaches have been developed and50

applied to evolution experiments to identify this set of genes [55, 6, 49, 23, 3]. In51
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addition, in recent years increases attention has been given to the shape of this distri-52

bution of mutations across genes, with a particular focus on developing a reasonable53

statistical null for parallelism [23] and identifying evolutionary mechanisms that drive54

the shape of the distribution [4].55

While the distribution of mutations among genes has been given considerable at-56

tention, relatively few attempts have been made to examine the joint distribution of57

mutation counts between genes [15]. Epistatic interactions between mutations in dif-58

ferent genes make certain combinations of mutation counts more likely than others,59

generating covariance between populations [5] (analogous to within/between popula-60

tion genetic variation [20] or α/β species diversity [56]). Conceptually, this covariance61

can be understood as the inverse of parallel evolution, where higher levels of covari-62

ance between genes makes replicate populations less genetically similar. Because more63

genes acquire mutations than there are replicate populations for the vast majority64

of evolution experiments, dimensionality reduction is often necessary to determine65

whether covariance exists. Dimensionality reduction approaches have been applied66

to determine whether replicate populations in different environments diverged at the67

gene level [52], though these approaches have yet to be used to quantify the degree of68

parallelism among replicate populations .69

Here, we examine how covariance between genes relates to the experimental evolu-70

tion of microbial populations. We investigate how a stochastic formulation of Principal71

Component Analysis [44] relates to covariance between genes and how that covariance72

can be accounted for to determine whether the outcome of an evolution experiment73

was more or less parallel than expected by chance. We argue that in the context of74

experimental evolution the concept of parallelism should be treated as a continuous75

quantity where the absence of covariance between genes represents a statistical null76

to be rejected. We compare mathematical approaches from statistical physics and77

multivariate statistics using simulations to quantify the degree of parallelism and its78

significance. We then examine whether deviations from parallelism interfere with the79

ability to detect divergent evolution in case studies where replicate populations evolved80

under different conditions. Finally, we examine how parallelism varies over time in a81
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highly temporally resolved evolution experiment.82

2 Materials and Methods83

2.1 Parallel evolution and PCA84

We examine the relationship between conceptualizations of parallel evolution and85

PCA. We assume that n replicate populations have been propagated for an equal86

number of generations in the same environment. Assuming that the populations are87

evolving under the strong selection, weak mutation limit (SSWM), the molecular dy-88

namics can be examined as a biased random walk on genotypic space consisting of L89

biallelic sites that comprises the set of epistatic interactions between sites. Once pop-90

ulations have been sequenced, a site-by-population matrix can be constructed, where91

each value represents the presence or absence of a given mutation in a given popu-92

lation. While there is evidence that parallel outcomes can occur at the nucleotide93

level in microbial evolution experiments [23], it is far more common in organisms with94

smaller genomes and larger population sizes such as viruses [7]. Instead, to examine95

parallelism, it is reasonable to reduce sparsity by constructing an G×n population-by-96

gene count matrix Z, effectively coarse-graining genotypic space into G genes. At this97

point the question of whether or not parallelism is present in an evolution experiment98

can be understood as the degree that epistatic interactions between sites translates to99

an observable statistical signal at the gene-level.100

To understand how Z relates to the concept of parallelism is it useful to use PCA101

as a conceptual intermediate. If elements of Z have been centered by the mean of each102

column as Xi,j = Zi,j − 1
n

∑n
k=1 Zi,k to create the zero-centered matrix X, then the103

empirical population covariance matrix can be estimated as104

C =
1

n− 1
XXT (1)

The principal components of X are obtained from the eigenvectors of C. However,105

PCA is closely connected to the factorization process of Singular Value Decomposition106
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(SVD) [44], which has been previously used to establish intuitive connections between107

evolutionary processes and PCA [34]. Following this approach, the SVD is performed108

using the stochastic matrix M:109

M =
1

G
XTX (2)

As M is a stochastic matrix, the expected value for each element can be examined as:

E [Mi,j ] =
1

G

G∑
g=1

E [Xg,iXg,j ] (3a)

=
1

G

G∑
g

E

[(
Zg,i −

1

n

n∑
k=1

Zg,k

)(
Zg,j −

1

n

n∑
k=1

Zg,k

)]
(3b)

By expanding the brackets, the expected value of Mi,j for a single gene g is110

E
[
M

(g)
i,j

]
= E [Zg,iZg,j ]−

1

n

n∑
k=1

E [Zg,iZg,k]− 1

n

n∑
k=1

E [Zg,jZg,k] +

n∑
k=1

n∑
l=1

E [Zg,kZg,l]

(4)

Each element of eqn. 4 contains at least one expected value of two joint ran-111

dom variables, which can be viewed as the sum of the products of the expected value112

of each random variable and their covariance (ex., E [Zg,iZg,j ] = E [Zg,i] E [Zg,j ] +113

cov (Zg,iZg,j)). Assuming that no cross-contamination occurred over the course of the114

experiment, our populations are evolutionarily independent and we can set cov (Zg,iZg,j) =115

0.116

We note that this covariance term can in principle be modified to account for shared117

evolutionary history in experimental evolutionary studies where multiple taxa with a118

resolved phylogeny have evolved in the same environment. More importantly, be-119

cause our populations are independent, under a SSWM limit the presence of between-120

population covariance values greater than expected by chance indicates the presence121

of epistatic interactions. Therefore, the concept of absolute parallelism between popu-122

lations in experimental evolution relates to PCA as the absence of covariance between123

genes, a null expectation that can be statistically tested.124
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2.2 Signals of non-parallelism125

Random versions of Z (Z∗) were obtained by randomizing the co-occurrence of mu-126

tations across genes. We chose to generate Z∗ such that row and column sums are127

conserved, an approach that reduces covariance between genes while conserving the128

observed distribution of evolutionary distances and the distribution of per-gene mu-129

tation counts, respectively. This was done by adapting previously developed Python130

code [37] and the ASA159 FORTRAN77 library [38].131

Deviations from parallelism were quantified using statistics frequently used in ran-132

dom matrix theory and multivariate statistical testing. The first two statistics are133

commonly used for analyses in ordination space, specifically the principal components134

(PCs) for the purpose of this study. The first statistic is the Mean Centroid Distance135

(MCD), a common measure of dispersion defined as136

MCD =
1

n

(
n∑

i=1

k∑
j=1

∣∣Pi,j − pj
∣∣2) 1

2

(5)

where P(k) is the n × k matrix consisting of the first k principal axes and pj is the137

mean of the jth axis [30].138

The second statistic is the Mean Pairwise Distance (MPD), a statistic frequently139

used when comparing variation within and between groups in ordination space [2].140

MPD is defined as141

MPD =
2

n(n− 1)

n∑
i=2

i−1∑
i=1

d(p
(k)
i ,pk

j ) (6)

where p
(k)
i is the k-element vector of the ith population and d() is the Euclidean142

distance143

The final statistic is the largest normalized eigenvalue [51, 39], defined as144

L̃1 =
L1 − µ(n, g)

σ(n, g)
(7)
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where L1 is normalized as L1 = nλ1/
∑n

i=1 λi to sum to n and145

µ(n, g) =

(√
g − 1 +

√
n
)2

g
(8)

σ(n, g) =

√
g − 1 +

√
n

g

(
1√
g − 1

+
1√
n

) 1
3

(9)

As n, g → ∞ and n/g → γ ≥ 1 L̃1 tends towards a Tracy-Widom distribution146

[29, 39]. Though these criteria can be relaxed [51] and L̃1 holds for matrices as small147

as 5 × 20. This approach was initially developed for Wishart matrices with Gaus-148

sian distributed entries. While mutation counts in X are likely non-Gaussian, this is149

not critical and our data are unlikely to violate previously established criteria [46].150

While this statistic is less frequently used in multivariate ecological and evolutionary151

analyses, we chose to include it due to the fact that the distribution of primary eigen-152

values has analytic forms for certain classes of square matrices and is an active area153

of mathematical research [48], providing added interpretability to the statistic.154

2.3 Quantifying parallelism in simulated data155

While little is known about the distribution of gene-specific substitution rates, we156

are primarily interested in the covariance between genes that ultimately generates157

covariance between populations, so that the choice of a distribution that reflects158

the mean rate of evolution is not necessarily pertinent to examine the covariance.159

Therefore, we chose to generate the vector g containing G gene-specific substitu-160

tion rates using a gamma distribution with a shape parameter of 3 and a scale pa-161

rameter of 1. To generate the between-gene covariance matrix we first generated162

scale-free random graphs using the Barabási-Albert preferential attachment model163

[1]. The barabasi albert graph and the powerlaw cluster graph functions from the164

networkx Python package [36] were used to generate Barabási-Albert graphs and clus-165

tered Barabási-Albert graphs [26], respectively. The adjacency matrix of the graph166

was multiplied by a given covariance value and the diagonal elements were set to167

one so that the matrix fit the standard normal form (N (0,Σ)). We only proceeded168
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with the simulation if Σ was positive definite, the probability of which decreases with169

increasing values of σ under the Geršgorin circle theorem [43]. Poisson distributed170

mutation counts were generated using inverse transform sampling [14] with the cutoff171

determined by samples of the Cumulative Density Function of N (0,Σ) rather than the172

standard approach of sampling from a uniform distribution U(0,1) so that between173

gene covariance could be conserved (extended description in Supporting Information).174

PCA was performed using the decomposition.PCA() function from scikit-learn [40]175

in Python 3.6. Values from simulated Z matrices were compared to a null distribution176

of values calculated from 1,000 iterations of Z∗. This process was repeated 1,000 times177

to estimate statistical power as the proportion of simulations where the null could be178

rejected at a significance level of α = 0.05.179

2.4 Quantifying parallelism in empirical data180

To determine the degree that deviations from parallelism can be detected we used a181

publicly available data set from one of the largest microbial evolution experiments. In182

this experiment, 115 replicate populations of Escherichia coli were serially transferred183

for 2,000 generations at 42.2 °C [50]. A single colony was isolated from each replicate184

population and sequenced. We merged all mutations from all replicate populations185

into a single population-by-gene count matrix. To account for gene size as a covariate,186

we corrected the number of mutations in all empirical data by calculating the excess187

number of mutations (i.e., multiplicity) mg,i = Zg,i · L̄
Lg

, where L̄ is the mean size of188

all genes in the genome [23]. To measure the degree that reducing covariance affected189

clustering we calculated the variance ratio criteria using the Calinski and Harabaz score190

[11] on k-means clustered PC space [25] using scikit-learn [40]. Cluster stability was191

assessed by re-sampling populations in PC space with replacement, performing spectral192

clustering [25], and mapping clusters between the original and re-sampled PC space193

by their maximum Jaccard coefficient [33]. This process was repeated 10,000 times.194

We compared our PCA-based results using data from [50] to analyses that do not195

account for covariance between genes. To do this, we summed across the rows of196

the population-by-gene matrix to generate a vector of the total number of mutations197
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acquired in each gene (ni) and calculated multiplicity of each of the i genes as mi =198

ni · L̄
Li

. Values of mi were compared to the null expectation of m = ntot/Ngenes, where199

Ngenes is the total number of genes in the genome, as the net increase in log-likelihood200

∆` =
∑
i

= nilog
(mi

m

)
(10)

Where probability values that a given gene has an excess number of mutations201

with a False Discovery Rate (FDR) of 0.05 were calculated for each gene as previously202

described [23]. We calculated the ∆`, the number of significant genes, and the propor-203

tion of times that genes of interest had a significant multiplicity by sampling a given204

number of populations without replacement 10,000 times.205

To examine the degree that covariance between replicates affects the ability to206

distinguish between populations evolving under different conditions, we examined two207

datasets from studies with moderate within-treatment replication. The first dataset208

examined the spectrum of mutations in genomically recoded E. coli MG1655, where209

14 replicate populations of the following strains were serially transferred: (1) the non-210

recoded ancestor (ECNR2), (2) a strain where UAG stop codons were replaced with211

UAA and the class I peptide release factor 1 was deleted (C321.∆A), (3) a C321.∆A212

derivative with engineered reversions to three off-target mutations (C321.∆A-v2), and213

(4) a C321.∆A derivative recoded to restore RF1 (C321) [53]. The second study was214

more focused on the consequence of microbial life cycles in different environments.215

In this experiment Burkholderia cenocepacia with planktonic or biofilm life in en-216

vironments containing with low or high concentrations of carbon [52]. The degree217

of evolutionary divergence was quantified using two forms of Permutational ANOVA218

(PERMANOVA) F statistics, a standard one (F1) and one that accounts for unequal219

levels of parallelism among treatments (F2) [2]. Null population-by-gene count matri-220

ces for each study were constructed for k treatments, randomized, and concatenated221

as Z∗ = (Z∗
1, · · · ,Z∗

k)T. All entries were relativized by dividing each element by the222

sum of its row.223

To examine temporal trends in covariance between populations we used publicly224

available sequence data from the Long-term Evolution Experiment [31], an experiment225
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consisting of twelve E. coli populations that have been serially propagated for over226

60,000 generations. We generated a population-by-gene count matrix every 500 gen-227

erations for fixed mutations inferred in [23] and concatenated observations as a single228

matrix. We chose to only examine the six nonmutator populations: Ara+1, +2, +4,229

+5, -5 and -6, as hypermutator populations exhibit qualitatively different molecular230

dynamics [23] that could affect the covariance between populations. While there are a231

variety of geometric techniques to examine temporal patterns in ordination space [10],232

we elected the straightforward approach of randomizing timepoints for each replicate233

population so that null values of MPD could be estimate in the absence of tempo-234

ral autocorrelation. The same multiplicity calculation was performed as described235

above. While there are a number of techniques to estimate the number of PCs to keep236

[42, 9, 19, 35], we elected to keep a number of PCs equal to the number of replicate237

populations for the LTEE data.238

3 Results239

3.1 Gene-level covariance is low240

We find that statistical power for rejecting the null hypothesis of zero covariance241

between genes (H0 : Σ = I) increases with covariance, but is generally low with242

the probability only reaching 0.25 with the highest covariance examined (Fig. 1).243

The statistics MCD and MPD calculated on the first principal component have much244

lower power than the more commonly used statistic L̃1, though they overtake L̃1 once245

additional PCs are considered. Given that the statistics were fairly similar and that246

MPD is used to calculate F2 [2], we used MPD for the remaining analyses. Statistical247

power slightly increases with the degree of clustering, though the increment is very248

small for the range of clustering coefficients examined (Fig. 1) which indicates that249

the structure of the between-gene covariance matrix does not influence our ability to250

detect covariance between populations. Similar patterns were observed for the effect251

size (standardized score; Fig. 1). Though the ability to reject the null hypothesis252

requires a large number of replicate populations as well as a large number of genes253
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that acquire mutations (Fig. S1)254

We find clear evidence of population covariance in existing data [50]. The E. coli255

populations appear to form three clusters in PC space (Fig. 2), where the formation256

of the two smaller clusters are primarily driven by mutations acquired in ESCRE1901257

and ECB 01992 along the first and second principle components, receptively. Both258

genes are putative proteins with no known function that have acquired mutations in259

separate evolution experiments examining E. coli adaptation to heat [28]. Of all genes,260

ESCRE1901 has the highest squared correlation with the first principal component261

(i.e., rescaled loading; ρ2 = 0.92), the same being true for ECB 01992 and the second262

PC (ρ2 = 0.73).263

We find that the observed MPD(3) is significantly greater than the null expectation264

in the absence of covariance (Fig. 2, S2), though, consistent with our simulations265

(Fig. S1), the required replication to consistently reject the null is over an order of266

magnitude larger than the replication level of most standard evolution experiments267

(Fig. 2). This pattern holds at the gene level, as similar replication is needed to268

determine if ESCRE1901 and ECB 01992 acquire more mutations than expected by269

chance across all replicate populations (3). That cluster formation is driven by a few270

genes explains the low stability of the clusters (Fig. 2), despite the fact that the271

variance ratio between and within clusters is much higher than what is found in null272

count matrices (Fig. 2). That few genes (and, therefore, few mutations) drive this273

covariance explains the lack of a clear relationship between either of the first two PCs274

or clusters in PC space and the relative fitness of each clone (Fig. S3).275

3.2 Within-group covariance does not interfere with the276

ability to detect divergence.277

We find no significant difference between observed MPD values and the null expecta-278

tion when covariance is removed from the population-by-gene matrix of each treatment279

in two evolution experiments with multiple treatments and moderate replication (Fig.280

4, S4). This pattern holds at the level of summary statistics, as there is no significant281
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difference between estimates of between vs. within treatment variation and the null282

expectation in the absence of covariance for either F statistic (Fig. 4, Fig. S5).283

3.3 Temporal patterns of parallelism are detectable at the284

gene-level285

Our previous results suggest that it would be difficult to infer whether there was286

a significant amount of between-gene covariance at a given timepoint in evolution287

experiments with a standard number of replicate populations. Indeed, that is also the288

case for the LTEE (Fig. S6). Instead, we chose to examine how MPD varied over289

time. In contrast with our attempts to detect covariance at a single time point, there290

are clear temporal patterns of parallelism in the LTEE despite there only being six291

replicate populations. While it is trivial that the genetic distance between initially292

identical replicate populations grown from a single clone has to increase, we see that293

after a period of increasing distance the replicate populations begin to become more294

similar (Fig. 5). By measuring MPD over the first five axes (MPD(5), Fig. S7 ), we295

find that there is a clear pattern where MPD(5) rapidly increases over the first few296

thousand generations and gradually decreases starting at 4,750 generations.297

4 Discussion298

Our results suggest that it is difficult to detect covariance between populations at299

the gene-level in evolve-and-resequence evolution experiments with a standard level of300

replication. A minimum of 60 replicate populations are required to reject the null hy-301

pothesis of zero covariance 50% of the time in [50]. This may in part be due to the fact302

that individual clones were sequenced in this experiment, whereas pooled sequencing303

would provide estimates of mutation frequencies which may contain additional in-304

formation about their fitness effects. However, the number of replicate populations305

required was similar to our results from simulated data, suggesting that covariance306

cannot be detected at the gene level in the vast majority of evolution experiments.307

While covariance was weak, we were able to identify genes that disproportionately308
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contribute to the observed signal. Covariance between populations in [50] is primarily309

driven by ESCRE1901 and ECB 01992, two genes of unknown function that have also310

acquired mutations in a similarly designed experiment [28]. Given that covariance311

can indicate the presence of an interaction, ESCRE1901 and ECB 01992 are useful312

candidates for investigating between-gene epistatic interactions in E. coli. However,313

there is no relationship between fitness and gene-level mutational composition or the314

presence of mutations in these genes. This lack of a relationship may be the result of315

the mutations in these genes making a relatively small overall contribution to fitness316

that cannot be detected at a coarse scale, as suggested by the fact that 50 replicate317

populations are required to determine that ESCRE1901 and ECB 01992 acquire more318

mutations than expected by chance 95% of the time.319

Observed F statistics were not significantly different from the null expectation320

in absence of within-group covariance for the datasets examined [52, 53]. This re-321

sult suggests that while covariance between populations is difficult to detect in evo-322

lution experiments with moderate replication (e.g., n=4-6), this low signal provides323

the added advantage of not having to be concerned with how different environments324

or backgrounds affect covariance between genes (i.e., the Behrens–Fisher problem [16,325

54]). Rather, the difference in mean gene-level substitution rates between treatments is326

likely greater than the covariance. While the experiments we examined were conducted327

in disparate environments or with synthetic strains, we argue that these conclusions328

will hold for experiments that examine microbial evolution across a more continuous329

environmental or genetic gradient.330

While covariance between populations does not interfere with the ability to detect331

divergent evolution, we find evidence that covariance between replicate populations332

changes over time. In the LTEE we find that MPD rapidly increases over the first333

4,750 generations, followed by a steady decrease over the remaining 55,000 generations.334

This pattern is consistent with the “two-epoch” mean-field model of adaptation that335

has been proposed for this system, where populations evolve under an initial burst336

of macroscopic epistasis followed by the steady accumulation of mutations under a337

constant distribution of fitness effects [22]. That is, qualitative shifts in underlying338
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evolutionary dynamics may be detectable by examining covariance at the gene-level339

over time. While this transition between regimes has been suggested to occur at the340

10,000 generation mark [22], the difference of a few thousand generations does not341

negate the presence of the qualitative trend and this result may be corroborated by342

examining how gene-level interactions give rise to evolutionary dynamics predicted by343

mean-field models.344

As long-term experiments become increasingly used to examine evolutionary dy-345

namics and test hypotheses it is necessary to identify appropriate statistical approaches346

and establish their limitations. Our work suggests that ordination techniques have a347

number of potential applications for experimental evolution. PCA specifically has348

the added advantage of being a well understood statistical tool for examining co-349

variance, which can be connected to the joint probability distribution of gene-level350

substitution rates. The structure of the covariance between genes is ultimately of the-351

oretical interest and while our results suggest that its statistical signal is small and352

the population-by-gene matrix is sparse, we are able to identify contributing genes353

with sufficient replication and identify temporal trends. For the more complex case of354

covariance over time, it will be necessary to examine this joint distribution in greater355

detail by incorporating it into models of evolutionary dynamics.356
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[1] Réka Albert and Albert-László Barabási. “Statistical mechanics of com-374

plex networks”. In: Rev. Mod. Phys. 74 (1 Jan. 2002), pp. 47–97. doi:375

10.1103/RevModPhys.74.47. url: https://link.aps.org/doi/10.376

1103/RevModPhys.74.47.377

[2] Marti J. Anderson et al. “Some solutions to the multivariate Behrens–Fisher378

problem for dissimilarity-based analyses”. en. In: Australian & New Zealand379

Journal of Statistics 59.1 (2017), pp. 57–79. issn: 1467-842X. doi: 10.380

1111/anzs.12176. url: https://onlinelibrary.wiley.com/doi/abs/381

10.1111/anzs.12176 (visited on 01/15/2020).382

[3] Susan F. Bailey, Qianyun Guo, and Thomas Bataillon. “Identifying Drivers383

of Parallel Evolution: A Regression Model Approach”. en. In: Genome Bi-384

ology and Evolution 10.10 (Oct. 2018), pp. 2801–2812. doi: 10.1093/gbe/385

evy210. url: https://academic.oup.com/gbe/article/10/10/2801/386

5106663 (visited on 01/21/2020).387

[4] Susan F. Bailey et al. “What drives parallel evolution?” en. In: BioEssays388

39.1 (2017), e201600176. issn: 1521-1878. doi: 10.1002/bies.201600176.389

url: https://onlinelibrary.wiley.com/doi/abs/10.1002/bies.390

201600176 (visited on 01/21/2020).391

[5] Benedikt Bauer and Chaitanya S. Gokhale. “Repeatability of evolution on392

epistatic landscapes”. en. In: Scientific Reports 5.1 (May 2015), pp. 1–6.393

issn: 2045-2322. doi: 10.1038/srep09607. url: https://www.nature.394

com/articles/srep09607 (visited on 01/21/2020).395

[6] Megan G. Behringer et al. “Escherichia coli cultures maintain stable sub-396

population structure during long-term evolution”. en. In: Proceedings of397

the National Academy of Sciences 115.20 (May 2018), E4642–E4650. issn:398

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.13.070953doi: bioRxiv preprint 

https://doi.org/10.1103/RevModPhys.74.47
https://link.aps.org/doi/10.1103/RevModPhys.74.47
https://link.aps.org/doi/10.1103/RevModPhys.74.47
https://link.aps.org/doi/10.1103/RevModPhys.74.47
https://doi.org/10.1111/anzs.12176
https://doi.org/10.1111/anzs.12176
https://doi.org/10.1111/anzs.12176
https://onlinelibrary.wiley.com/doi/abs/10.1111/anzs.12176
https://onlinelibrary.wiley.com/doi/abs/10.1111/anzs.12176
https://onlinelibrary.wiley.com/doi/abs/10.1111/anzs.12176
https://doi.org/10.1093/gbe/evy210
https://doi.org/10.1093/gbe/evy210
https://doi.org/10.1093/gbe/evy210
https://academic.oup.com/gbe/article/10/10/2801/5106663
https://academic.oup.com/gbe/article/10/10/2801/5106663
https://academic.oup.com/gbe/article/10/10/2801/5106663
https://doi.org/10.1002/bies.201600176
https://onlinelibrary.wiley.com/doi/abs/10.1002/bies.201600176
https://onlinelibrary.wiley.com/doi/abs/10.1002/bies.201600176
https://onlinelibrary.wiley.com/doi/abs/10.1002/bies.201600176
https://doi.org/10.1038/srep09607
https://www.nature.com/articles/srep09607
https://www.nature.com/articles/srep09607
https://www.nature.com/articles/srep09607
https://doi.org/10.1101/2020.05.13.070953
http://creativecommons.org/licenses/by/4.0/


0027-8424, 1091-6490. doi: 10.1073/pnas.1708371115. url: https:399

//www.pnas.org/content/115/20/E4642 (visited on 01/20/2020).400

[7] Frederic Bertels et al. “Parallel Evolution of HIV-1 in a Long-Term Exper-401

iment”. In: Molecular Biology and Evolution 36.11 (2019), pp. 2400–2414.402

issn: 0737-4038. doi: 10.1093/molbev/msz155. url: https://doi.org/403

10.1093/molbev/msz155.404

[8] Daniel I. Bolnick et al. “(Non)Parallel Evolution”. In: Annual Review of405

Ecology, Evolution, and Systematics 49.1 (2018), pp. 303–330. doi: 10.406

1146/annurev-ecolsys-110617-062240. url: https://doi.org/10.407

1146/annurev-ecolsys-110617-062240 (visited on 01/20/2020).408

[9] R. Bro et al. “Cross-validation of component models: a critical look at409

current methods”. eng. In: Analytical and Bioanalytical Chemistry 390.5410

(Mar. 2008), pp. 1241–1251. issn: 1618-2650. doi: 10.1007/s00216-007-411

1790-1.412
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Figure 1: The relationship between properties of Σ and statistical power at
a significance level of α = 0.05 (dashed horizontal grey line), the probability
of rejecting the null hypothesis Σ = I. a) Statistical power increases with
covariance across all methods, though MCD and MPD only approach the level of
L̃1 when they are estimated over the first three principal components. b) There
is no clear relationship between statistical power and the degree of clustering
in Σ. Similar results were found for the standard score of each method in c)
and d), where the grey and black lines represent values of zero and a single
standard deviation, respectively. Power was calculated from 1,000 simulations
using 100 replicate populations and 50 genes. Black gray bars represent 95%
bootstrapped confidence intervals from 10,000 samples.
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Figure 2: Properties of parallelism in the evolved E. coli replicate populations
from [50]. a) There is clear structure in the data and b) MPD(3) (dashed red
vertical line) is larger than the null distribution calculated from randomized
population-by-gene multiplicity matrices (blue histogram). c), d) Covariance
is difficult to detect and requires a large number of replicate populations. e)
While there is clearly greater variance between groups than within, f) there is
low cluster stability for k = 3.
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Figure 3: Sampling curve describing how parallelism changes as the number of
replicate populations increases using data from [50]. Significant genes in b),
c), and d) were determined using the multiplicity calculations presented in [23]
with a FDR of 0.05. Each dot was calculated from 10,000 sampling events of
a given size without replacement from the gene-by-population matrix. Black
bars represent 95% bootstrapped confidence intervals calculated from 10,000
samples.
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Figure 4: Between covariance is unlikely to affect the degree to detect divergent
evolution. MPD(3) of each treatment and and F1 statistics across all treatments
are not significantly different from the null expectation when covariance between
individuals within the same treatment is removed for data from [52] in a), b)
and data from [53] in c), d). The black dots and lines in a) and c) represent the
mean and 95% standardized CIs from null simulations while the colored dots
represent the observed standardized values of MPD(3). The red dashed vertical
lines in b) and d) represents the observed value of F and the blue histogram
represents simulated values of F1 in the absence of within group covariance.
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Figure 5: Temporal patterns of parallelism in the LTEE [23]. a) The PCA pro-

jection of the gene-by-sample multiplicity matrix. b) By calculating MPD(5) at
each timepoint we can see temporal patterns in the similarity between popula-
tions. The dotted horizontal black lines represent the 95% intervals for MPD
in the absence of temporal autocorrelation and the vertical dashed grey line
represents the 10,000 generation mark.
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