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7 Abstract
8 Parallel evolution is consistently observed across the tree of life. How-
9 ever, the degree of parallelism between replicate populations in evolution
10 experiments is rarely quantified at the gene level. Here we examine par-
11 allel evolution as the degree of covariance between replicate populations,
12 providing a justification for the use of dimensionality reduction. We ex-
13 amine the extent that signals of gene-level covariance can be inferred in
14 microbial evolve-and-resequence evolution experiments, finding that devi-
15 ations from parallelism are difficult to quantify at a given point in time.
16 However, this low statistical signal means that covariance between repli-
17 cate populations is unlikely to interfere with the ability to detect diver-
18 gent evolutionary trajectories for populations in different environments.
19 Finally, we find evidence suggesting that temporal patterns of parallelism
20 are comparatively easier to detect and that these patterns may reflect the
21 evolutionary dynamics of microbial populations.
2 Keywords— Experimental evolution, Microbial evolution, Parallel evolution
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» 1 Introduction

24 Parallel evolution occurs when independent populations evolve similar phenotypes
s and genotypes. Observed across the tree of life [12, 41, 27], parallel evolution has
2% historically been viewed as a singular outcome that is representative of adaptation
27 [24]. However, parallelism is not binary [8, 47, 32]. Instead, parallelism is a continuous
28 quantity that captures the variation in evolutionary outcomes, allowing for researchers
20 to test hypotheses about the extent that evolutionary and ecological forces affect the
30 repeatability of evolutionary outcomes relative to a null expectation.

31 The idea that parallelism should be viewed as a quantity is particularly suited
32 to the experimental study of microbial evolution, where many large populations with
33 short generation times can be simultaneously maintained. In microbial systems the
3¢ same evolutionary outcome can repeatedly occur across levels of biological organiza-
35 tion, ranging from nucleotide sites repeatedly acquiring the same mutation [7] to phe-
3 notypes consistently changing in the same direction and magnitude [17] to predator-
s prey systems repeatedly evolving similar dynamics [18]. The experimental tractability
33 of many microbial systems also allows for the degree of parallelism to be examined
39 across diverse ecological scenarios. For example, it has been argued that an excep-
40 tional degree of parallel outcomes has been observed in evolution experiments where
4 microbial populations adapt to high temperatures [50], alternative resources [21], and
2 the introduction of new species [45]. The power of experimental microbial evolution
43 provides unique opportunities for the degree of variation in evolutionary outcomes to
41 be examined across biological hierarchies and environments.

45 Parallel evolution can be found across biological scales, though it is not equally
4 likely at each scale. Independently evolving bacterial populations are unlikely to ac-
47 quire mutations at the same nucleotide site in most evolve-and-resequence experiments
s [13], making it necessary to group mutations together. Under this coarse-graining, ge-
49 mnetic parallelism is examined as the set of genes that acquire more mutations than
so expected by chance. A number of statistical approaches have been developed and

s1  applied to evolution experiments to identify this set of genes [55, 6, 49, 23, 3]. In
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52 addition, in recent years increases attention has been given to the shape of this distri-
53 bution of mutations across genes, with a particular focus on developing a reasonable
s« statistical null for parallelism [23] and identifying evolutionary mechanisms that drive
ss  the shape of the distribution [4].

56 While the distribution of mutations among genes has been given considerable at-
57 tention, relatively few attempts have been made to examine the joint distribution of
ss mutation counts between genes [15]. Epistatic interactions between mutations in dif-
5o ferent genes make certain combinations of mutation counts more likely than others,
6 generating covariance between populations [5] (analogous to within/between popula-
61 tion genetic variation [20] or o/ species diversity [56]). Conceptually, this covariance
62 can be understood as the inverse of parallel evolution, where higher levels of covari-
63 ance between genes makes replicate populations less genetically similar. Because more
64 genes acquire mutations than there are replicate populations for the vast majority
es of evolution experiments, dimensionality reduction is often necessary to determine
66 whether covariance exists. Dimensionality reduction approaches have been applied
67 to determine whether replicate populations in different environments diverged at the
¢ gene level [52], though these approaches have yet to be used to quantify the degree of
60 parallelism among replicate populations .

70 Here, we examine how covariance between genes relates to the experimental evolu-
71 tion of microbial populations. We investigate how a stochastic formulation of Principal
72 Component Analysis [14] relates to covariance between genes and how that covariance
73 can be accounted for to determine whether the outcome of an evolution experiment
74 was more or less parallel than expected by chance. We argue that in the context of
75 experimental evolution the concept of parallelism should be treated as a continuous
76 quantity where the absence of covariance between genes represents a statistical null
77 to be rejected. We compare mathematical approaches from statistical physics and
78 multivariate statistics using simulations to quantify the degree of parallelism and its
79 significance. We then examine whether deviations from parallelism interfere with the
s ability to detect divergent evolution in case studies where replicate populations evolved

g1 under different conditions. Finally, we examine how parallelism varies over time in a
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g2 highly temporally resolved evolution experiment.

» 2 Materials and Methods

o« 2.1 Parallel evolution and PCA

s We examine the relationship between conceptualizations of parallel evolution and
s PCA. We assume that n replicate populations have been propagated for an equal
g7 number of generations in the same environment. Assuming that the populations are
s evolving under the strong selection, weak mutation limit (SSWM), the molecular dy-
s namics can be examined as a biased random walk on genotypic space consisting of L
o0 biallelic sites that comprises the set of epistatic interactions between sites. Once pop-
o1 ulations have been sequenced, a site-by-population matrix can be constructed, where
92 each value represents the presence or absence of a given mutation in a given popu-
o3 lation. While there is evidence that parallel outcomes can occur at the nucleotide
s level in microbial evolution experiments [23], it is far more common in organisms with
os smaller genomes and larger population sizes such as viruses [7]. Instead, to examine
o6 parallelism, it is reasonable to reduce sparsity by constructing an G X n population-by-
o7 gene count matrix Z, effectively coarse-graining genotypic space into G genes. At this
9s point the question of whether or not parallelism is present in an evolution experiment
99 can be understood as the degree that epistatic interactions between sites translates to
100 an observable statistical signal at the gene-level.

101 To understand how Z relates to the concept of parallelism is it useful to use PCA
102 as a conceptual intermediate. If elements of Z have been centered by the mean of each
103 column as X;; = Z; ; — %ZZ:I Zi 1 to create the zero-centered matrix X, then the

104 empirical population covariance matrix can be estimated as

1
n—1

C= xx” (1)

105 The principal components of X are obtained from the eigenvectors of C. However,

106 PCA is closely connected to the factorization process of Singular Value Decomposition
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w7 (SVD) [44], which has been previously used to establish intuitive connections between
108 evolutionary processes and PCA [34]. Following this approach, the SVD is performed

100 using the stochastic matrix M:

_ Llygr
M= =X'X (2)

As M is a stochastic matrix, the expected value for each element can be examined as:

G
1
E[M,;] = ZE [X,.:X,,] (3a)

g:1

1 "~ 1 —
=1 k=1

10 By expanding the brackets, the expected value of M; ; for a single gene g is

1 G
ZEZE
g

n
E [Mi(,gj)} =E [Zg,iZg,j] ZE [Zg ng El = % ZE Zg, JZg k] + Z ZE 95 ng l
k=1 1=1

(4)
111 Each element of eqn. 4 contains at least one expected value of two joint ran-
112 dom variables, which can be viewed as the sum of the products of the expected value
us  of each random variable and their covariance (ex., E[Z,:Z,,;] = E[Zy:]E[Zy,;] +
s cov(Zg,iZg,5)). Assuming that no cross-contamination occurred over the course of the
us  experiment, our populations are evolutionarily independent and we can set cov (Zy,:Zg,5) =
e 0.
117 ‘We note that this covariance term can in principle be modified to account for shared
us  evolutionary history in experimental evolutionary studies where multiple taxa with a
119 resolved phylogeny have evolved in the same environment. More importantly, be-
120 cause our populations are independent, under a SSWM limit the presence of between-
11 population covariance values greater than expected by chance indicates the presence
122 of epistatic interactions. Therefore, the concept of absolute parallelism between popu-
123 lations in experimental evolution relates to PCA as the absence of covariance between

124 genes, a null expectation that can be statistically tested.
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s 2.2 Signals of non-parallelism

126 Random versions of Z (Z*) were obtained by randomizing the co-occurrence of mu-
127 tations across genes. We chose to generate Z* such that row and column sums are
18 conserved, an approach that reduces covariance between genes while conserving the
120 observed distribution of evolutionary distances and the distribution of per-gene mu-
130 tation counts, respectively. This was done by adapting previously developed Python
131 code [37] and the ASA159 FORTRANT77 library [38].

132 Deviations from parallelism were quantified using statistics frequently used in ran-
133 dom matrix theory and multivariate statistical testing. The first two statistics are
13« commonly used for analyses in ordination space, specifically the principal components
135 (PCs) for the purpose of this study. The first statistic is the Mean Centroid Distance

s (MCD), a common measure of dispersion defined as

n k %
MCD::L(ZZ|PM—I)J_‘2> (5)

i=1 j=1
157 where P® is the n x k matrix consisting of the first k principal axes and p; is the
s mean of the jth axis [30].

139 The second statistic is the Mean Pairwise Distance (MPD), a statistic frequently
1o used when comparing variation within and between groups in ordination space [2].

141 MPD is defined as

n 1
_ 2 *) &
MPD = —— 22 > "d(pi", p}) (6)

12 where pgk)

is the k-element vector of the ith population and d() is the Euclidean

143 distance

144 The final statistic is the largest normalized eigenvalue [51, 39], defined as
~ L1 — p(n,
= 1 ,LL( g) (7)
a(n,g)
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us  where L; is normalized as L1 = nA1/ Y ., As to sum to n and

p(n, g) = (—Vg_lg""/ﬁ) ®)

1
—14++vn 1 1\3
otn.g) = VI (L ) 0
g Vg—T1 n
146 Asn,g —» oo and n/g — v > 1 L, tends towards a Tracy-Widom distribution
wr  [29, 39]. Though these criteria can be relaxed [71] and L; holds for matrices as small

us as 5 x 20. This approach was initially developed for Wishart matrices with Gaus-
uo sian distributed entries. While mutation counts in X are likely non-Gaussian, this is
10 not critical and our data are unlikely to violate previously established criteria [40].
151 While this statistic is less frequently used in multivariate ecological and evolutionary
152 analyses, we chose to include it due to the fact that the distribution of primary eigen-
153 values has analytic forms for certain classes of square matrices and is an active area

154 of mathematical research [18], providing added interpretability to the statistic.

s 2.3 Quantifying parallelism in simulated data

156 While little is known about the distribution of gene-specific substitution rates, we
157 are primarily interested in the covariance between genes that ultimately generates
158 covariance between populations, so that the choice of a distribution that reflects
159 the mean rate of evolution is not necessarily pertinent to examine the covariance.
160 Therefore, we chose to generate the vector g containing G gene-specific substitu-
161 tion rates using a gamma distribution with a shape parameter of 3 and a scale pa-
162 rameter of 1. To generate the between-gene covariance matrix we first generated

163 scale-free random graphs using the Barabdsi-Albert preferential attachment model

164 [1]. The barabasi_albert_graph and the powerlaw_cluster_graph functions from the
165 networkx Python package [30] were used to generate Barabdsi-Albert graphs and clus-
16 tered Barabdsi-Albert graphs [20], respectively. The adjacency matrix of the graph

167 was multiplied by a given covariance value and the diagonal elements were set to

168 one so that the matrix fit the standard normal form (A(0,X)). We only proceeded


https://doi.org/10.1101/2020.05.13.070953
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.070953; this version posted May 13, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

160 with the simulation if ¥ was positive definite, the probability of which decreases with
170 increasing values of o under the Gersgorin circle theorem [13]. Poisson distributed
171 mutation counts were generated using inverse transform sampling [14] with the cutoff
12 determined by samples of the Cumulative Density Function of A/(0, ) rather than the
1713 standard approach of sampling from a uniform distribution ¢(0,1) so that between
174 gene covariance could be conserved (extended description in Supporting Information).
175 PCA was performed using the decomposition.PCA() function from scikit-learn [10]
176 in Python 3.6. Values from simulated Z matrices were compared to a null distribution
177 of values calculated from 1,000 iterations of Z*. This process was repeated 1,000 times
178 to estimate statistical power as the proportion of simulations where the null could be

170 rejected at a significance level of a = 0.05.

w 2.4 Quantifying parallelism in empirical data

181 To determine the degree that deviations from parallelism can be detected we used a
12 publicly available data set from one of the largest microbial evolution experiments. In
183 this experiment, 115 replicate populations of Escherichia coli were serially transferred
18 for 2,000 generations at 42.2 °C [50]. A single colony was isolated from each replicate
185 population and sequenced. We merged all mutations from all replicate populations
186 into a single population-by-gene count matrix. To account for gene size as a covariate,

157 we corrected the number of mutations in all empirical data by calculating the excess

18 number of mutations (i.e., multiplicity) mg,; = Zg,; - LL, where L is the mean size of
g
10 all genes in the genome [23]. To measure the degree that reducing covariance affected

10 clustering we calculated the variance ratio criteria using the Calinski and Harabaz score
11 [11] on k-means clustered PC space [25] using scikit-learn [10]. Cluster stability was

192 assessed by re-sampling populations in PC space with replacement, performing spectral

103 clustering [25], and mapping clusters between the original and re-sampled PC space
14 by their maximum Jaccard coefficient [33]. This process was repeated 10,000 times.
105 We compared our PCA-based results using data from [50] to analyses that do not

196 account for covariance between genes. To do this, we summed across the rows of

197 the population-by-gene matrix to generate a vector of the total number of mutations
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s acquired in each gene (n;) and calculated multiplicity of each of the i genes as m; =
19 Ng- LL Values of m; were compared to the null expectation of M = ntot/Ngenes, where

20 Ngenes is the total number of genes in the genome, as the net increase in log-likelihood

Al = Z = n;log (T%Z) (10)

3

201 Where probability values that a given gene has an excess number of mutations
22 with a False Discovery Rate (FDR) of 0.05 were calculated for each gene as previously
203 described [23]. We calculated the A¢, the number of significant genes, and the propor-
204 tion of times that genes of interest had a significant multiplicity by sampling a given
205 number of populations without replacement 10,000 times.

206 To examine the degree that covariance between replicates affects the ability to
207 distinguish between populations evolving under different conditions, we examined two
208 datasets from studies with moderate within-treatment replication. The first dataset
200 examined the spectrum of mutations in genomically recoded E. coli MG1655, where
210 14 replicate populations of the following strains were serially transferred: (1) the non-
an recoded ancestor (ECNR2), (2) a strain where UAG stop codons were replaced with
212 UAA and the class I peptide release factor 1 was deleted (C321.AA), (3) a C321.AA
213 derivative with engineered reversions to three off-target mutations (C321.AA-v2), and
au (4) a C321.AA derivative recoded to restore RF1 (C321) [53]. The second study was
215 more focused on the consequence of microbial life cycles in different environments.
26 In this experiment Burkholderia cenocepacia with planktonic or biofilm life in en-
217 vironments containing with low or high concentrations of carbon [52]. The degree
218 of evolutionary divergence was quantified using two forms of Permutational ANOVA
29 (PERMANOVA) F statistics, a standard one (F1) and one that accounts for unequal
20 levels of parallelism among treatments (F3) [2]. Null population-by-gene count matri-
21 ces for each study were constructed for k treatments, randomized, and concatenated
2 as 4" = (271, -- ,ZZ)T, All entries were relativized by dividing each element by the
23 sum of its row.

224 To examine temporal trends in covariance between populations we used publicly

225 available sequence data from the Long-term Evolution Experiment [31], an experiment
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26 consisting of twelve E. coli populations that have been serially propagated for over
27 60,000 generations. We generated a population-by-gene count matrix every 500 gen-
28 erations for fixed mutations inferred in [23] and concatenated observations as a single
29 matrix. We chose to only examine the six nonmutator populations: Ara+1, +2, +4,
220  +5, -5 and -6, as hypermutator populations exhibit qualitatively different molecular
a1 dynamics [23] that could affect the covariance between populations. While there are a
22 variety of geometric techniques to examine temporal patterns in ordination space [10],
233 we elected the straightforward approach of randomizing timepoints for each replicate
23 population so that null values of MPD could be estimate in the absence of tempo-
235 ral autocorrelation. The same multiplicity calculation was performed as described
236 above. While there are a number of techniques to estimate the number of PCs to keep
237 [42, 9, 19, 35], we elected to keep a number of PCs equal to the number of replicate

28 populations for the LTEE data.

w3 Results

x 3.1 Gene-level covariance is low

21 We find that statistical power for rejecting the null hypothesis of zero covariance
22 between genes (Ho : ¥ = I) increases with covariance, but is generally low with
23 the probability only reaching 0.25 with the highest covariance examined (Fig. 1).
24 The statistics MCD and MPD calculated on the first principal component have much
s lower power than the more commonly used statistic L1, though they overtake L1 once
26 additional PCs are considered. Given that the statistics were fairly similar and that
27 MPD is used to calculate F [2], we used MPD for the remaining analyses. Statistical
us  power slightly increases with the degree of clustering, though the increment is very
20 small for the range of clustering coefficients examined (Fig. 1) which indicates that
20 the structure of the between-gene covariance matrix does not influence our ability to
1 detect covariance between populations. Similar patterns were observed for the effect
2 size (standardized score; Fig. 1). Though the ability to reject the null hypothesis

23 requires a large number of replicate populations as well as a large number of genes

10
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24 that acquire mutations (Fig. S1)

255 We find clear evidence of population covariance in existing data [50]. The E. coli
256 populations appear to form three clusters in PC space (Fig. 2), where the formation
257 of the two smaller clusters are primarily driven by mutations acquired in ESCRE1901
»s  and ECB_01992 along the first and second principle components, receptively. Both
250 genes are putative proteins with no known function that have acquired mutations in
20 separate evolution experiments examining F. coli adaptation to heat [28]. Of all genes,
261 ESCRE1901 has the highest squared correlation with the first principal component
%2 (i.e., rescaled loading; p? = 0.92), the same being true for ECB_01992 and the second
w3 PC (p? =0.73).

264 We find that the observed MPD®) is significantly greater than the null expectation
25 in the absence of covariance (Fig. 2, S2), though, consistent with our simulations
26 (Fig. S1), the required replication to consistently reject the null is over an order of
267 magnitude larger than the replication level of most standard evolution experiments
28 (Fig. 2). This pattern holds at the gene level, as similar replication is needed to
260 determine if ESCRE1901 and ECB_01992 acquire more mutations than expected by
270 chance across all replicate populations (3). That cluster formation is driven by a few
o1 genes explains the low stability of the clusters (Fig. 2), despite the fact that the
o2 variance ratio between and within clusters is much higher than what is found in null
213 count matrices (Fig. 2). That few genes (and, therefore, few mutations) drive this
a4 covariance explains the lack of a clear relationship between either of the first two PCs

215 or clusters in PC space and the relative fitness of each clone (Fig. S3).

x 3.2 Within-group covariance does not interfere with the
o7 ability to detect divergence.

27s We find no significant difference between observed MPD values and the null expecta-
279 tion when covariance is removed from the population-by-gene matrix of each treatment
250 in two evolution experiments with multiple treatments and moderate replication (Fig.

2s1 4, S4). This pattern holds at the level of summary statistics, as there is no significant

11
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22 difference between estimates of between vs. within treatment variation and the null

283 expectation in the absence of covariance for either F statistic (Fig. 4, Fig. S5).

x= 3.3 Temporal patterns of parallelism are detectable at the
25 gene-level

286 Our previous results suggest that it would be difficult to infer whether there was
287 a significant amount of between-gene covariance at a given timepoint in evolution
268 experiments with a standard number of replicate populations. Indeed, that is also the
250 case for the LTEE (Fig. S6). Instead, we chose to examine how MPD varied over
200 time. In contrast with our attempts to detect covariance at a single time point, there
201 are clear temporal patterns of parallelism in the LTEE despite there only being six
202 replicate populations. While it is trivial that the genetic distance between initially
203 identical replicate populations grown from a single clone has to increase, we see that
204 after a period of increasing distance the replicate populations begin to become more
25 similar (Fig. 5). By measuring MPD over the first five axes (MPD®)| Fig. S7), we
206 find that there is a clear pattern where MPD® rapidly increases over the first few

207 thousand generations and gradually decreases starting at 4,750 generations.

» 4 Discussion

200 Our results suggest that it is difficult to detect covariance between populations at
30 the gene-level in evolve-and-resequence evolution experiments with a standard level of
s replication. A minimum of 60 replicate populations are required to reject the null hy-
32 pothesis of zero covariance 50% of the time in [50]. This may in part be due to the fact
33 that individual clones were sequenced in this experiment, whereas pooled sequencing
3¢  would provide estimates of mutation frequencies which may contain additional in-
35 formation about their fitness effects. However, the number of replicate populations
306 required was similar to our results from simulated data, suggesting that covariance
37 cannot be detected at the gene level in the vast majority of evolution experiments.

308 While covariance was weak, we were able to identify genes that disproportionately

12
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300 contribute to the observed signal. Covariance between populations in [50] is primarily
si0 driven by ESCRE1901 and ECB_01992, two genes of unknown function that have also
s acquired mutations in a similarly designed experiment [28]. Given that covariance
sz can indicate the presence of an interaction, ESCRE1901 and ECB_01992 are useful
a3 candidates for investigating between-gene epistatic interactions in E. coli. However,
314 there is no relationship between fitness and gene-level mutational composition or the
315 presence of mutations in these genes. This lack of a relationship may be the result of
316 the mutations in these genes making a relatively small overall contribution to fitness
317 that cannot be detected at a coarse scale, as suggested by the fact that 50 replicate
318 populations are required to determine that ESCRE1901 and ECB_01992 acquire more
310 mutations than expected by chance 95% of the time.

320 Observed F' statistics were not significantly different from the null expectation
321 in absence of within-group covariance for the datasets examined [52, 53]. This re-
32 sult suggests that while covariance between populations is difficult to detect in evo-
323 lution experiments with moderate replication (e.g., n=4-6), this low signal provides
324 the added advantage of not having to be concerned with how different environments
225 or backgrounds affect covariance between genes (i.e., the Behrens—Fisher problem [10,
326 ]). Rather, the difference in mean gene-level substitution rates between treatments is
327 likely greater than the covariance. While the experiments we examined were conducted
328 in disparate environments or with synthetic strains, we argue that these conclusions
3209 will hold for experiments that examine microbial evolution across a more continuous
30 environmental or genetic gradient.

331 While covariance between populations does not interfere with the ability to detect
32 divergent evolution, we find evidence that covariance between replicate populations
;33 changes over time. In the LTEE we find that MPD rapidly increases over the first
3¢ 4,750 generations, followed by a steady decrease over the remaining 55,000 generations.
335 This pattern is consistent with the “two-epoch” mean-field model of adaptation that
33 has been proposed for this system, where populations evolve under an initial burst
337 of macroscopic epistasis followed by the steady accumulation of mutations under a

38 constant distribution of fitness effects [22]. That is, qualitative shifts in underlying

13
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339 evolutionary dynamics may be detectable by examining covariance at the gene-level
30 over time. While this transition between regimes has been suggested to occur at the
a1 10,000 generation mark [22], the difference of a few thousand generations does not
32 negate the presence of the qualitative trend and this result may be corroborated by
33 examining how gene-level interactions give rise to evolutionary dynamics predicted by
a4 mean-field models.

345 As long-term experiments become increasingly used to examine evolutionary dy-
6 namics and test hypotheses it is necessary to identify appropriate statistical approaches
37 and establish their limitations. Our work suggests that ordination techniques have a
s  number of potential applications for experimental evolution. PCA specifically has
39 the added advantage of being a well understood statistical tool for examining co-
350 variance, which can be connected to the joint probability distribution of gene-level
351 substitution rates. The structure of the covariance between genes is ultimately of the-
352 oretical interest and while our results suggest that its statistical signal is small and
353 the population-by-gene matrix is sparse, we are able to identify contributing genes
3¢ with sufficient replication and identify temporal trends. For the more complex case of
355 covariance over time, it will be necessary to examine this joint distribution in greater

356 detail by incorporating it into models of evolutionary dynamics.
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7 Data Archiving

No new empirical data was generated for this study. Reproducible code to perform the
analyses in this study is available on GitHub as: https://github.com/LennonLab/ParEvol.

Simulated data is available on Zenodo as DOI: 10.5281/zenodo.3779341.
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Figure 1: The relationship between properties of 3 and statistical power at
a significance level of a = 0.05 (dashed horizontal grey line), the probability
of rejecting the null hypothesis 3 = I. a) Statistical power increases with
covariance across all methods, though MCD and MPD only approach the level of
Ly when they are estimated over the first three principal components. b) There
is no clear relationship between statistical power and the degree of clustering
in 3. Similar results were found for the standard score of each method in c)
and d), where the grey and black lines represent values of zero and a single
standard deviation, respectively. Power was calculated from 1,000 simulations
using 100 replicate populations and 50 genes. Black gray bars represent 95%
bootstrapped confidence intervals from 10,000 samples.
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Figure 2: Properties of parallelism in the evolved E. coli replicate populations
from [50]. a) There is clear structure in the data and b) MPD®) (dashed red
vertical line) is larger than the null distribution calculated from randomized
population-by-gene multiplicity matrices (blue histogram). c¢), d) Covariance
is difficult to detect and requires a large number of replicate populations. e)
While there is clearly greater variance between groups than within, f) there is
low cluster stability for £ = 3.
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Figure 3: Sampling curve describing how parallelism changes as the number of
replicate populations increases using data from [50]. Significant genes in b),
c¢), and d) were determined using the multiplicity calculations presented in [23]
with a FDR of 0.05. Each dot was calculated from 10,000 sampling events of
a given size without replacement from the gene-by-population matrix. Black
bars represent 95% bootstrapped confidence intervals calculated from 10,000
samples.

27


https://doi.org/10.1101/2020.05.13.070953
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.070953; this version posted May 13, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a b
¢ —o =0.238
\é°°\ 0.125 - P
& ]
0 0.100 A
. v\\’o & 0@ >
S 2
> 2 0.075
9 o
& ¢ = £
& 0.050 A
6(5'0
NG 0.025 -
(/‘
o*y \\(Q i D
A\ \6\ T T T 0000 -
N -2 0 2 10 20
& Standardized mean pairwise Between vs. within-treatment
g distance, MPD® variation, Fy
c d
o . An— 0.5 1 p=0.871
&
0.4 1
- _“_ >
w”'vv g 0.3
. 2
g
o1 O = 0.2 1
a
(,/,;1, 0.1
2 €0
& . : 0.0 4
< 0 2 1.5 2.0 2.5
Standardized mean pairwise Between vs. within-treatment
distance, MPD®® variation, F;

Figure 4: Between covariance is unlikely to affect the degree to detect divergent
evolution. MPD®) of each treatment and and F statistics across all treatments
are not significantly different from the null expectation when covariance between
individuals within the same treatment is removed for data from [52] in a), b)
and data from [53] in ¢), d). The black dots and lines in a) and ¢) represent the
mean and 95% standardized CIs from null simulations while the colored dots
represent the observed standardized values of MPD(®). The red dashed vertical
lines in b) and d) represents the observed value of F' and the blue histogram
represents simulated values of F} in the absence of within group covariance.
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Figure 5: Temporal patterns of parallelism in the LTEE [23]. a) The PCA pro-
jection of the gene-by-sample multiplicity matrix. b) By calculating MPD® at
each timepoint we can see temporal patterns in the similarity between popula-
tions. The dotted horizontal black lines represent the 95% intervals for MPD
in the absence of temporal autocorrelation and the vertical dashed grey line
represents the 10,000 generation mark.
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