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Abstract 

Lack of effective treatment strategy and vaccine makes SARS-CoV-2 infection a big threat to 

mankind. Analyzing the host transcriptional changes in response to virus infection will help 

delineate the biological processes impacted by the virus and will potentially facilitate drug 

development. Using RNA seq datasets of virus infected lung cell lines A549 (infected with either 

SARS-CoV-2 or Influenza A virus (IAV)) and Calu3 (infected with either SARS-CoV-2 or 

MERS-CoV), we present a detailed analysis of genes expression changes in response to each of 

these viral infections. Upregulation of the antiviral interferon signaling was observed with all 

three viral infections. However, upregulation of the cytokine/inflammatory processes, 

downregulation of mitochondrial organization and respiration processes, and perturbation in the 

autophagic processes were specifically observed in SARS-CoV-2 infected cells, which were 

absent in IAV infected cells. Upregulation of the inflammatory processes was concordant with 

the gene expression signature of COVID-19 lungs and with inflammatory symptoms observed in 

severe cases of COVID-19 patients. Coexpression networks analysis also facilitated the 

identification of protein-protein interaction (PPI) subnetworks of genes in the inflammation and 

mitochondrial processes that were either coordinately up or downregulated in SARS-CoV-2 

infected cells, respectively. Comparing the expression of marker genes of lung cell types from 

single cell RNA seq data with expression profile of A549 cells revealed that they likely represent 

the lung epithelial lineage cells. The cellular processes uniquely perturbed in infected cells that 

were identified in this analysis likely delineates lung epithelial cells response to the SARS-CoV-

2 infection. 
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INTRODUCTION 

Epidemiology 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus that causes the 

current global pandemic, coronavirus disease (COVID-19). COVID-19 presents as a wide range 

of clinical manifestations, ranging from asymptomatic to respiratory failure or multiorgan and 

systemic manifestations (1). The viral pneumonia outbreak caused by SARS-CoV-2 was first 

identified in Wuhan, China in December 2019. Since then, the virus has continued to spread 

globally, with a current transmissibility estimate (R0) between 3-4 (2, 3). According to the World 

Health Organization (4) as of late April 2020, there have been over 2.8 million confirmed cases 

and more than 196,000 confirmed deaths across 213 countries/areas/territories. No treatments 

currently exist, and management strategies include supportive medical care for existing cases and 

social distancing for prevention. Understanding this novel pathogen and the host response it 

elicits is crucial to combatting the emerging threat to public health. 

 

Human Coronavirus (hCoV) Phylogeny  

SARS-CoV-2 is the 7
th

 and most recent addition to human coronaviruses (hCoVs), which include 

four globally endemic hCoVs that cause a substantial portion of upper respiratory infections 

(229E, OC43, HKU1, and NL63), as well as two other highly pathogenic strains that have also 

caused recent pandemics (SARS-CoV and MERS-CoV (2, 5) in 2002-2003 and 2012, 

respectively (6)). All seven hCoVs are single-stranded, positive-sense RNA viruses. They all 

have zoonotic origins, with bats as the evolutionary reservoir host of five (229E, NL63, SARS-

CoV, MERS-CoV, and SARS-CoV-2). In some cases, there are intermediate and amplifying host 

species as well (2). Although SARS-CoV-2 is phylogenetically similar to both MERS-CoV, and 

SARS-CoV (7), there are biological differences. Notably, although SARS-CoV-2 has a lower, 

but yet undetermined mortality rate, it is distinctly more contagious than these other highly 

pathogenic hCoVs, causing vastly different epidemiological dynamics. In fact, MERS-CoV was 

largely propagated by camel-to-human transmissions, as the virus was never able to fully adapt 

to optimal human-to-human transmission (8). 
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Pathogenicity 

As obligate parasites, the viruses, while evading the host cell immune response, should encode 

enough proteins to ensure replication, and spread, by relying on the host cell’s machinery. These 

processes require an intricate series of interaction between the virus and host (9). While many of 

the elicited responses are common across pathogens, each virus also creates a unique 

transcriptional profile (10). Functional distinctions across viruses may arise due to distinct 

processes utilized by a virus for cellular entry, or for host immune system evasion, or for 

replication and dissemination (11). Severity of illness for SARS-CoV-2 infections is likely 

impacted by both the direct cytotoxic effects of the virus, and the effectiveness of the complex 

host response (12, 13). While the immune response is essential to resolving the infection, 

dysregulation of the immune system can result in immunopathogenesis (14, 15). A dysregulated 

immune response is caused by rapid viral replication, cytokine storms delayed interferon 

response, and macrophage infiltration and  excessive proinflammatory cytokines (14). This 

immunopathogenesis mechanism is supported by the observation of decreased viral loads 

occurring with increased disease severity (6). However, efforts to understand the molecular 

mechanisms require further study, as the unusually high morbidity and mortality of hCoVs 

remain unclear. 

  

Cell/Tissue Tropism of SARS-CoV-2 

The hCoVs differentially infect the human respiratory tract. The low pathogenic hCoVs infect 

the upper respiratory tract, and the highly pathogenic hCoVs infect the lower respiratory tract 

(14). Consistent with this, SARS-CoV, SARS-CoV-2, and MERS-CoV were shown to 

differentially infect the lung alveolar cell subtypes in cynomolgus macaques (16) and SARS-

CoV elicited distinct immune response in different tissues (17). Furthermore, cell tropism study 

of the SARS-CoV and SARS-CoV-2 in different cell type cultures could partially explain the 

symptomatic differences of these two virus infections (18).  Single cell (sc) transcriptomic data 

of the COVID-19 lung tissue have been analyzed to identify the subset of cells most prone to the 

SARS-CoV-2 infection and the marker genes associated with the infected cells. One such study 

intriguingly identified upregulation of the receptor-angiotensin-converting enzyme 2 (ACE2) in 

the SARS-CoV-2 infected type II pneumocyte population of the lung cells as a potential 

mechanism facilitating virus infection (19). Another study utilized the ACE2 and TMPRSS2 
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expression information at the single cell level to rank the cells based on their susceptibility to the 

SARS-CoV-2 infection (20). Consistent with the sc RNA seq data, dual inhibition of the host cell 

cysteine and serine proteases impeded viral entry into the cell (21). The cell type specific genes 

identified from the sc RNA seq data of COVID-19 lung samples can be further analyzed by 

incorporating the bulk RNA seq data to potentially identify the marker genes in COVID-19 

lungs. 

 

Here, we have analyzed the gene expression changes in A549 and Calu3 lung cell lines in 

response to infection with SARS-CoV-2 to identify biological processes specifically impacted by 

this novel coronavirus. Understanding the unique signature of SARS-CoV-2 host responses is 

crucial to identifying potential targets for both treatment and symptom management. We find 

that SARS-CoV-2 infection elicits a differential gene expression response that is unique to 

coronavirus infection, which is not observed in influenza A virus (IAV) infection. The 

differentially expressed (DE) genes that were either up or downregulated in the SARS-CoV-2 

infected cells enriched in the cytokine signaling/inflammation processes, or mitochondrial 

processes, respectively. Additionally, the autophagic processes were also impacted in the SARS-

CoV-2 infected cells. It is likely that perturbation of the mitochondrial function and autophagy 

could negatively impact the host cells’ immune response against the viral infection leading to 

systemic inflammation. Furthermore, the gene expression profile of A549 cell line strongly 

correlated with the lung epithelial lineage cells namely the basal and ionocyte cell types from the 

lung single cell (sc) RNA seq data. Therefore, the biological processes identified in this study is 

likely representative of lung epithelial cells response to SARS-CoV-2 infection. 

 

RESULTS 

Interferon autophagy, and mitochondrial processes are impacted in cells infected with SARS-
CoV-2 

SARS-CoV-2 (high viral titer) vs Mock 

Comparisons of gene expression profile of mock and SARS-CoV-2 infected A549 lung 

epithelial cell line with a higher viral titer of SARS-CoV-2 (see methods) identified >8000 DE 

genes. The volcano plot profiles both up-regulated and down-regulated genes in the SARS-CoV-

2 infected cells (Supp Fig S1A, https://doi.org/10.6084/m9.figshare.12272351 [Table S3]). 
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Pathway enrichment analysis of the DE genes showed enrichment in a wide range of biological 

processes (Supp Fig S1B, https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). These DE 

genes were classified into upregulated or downregulated following SARS-CoV-2 infection and 

analyzed by pathway enrichment analysis. Upregulated DE genes annotated to a wide range of 

pathways, notably including the interferon signaling, NFkB/cytokine signaling processes, and 

proteasomal degradation (Fig 1A, https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). 

Heatmaps highlight the upregulation of genes in cytokine, and interferon pathways, and 

perturbation of autophagy pathways (Fig 1B,1C,1D respectively). DE genes downregulated in 

the SARS-CoV-2 infected cells annotated to pathways primarily involving cell cycle and 

mitochondrial processes (Fig 1E, https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). A 

heatmap shows that the expression of the genes in mitochondria-related processes, electron 

transport chain and respiration were mostly downregulated in SARS-CoV-2 infected cells (Fig 

1F).  

 

SARS-CoV-2: Low viral titer vs high viral titer  

Differential gene expression analysis of A549 cells infected with mock and a 10-fold 

lower viral titer of SARS-CoV-2 (see methods) was also performed. The resulting DE genes 

could be compared to the DE genes from mock vs. SARS-CoV-2 infection at higher viral titer 

(Fig 1). Given the exposure of cells to a lower viral titer, the number of DE genes from this 

comparison was smaller (196 genes) vs. the comparison of high titer SARS-CoV-2 against mock 

(>8000 genes) (Supp Fig S1C, https://doi.org/10.6084/m9.figshare.12272351 [Table S3]). 

Analysis of the 196 DE genes showed significant enrichment in interferon and anti-viral 

response processes (Supp Fig S1D, https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). A 

pathway summary map comparing the pathway enrichment results of mock vs. high titer SARS-

CoV-2 infected cells and the mock vs. low virus titer infected cells confirmed that perturbation in 

autophagy, inflammation, and mitochondrial processes were exclusively enriched by DE genes 

from the mock vs. SARS-CoV-2 infected at higher virus titer comparison (Fig 1G). SARS-CoV-

2 infection at lower titer elicited robust activation of anti-viral pathways, which would likely 

result in recovery from the infection in a patient. Since these observations were made in a lung 

cell line, the concordance of the A549 cells gene expression with marker genes from different 

lung cell types from sc RNA seq data were calculated. Notably, the A549 gene expression was 
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highly correlated with the marker genes of the basal and ionocyte lung epithelial lineage cells 

(22, 23) (see methods, Supp Fig S7A). It is likely that the biological processes impacted in a 

SARS-CoV-2 infected A549 cells is likely impacted in the SARS-CoV-2 infected lung epithelial 

cells too. However, given the limitations of analyzing lung cell-lines data, gene expression 

analysis of lung samples from patient with severe or mild COVID-19 will help test if these 

processes are differently impacted depending on the severity of the disease. Together, these 

results support that SARS-CoV-2 infection impacts the expression of genes involved in the 

cytokine signaling, autophagy and mitochondria/respiration.   

  

ACE2 overexpression (oe) exaggerates the gene expression fold change of a subset of genes 
impacted by SARS-CoV-2 infection 

Mock vs. SARS-CoV-2 in ACE2 oe cells 

Angiotensin-converting enzyme 2 (ACE2) is the putative primary receptor for cell entry 

of the SARS-CoV-2 virus (24, 25) (as well as for SARS-CoV and NL63) (26). Therefore, the 

gene expression profiles of ACE2 oe A549 cells infected with SARS-CoV-2 at low viral titer 

cells vs. mock were analyzed. The DE analysis of mock vs. low-titer SARS-CoV-2 in ACE2 oe 

cells identified changes in expression of a wide number of genes (Supp Fig S2A, 

https://doi.org/10.6084/m9.figshare.12272351 [Table S3]). The DE gene mostly annotated to the 

protein trafficking, immunity, reactive oxygen species (ROS, and IL1 signaling (Supp Fig S2B). 

However, the DE gene list from this comparison (mock vs low-titer SARS-CoV-2 in ACE2 oe 

cells) showed only a small overlap with the DE gene list from the mock vs. low-titer SARS-

CoV-2 comparison in A549 cells (86/4,480 DE genes; Supp Fig S2C). It is likely that the ACE2 

oe facilitates viral entry and would mimic a severe virus infection state (i.e. SARS-CoV-2 

infection at higher viral titer). Consistent with this, we found approximately two-thirds (2,648) of 

the DE genes from this mock vs. low-titer SARS-CoV-2 comparison in ACE2 oe cells 

overlapped with the DE genes from the previous mock vs. high-titer SARS-CoV-2 (no ACE2 oe) 

(Fig 2A). Of these, about half of them (1,185 genes) were upregulated in the high-titer SARS-

CoV-2 infected cells. Of these 899/1,185 genes were upregulated with greater magnitude of fold 

changes in SARS-CoV-2 infected ACE2 oe cells (Fig 2A). About a quarter of the common DE 

genes were downregulated in infected cells and 50% (336/669) of these genes were further 

downregulated in SARS-CoV-2 infected ACE2 oe cells (Fig 2A). The remaining ~30% 
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(794/2648) of the common DE genes were discordantly regulated in infected cells with ACE2 

oe. Partial DE genes overlap, and discordantly regulated genes are likely due to the impact of 

ACE2 oe on other cellular processes independent of the viral infection, or due to the effects of 

cell transfection protocol used to generate ACE2 oe cells.  

To assess how ACE2 oe impacts the SARS-CoV-2 infection processes, pathway 

enrichment analysis was performed on the subset of DE genes from the high-titer comparison 

that were concordantly either further upregulated or downregulated in ACE oe infected cells. 

This subset analysis again implicated upregulated genes to pathways involved in inflammation, 

cytokine, and immunity related processes (Fig 2B, https://doi.org/10.6084/m9.figshare.12272351 

[Table S4]). The common DE genes that were further downregulated in ACE2 oe infected cells 

enriched in mitochondrial and respiration related processes (Fig 2C, 

https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). These results are consistent with the 

pathway enrichment results from mock vs. high-titer SARS-CoV-2 infected A549 cells (Fig 1). 

These results suggest that ACE2 oe exacerbates the expression profiles of a subset of genes 

involved in immunity, inflammation, and mitochondrial processes in A549 cells infected with 

SARS-CoV-2 at low viral titer. Perturbation of immunity, inflammation, and mitochondrial 

processes is likely indicative of a severe SARS-CoV-2 infection state. 

  

Network analysis identified protein-protein interaction subnetworks of genes involved in 
interferon, inflammation and mitochondrial translation 

SARS-CoV-2 vs Mock: network analysis  

To further understand the potential biological processes in play during SARS-CoV-2 

infection, we performed a consensus weighted gene coexpression network analysis (WGCNA) 

(27) on combined mock and SARS-CoV-2 infected at low and high titer cells, which identifies 

correlated gene clusters/modules. The WGCNA analysis identified more than 50 coexpression 

modules and the overlap of genes in each of these modules with significant DE genes from mock 

vs. SARS-CoV-2 infected at high titer is presented in the cluster dendrogram where each 

correlated module is represented by a color and their overlap with DE genes is shown in 

horizontal bars (Fig 3A, Supp Table 1).  

First, pathway enrichment analysis of the correlated DE genes in the turquoise modules 

showed significant annotation to the mitochondria, immunity, and mRNA/transcription processes 
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(Fig 3B, https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). Using the GeneMANIA (28) 

database, protein-protein interaction (PPI) subnetworks for the DE genes in this module/cluster 

were identified. This analysis identified two PPI subnetworks of genes involved in interferon 

signaling (Fig 3C) and mitochondrial translation (Fig 3D). After incorporating the gene 

expression fold change information, we concluded that the interferon signaling genes were 

upregulated and mitochondrial genes were downregulated in SARS-CoV-2 infected cells.  

Next, pathway enrichment analysis of DE genes from the blue module revealed 

significant annotation to unfolded protein response (UPR) and apoptosis processes (Fig 3E, 

https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). Using GeneMANIA database, a PPI 

subnetwork of genes involved in inflammation that were mostly upregulated in SARS-CoV-2 

infected cells was also identified (Fig 3F). The DE genes in the brown module significantly 

enriched to intracellular trafficking related processes (Supp Fig S3A, 

https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). Together, these data suggest that 

SARS-CoV-2 infection results in a coordinated changed in the interferon signaling, 

inflammation, and mitochondrial processes. 

 

Gene expression changes associated with SARS-CoV-2 infection is distinct from Influenza A virus 
infection with minor overlaps 

SARS-CoV-2 vs Influenza A virus (IAV)  

To compare the expression profile of SARS-CoV-2 infected cells with another virus 

infected cells, DE analysis of mock vs. influenza A virus (IAV) infected cells was performed and 

the up and downregulated genes are presented in a volcano plot (Supp Fig S4A, 

https://doi.org/10.6084/m9.figshare.12272351 [Table S3]). The pathway analysis of the DE 

genes from this comparison showed enrichment in protein translation, localization and anti-viral 

responses (Supp Fig S4B, https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). 

Additionally, genes upregulated in the IAV infected cells annotated to pathways for virus 

response, protein trafficking, and unfolded protein response (UPR) (Fig 4A, 

https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). Genes that were downregulated in 

IAV infected cells enriched in vacuole and lysosome related processes (Fig 4B, 

https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). Interestingly, few DE genes from the 
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mock vs. SARS-CoV-2 overlapped with the DE genes from mock vs. IAV comparison (Supp Fig 

4C). 

A pathway enrichment summary map was created by overlaying the pathway enrichment 

results of the mock vs. IAV comparison on top of the mock vs. SARS-CoV-2 comparison. 

Consistent with the DE genes comparison (Supp Fig 4C), the enrichment map also highlighted 

little overlap of pathways between the two comparisons. DE genes from both comparisons 

commonly enriched in a subset of pathways associated with protein trafficking (Fig 4C). 

Furthermore, only a subset of the interferon pathway genes and a few chemokine genes that were 

upregulated in SARS-CoV-2 infected cells were also upregulated in IAV infected cells, while the 

autophagy and inflammation genes remained mostly unchanged in the latter (Fig 4D-F). 

Therefore, upregulation of cytokine/inflammation, changes in autophagy, and downregulation of 

the mitochondrial processes were uniquely observed in SARS-CoV-2 infected cells. 

Upregulation of DE genes involved in the cytokine/inflammation processes is consistent with 

cytokine storm observed in severe cases COVID-19 patients. Since these observations were 

made by analyzing the gene expression changes in a lung cell line, future studies profiling gene 

expression changes in severe COVID-19 patients will be needed to confirm these findings. 

   

SARS-CoV-2 infected cells share some gene expression signature with MERS-CoV infected cells 
with few exceptions 

SARS-CoV-2 vs MERS-CoV 

Comparison of gene expression profiles revealed that a SARS-CoV-2 infected cells are 

distinct from those of IAV infected cells (Fig 4). Although these are both viruses, they are not 

phylogenetically close. Therefore, we next compared the gene expression profiles of SARS-

CoV-2 and MERS-CoV infected cells, since both are hCoVs. DE analysis of the mock vs. 

SARS-CoV-2 infected Calu3 lung carcinoma cells identified several up and down genes (Supp 

Fig S5A, https://doi.org/10.6084/m9.figshare.12272351 [Table S3]). Pathway enrichment 

analysis showed annotation of the DE genes to cell cycle, inflammation, apoptosis processes 

(Supp Fig S5B, https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). A pathway 

enrichment summary map for mock vs. SARS-CoV-2 and mock vs. MERS-CoV comparisons 

was generated to assess the extent of overlap of pathways between the two (Fig 5A). Notably, the 

DE genes from both comparisons enriched in the mitochondria, autophagy, cell cycle, and UPR 
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processes. However, DE genes from mock vs. SARS-CoV-2 comparison predominantly enriched 

in inflammation, cytokine signaling, and immunity related processes (Fig 5A). Consistently, 

genes upregulated in the SARS-CoV-2 infected Calu3 cells enriched in inflammation, nuclear 

factor kappaB (NFkB) processes (Fig 5B, https://doi.org/10.6084/m9.figshare.12272351 [Table 

S4]), while upregulated genes from both hCoV infected cells annotated to protein trafficking and 

small GTPase signaling (Fig 5B, 5C, , https://doi.org/10.6084/m9.figshare.12272351 [Table 

S4]). On the other hand, genes downregulated in both comparisons commonly annotated to 

mitochondrial processes (Fig 5D, 5E, https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). 

These findings suggest that perturbation of autophagy, mitochondrial genes are common gene 

expression signatures associated with hCoVs infection, but the SARS-CoV-2 virus almost 

exclusively impacts the cytokine/inflammatory processes in the lung cells. It is likely that 

perturbation of mitochondrial processes and autophagy may lead to a dysfunctional immune 

response (29, 30). Further studies will be required to understand if and how these processes may 

contribute to inflammation during SARS-CoV-2 infection. 

  

Gene expression analysis of a severe Covid-19 lung sample shows exaggerated 
immune/inflammation response 

Healthy vs. COVID-19 lung biopsy samples 

The gene expression analysis of the SAR-CoV-2 infected cell lines suggested that the 

upregulation of the cytokine/inflammatory processes were uniquely impacted by this viral 

infection. To test if these processes were also impacted in COVID-19 lungs, RNA seq data from 

the healthy and COVID-19 lung biopsy were analyzed. The gene expression profile of a SARS-

CoV-2 infected lung was distinct from healthy lungs with up and downregulated genes 

highlighted in the volcano plot (Supp Fig S6A, https://doi.org/10.6084/m9.figshare.12272351 

[Table S3]). The pathway enrichment summary map and the plot showed that the DE genes 

predominantly annotated to the inflammation, ROS, leukocyte/monocyte related pathways (Fig 

6A, Supp Fig S6B). Furthermore, the DE genes upregulated in the COVID-19 lungs enriched in 

the anti-viral response processes, cytokine secretion, immune cell proliferation/migration, and 

inflammation (Fig 6B, https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). The 

downregulated genes were significantly enriched in protein trafficking, RNA metabolism, and 

oxygen sensing processes (Fig 6C, https://doi.org/10.6084/m9.figshare.12272351 [Table S4]). It 
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is likely that the perturbations in the oxygen sensing processes are reflective of the severe 

respiratory distress often seen in severe COVID-19 patients to due reduced oxygenation ability 

of the failing lungs.  

To further assess the role of immune/lung cell types in COVID-19, lung sc RNA seq data 

was analyzed to identify marker genes enriched in different cell types (Supp Fig S6C). Several 

marker genes were identified from the alveolar epithelial type I/II, T-lymphocytes, monocytes 

and macrophages subpopulation. Of these, marker genes from the monocytes and macrophage 

cell types were differentially expressed in COVID-19 lungs compared with healthy lungs (Fig. 

6D, Supp Table 2).  Together, these results support a critical role for inflammatory signaling 

likely arising partly from the monocyte/macrophage immune cell population in COVID-19 

pathogenesis. These data are consistent with the findings from SARS-CoV-2 infected lung cell 

lines. 

 

  

DISCUSSION 

Highly pathogenic human coronaviruses (hCoV) are known to infect the lower 

respiratory airways and cause severe acute respiratory syndrome (SARS) (14). The recently 

discovered SARS-CoV-2 virus is the cause of COVID-19 (31). The clinical manifestations of 

this virus infection include fever, cough, fatigue, respiratory distress, and cardiac injury (32-34). 

While some patients with COVID-19 suffered from mild symptoms, other patients had 

increasingly life-threatening symptoms (34). Age and underlying medical conditions such as 

diabetes, hypertension, are likely to determine the severity of the symptoms (35). However, the 

underlying biological processes and mechanisms impacted by this viral infection of the host is 

still not clear.  Analyzing the gene expression profiles of host cells infected with SARS-CoV-2 

will be necessary to decipher the subcellular functions perturbed by this virus and to inform drug 

development strategies.  

Here we present an in-depth differential expression analysis of A549 and Calu3 cell lines, 

comparing mock to infection with either SARS-CoV-2, or IAV, or MERS-CoV. We conclude 

that (i) SARS-CoV-2 infection of the cells at higher titer likely represents a severe COVID-19 

infection state; (ii) the gene expression profile of SARS-CoV-2 infected cells were distinct from 

that of the IAV infected cells. Specifically, SARS-CoV-2 infection impacted the expression of 
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genes in inflammation, cell cycle, reactive oxygen species (ROS), autophagy, and mitochondrial 

processes, which were absent in IAV infected cells; (iii) comparing the expression profile of 

SARS-CoV-2 and MERS-CoV infected cells revealed that perturbation in autophagy and 

mitochondrial processes is common in hCoV infections. However, increased expression of the 

inflammatory/cytokine signaling genes were exclusively observed in SARS-CoV-2 infected lung 

cells. Together, these data suggest that perturbation in the autophagy, mitochondrial processes in 

SARS-CoV-2 infected lung cells could hinder an effective immune response (29, 30) and 

increase inflammation, which is often seen in severe COVID-19 patients suffering from cytokine 

storm (14, 36). Since these conclusions were made using the data from virus infected lung cell 

lines, the correlation between these cells’ expression profiles and marker genes expression from 

different lung cell types were determined. While the A549 cells showed robust correlation with 

lung epithelial lineage basal and ionocyte cells, Calu3 cells showed similar pattern but lower 

correlation with these cell types. Therefore, the processes delineated in SARS-CoV-2 A549 cells 

likely represent the lung epithelial cells response to SARS-CoV-2 infection. To further 

substantiate these findings, however, gene expression profiling of lung samples from patients 

with mild or severe COVID-19 will be required to confirm these findings. Nevertheless, this 

analysis has delineated several biological processes, discussed in more detail below, that are 

impacted in the SARS-CoV-2 infected host cells. 

 SARS-CoV-2 infection at both low and high titer upregulated the expression of genes in 

cytokines and interferon signaling in the host cells. Additionally, SARS-CoV-2 infection at low 

viral titer also upregulated complement genes and receptor mediated endocytosis. While the 

former is critical for defense against viral infection, and activation of inflammatory processes 

(37, 38); latter is required for viral entry (39, 40). Notably, some complement genes (C1S, C1R) 

are upregulated in high viral titer SARS-CoV-2 infected cells. Consistently, the C1q/TNF-related 

protein 6, a glycoprotein that regulates complement activation, is downregulated in SARS-CoV-

2 infected cells. This gene is implicated in arthritis, and intra-articular injection of the 

recombinant C1qTNF6 protein was shown as an effective strategy in improving arthritis and 

inflammation in C1qtnf6-/- mice (41). An elevated complement response could likely lead to 

excessive inflammation, which was also observed in MERS-CoV infection of the hDPP4-

transgenic mouse model (42). These observations suggest that inhibition of the complement 
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system or the receptor mediated endocytosis processes as potential treatment strategies could be 

tested.  

Infection of SARS-CoV-2 at higher viral titer perturbed autophagy, upregulated genes in 

the interferon, cytokine, nuclear factor kappaB (NFkB), reactive oxygen species (ROS) 

processes, while downregulated the genes in the mitochondrial, electron transport chain 

processes. Consistently, analysis of DE genes in one of the correlated clusters from WGCNA 

showed significant enrichment in the interferon signaling processes. Additionally, GeneMANIA 

analysis of the correlated DE genes in two modules revealed PPI subnetworks of genes involved 

in interferon stimulated genes (ISGs) and NFkB, which were both mostly upregulated in the 

infected cells. In addition to the ISGs, the JAK-STAT signal transduction genes, which play 

critical role in type I cytokine (such as IL6) signaling and inflammation (43-45), were also 

upregulated in the SARS-CoV-2 infected cells (Fig 4C). IL6, a pleotropic cytokine, was shown 

to be elevated in critically ill COVID-19 patients (46). Consistently, IL6 was upregulated in the 

SARS-CoV-2 infected cells. IL6 acts via the JAK-STAT signaling through SOCS3 protein 

kinase (also upregulated in SARS-CoV-2 infected cells) to activate the immune response (47). 

Excessive IL6 causes excessive inflammation as seen in arthritis (48). Additionally, three IL1 

family cytokines IL1a, IL1b and IL36b were also upregulated in SARS-CoV-2 infected cells. 

IL1 signaling is critical for initiating and regulating inflammatory processes in response to 

infection (49, 50). Given the upregulation of genes in the cytokine/inflammatory processes was 

predominantly seen in cells infected with SARS-CoV-2 at higher viral titer, it is likely that these 

cells represent a severe COVID-19 infection state. Upregulation of IL6, IL1, and NFkB genes 

may be contribute to the inflammatory symptoms observed in severe COVID-19 patients (14, 

36). Consistent with the data from lung cell lines, genes upregulated in COVID-19 lung biopsy 

samples were also significantly enriched in cytokine/inflammatory processes. These data support 

a central role for cytokine signaling in COVID-19 pathogenesis. Therefore, treatment strategies 

aimed at mitigating the cytokine effects or complement system could be tested in treatment of 

COVID-19. One such clinical trial aimed at mitigating the IL6 effects is already underway 

(NCT04322773). 

What processes may be causing/contributing to the activation of the inflammatory 

processes in the SARS-CoV-2 infected cells? Mitochondria and autophagy related processes 
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were two other prominent categories of the biological processes that were exclusively impacted 

in the hCoV infected cells.  

Viruses are known to either induce or inhibit various mitochondrial processes as part of 

their replication and dissemination efforts (51). Infection of cells with SARS-CoV-2 at higher 

viral titer downregulated the genes in the mitochondrial processes. Consistently, WGCNA also 

identified a DE gene cluster that annotated to the mitochondrial organization and translation 

processes. Subsequent GeneMANIA analysis identified a PPI subnetwork of genes involved in 

mitochondrial translation which were coordinately downregulated in SARS-CoV-2 infected 

cells. Since mitochondrial import and translation are inter-linked (52, 53), we found that several 

mitochondrial complex I and translocase genes were downregulated in the SARS-CoV-2 infected 

cells. Reduced complex I expression has been found in many cancer cells and is shown to affect 

the oxidative phosphorylation, which also impacts the immune cell function (30, 54-57). 

Together, these data highlight that several mitochondrial processes were impacted, which in turn 

could perturb the immune response processes in SARS-Cov-2 infected cells. 

 In parallel with the mitochondrial processes, autophagic processes were perturbed in cells 

infected with SARS-CoV-2 at high titer. The positive-sense RNA viruses (such as hCoVs) may 

utilize the autophagy pathway to fabricate membrane structures required for viral replication 

(58). This ambivalence between anti-viral and pro-viral roles (59) may explain why SARS-CoV-

2 infected cells exhibited both up- and downregulation of autophagy pathway genes. However, 

the precise role of autophagy in coronavirus infection remains unclear (58). The gene expression 

analysis of SARS-CoV-2 infected cells showed upregulation of autophagy nucleation genes 

ATG5, ATG12, and LC3I. This is consistent with the previous reports showing autophagy 

induction in coronavirus infected cells (60). Moreover, coronavirus mouse hepatitis virus (MHV) 

replication was impaired in atg5-/- cells (60). Finally, inhibition of S-phase kinase-associated 

protein 2 (SKP2) as E3 ligase decreased Beclin1 (BECN1) degradation, and increased 

autophagic flux, which in turn decreased MERS-CoV (39, 61). However, SKP2 expression in 

SARS-CoV-2 infected cells in significantly low. Further studies will be required to fully 

understand the interplay between autophagy and SARS-CoV-2 infection. 
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SUMMARY 

In summary, we have presented a detailed DE and coexpression network analysis of the 

RNA seq data from SARS-CoV-2 infected cells. This analysis has delineated biological 

processes impacted during SARS-CoV-2 infection of lung cells. Notably, we saw upregulation of 

genes in the cytokine signaling and inflammation processes, downregulation of genes in the 

mitochondrial processes, and perturbation of autophagy. It is likely that perturbation of 

autophagy and mitochondrial processes may impede an effective immune response leading to 

severe outcomes. Consistent with the SARS-CoV-2 infected cells gene expression profile, RNA 

seq analysis of COVID-19 lung biopsy sample also supports a central role for 

cytokine/inflammation processes in COVID-19 pathogenesis. These findings provide some 

insights into mechanisms potentially contributing to dysregulated immune responses that are 

observed in severe COVID-19 patients. Since these studies used the gene expression data from 

lung cell lines, future studies analyzing the gene expression profile of COVID-19 patient samples 

will be required to confirm these findings. 

 

MATERIALS AND METHODS 

Data collection 

Raw gene count matrix for bulk RNA-seq was downloaded from GEO (accession number 

GSE147507) (62). The data contained gene expression count matrix of two lung carcinoma cell 

lines A549 (63, 64) and Calu3 (65, 66). In this dataset, the A549 treatment conditions included 

mock, infection with influenza A virus (IAV) (N=2 per group), and infection with SARS-CoV-2 

at 2 (high titer, N=3 per group) and 0.2 (low titer, N=3 per group) multiplicity of infection 

(MOI). From this dataset the raw gene count matrix for 2 healthy human lung biopsy and one 

COVID-19 samples (2 technical replicates) were also analyzed. Additionally, gene expression 

data in FPKM was downloaded from GEO (accession number GSE139516) (67) for Calu3 cell 

line infected with MERS-CoV and mock (N=3 per group). Differential expression (DE) analysis 

was performed on mock and MERS-CoV infected cells for 24 hr. Human lung single-cell RNA-

seq (scRNA-seq) data with 57 annotated cell types was downloaded from Synapse (accession 

syn21041850) (68). 
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Data analysis 

RNA seq analysis and network analysis 

Differential expression analysis was performed using limma-voom and limma trends (69, 

70). Genes with adjusted p value <0.05 were considered differentially expressed (DE). The DE 

genes were tested for pathway enrichment using clusterProfiler and pathways with q value < 0.05 

were considered significant (71). Consensus weighted gene coexpression network analysis 

(WGCNA) (27) was performed on pooled control and SARS-CoV-2 infected cells at low and 

high titer expression data, after removing the low expressing genes with count less than 5 in 4/6 

samples. DE genes in correlated modules > 50 genes in size were selected for downstream 

analysis. For subnetwork analysis, GeneMANIA database (72) was used to identify potential 

protein-protein interaction (PPI) between the DE genes from the correlated modules. The PPI 

networks were then overlaid with the fold-change information using Cytoscape (73). Pathway 

enrichment summary amp was generated using the Enrichment Map (74) and AutoAnnotate (75) 

apps in Cytoscape. R (Foundation for Statistical Computing, Vienna, Austria. URL 

https://www.R-project.org/) was used for data visualization. 

The data sets supporting the results of this article are available from Figshare 

(https://doi.org/10.6084/m9.figshare.12272351) (76). 

  

Single-cell RNA-seq analysis 

Analysis of human lung single-cell RNA-seq (scRNA-seq) data with 57 annotated cell 

types was performed in R (v3.6) using Seurat (v3.1.1) (77). The UMI (Unique Molecular 

Identifier) count matrix was filtered for genes expressed in less than 3 cells and normalized using 

SCTransform implemented in Seurat. Differentially expressed genes were computed for 57 cell 

types using FindAllMarkers implemented in Seurat with default parameters. The UMAP plot 

was plotted using the top 50 principal components computed from the expression of highly 

variable genes selected by SCTransform. 

 

Correlation of expression profiles between cell lines and lung cell types 

To assess the biological significance of analyzing expression profiles of lung cell lines, 

we compared the expression profile of A549 and Calu3 cell lines with that of lung cell types. 

Using the scRNA seq data, cell type expression profile was computed as the mean expression 
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across cells within each cell type. The top 1000 genes with the highest variance among the 57 

cell type expression profiles were selected as highly variable genes which were presumably 

informative for differentiating the 57 cell types. This analysis revealed that the A549 cells gene 

expression strongly correlated with the basal and ionocyte lung cell subpopulations, which both 

represent lung epithelial cell lineage (22, 23). Correlation between the highly variable genes 

from lung scRNA seq data and either A549 or Calu3 cells were calculated and plotted (Supp Fig 

S7A). Notably, the Calu3 cells showed similar pattern but lower correlation with the lung cell 

types analyzed (Supp Fig S7A). 
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Figure legends 
 
Figure 1: SARS-CoV-2 infection of lung epithelial cells impacts expression of genes in 

interferon, cytokine and autophagic processes. (A) Pathway enrichment analysis of gene 

upregulated in SARS-CoV-2 infected cell. (B)Heatmap highlighting the expression of genes in 

the cytokine processes in mock and infected cells. (C) Heatmap highlighting the expression of 

genes in the autophagic processes in mock and infected cells. (D) Heatmap highlighting the 

expression of genes in the interferon related processes in mock and infected cells. (E) Pathway 

enrichment analysis of gene upregulated in SARS-CoV-2 infection. (F) Heatmap highlighting 

the expression of genes in the mitochondrial organization and translation in mock and infected 

cells. (G) Pathway enrichment summary map for mock vs. SARS-CoV-2 at high MOI (blue 

nodes) and low MOI (red nodes) comparisons. Single color nodes are pathways that are 

distinctly enriched by DE genes from one comparison (single color node). Two colored nodes 

are pathways enriched by DE genes from both comparisons. Each node represents a 

pathway/biological process (BP). The node size is proportional to the number of DE genes 

overlapping with the BP. The nodes that share genes are connected with edges. The black circle 

summarizes the gene ontology (GO) terms of similar BPs. Mock vs. SARS-CoV-2 (high MOI) 

DE genes exclusively enriched in inflammation, interferon, autophagy and mitochondria related 

processes. Mock vs. SARS-CoV-2 (low MOI) DE genes exclusively enriched in ECM/blood, 

receptor mediated endocytosis, and nucleotide biosynthesis processes. MOI: multiplicity of 

infection; DE: differentially expressed. 
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Figure 2: ACE2 overexpression (oe) exacerbates the expression fold change of genes in the 

inflammation and mitochondria/respiration processes. (A) Overlap of DE genes after SARS-

CoV-2 infection with or without ACE2 overexpression. Fraction of upregulated or 

downregulated genes that were further exacerbated by ACE2 oe is indicated. (B) Pathway 

enrichment analysis of DE genes further upregulated after SARS-CoV-2 infection in ACE2 oe 

cells. (C) Pathway enrichment analysis of DE genes further downregulated regulated after 

SARS-CoV-2 infection in ACE2 oe cells. DE: differentially expressed. 

  

Figure 3: Consensus network analysis of mock and SARS-CoV-2 infected (high and low 

MOI) cells. (A) Cluster dendrogram showing correlated genes grouped into clusters marked by 

different colors on the horizontal block labeled “Consensus Module Colors”. The DE genes in 

each cluster is marked as black color vertical line in the horizontal block labeled “DE genes”. 

The up and down regulated genes are shown as red and blue color vertical lines in a block 

labeled “Upregulated/downregulated genes”, respectively. (B) Pathway enrichment analysis of 

correlated DE genes in the turquoise module. (C) Protein-protein interaction (PPI) subnetworks 

in the turquoise module is presented where each node represents a gene and the border color of 

the nodes indicate up (red color) and downregulation (blue) in infected cells compared to mock 

infected cells. The edge between the nodes indicate interaction based on the GeneMANIA 

database information. The network shows interferon stimulated genes and inflammatory genes. 

(D) Another PPI subnetwork identified in the turquoise module showing several mitochondrial 

genes. (E) Pathway enrichment analysis of correlated DE genes in the blue module. (F) A PPI 

subnetwork of correlated DE genes in the blue module showing a well-connected interactome of 

genes involved in inflammation. DE: differentially expressed. 

  

Figure 4: SARS-CoV-2 infection of A549 lung epithelial cells results in distinct gene 

expression changes that are not seen in IAV infection. (A) Pathway enrichment analysis of 

DE genes upregulated in IAV infected cells. (B) Pathway enrichment analysis of DE genes 

downregulated in IAV infected cells. (C) Pathway enrichment summary map for mock vs. 

SARS-CoV-2 (blue nodes) and mock vs. IAV (red nodes) comparisons. Single color nodes are 

pathways that are distinctly enriched by DE genes from one comparison. Two colored nodes are 

pathways enriched by DE genes from both comparisons. Each node represents a 

pathway/biological process (BP). The node size is proportional to the number of DE genes 

overlapping with the BP. The nodes that share genes are connected with edges. The black circle 

summarizes the gene ontology (GO) terms of similar BPs. DE genes from Mock vs. SARS-CoV-

2 comparison exclusively enriched in inflammation, interferon, autophagy and mitochondria 

related processes. (D) Volcano plot of mock vs. IAV infected cells showing cytokine related 

genes. (E) Volcano plot of mock vs. IAV infected cells showing autophagy related genes. (F) 

Volcano plot of mock vs. IAV infected cells showing interferon related genes. DE: differentially 

expressed. 

 

Figure 5: SARS-CoV-2 and MERS-CoV infection have some common and some distinct 

gene expression signatures. (A) Pathway enrichment summary map for mock vs. SARS-CoV-2 

(blue nodes) and mock vs. MERS-CoV (red nodes) comparisons. Single color nodes are 

pathways that are distinctly enriched by DE genes from one comparison (single color node). Two 

colored nodes are pathways enriched by DE genes from both comparisons. Each node represents 

a pathway/biological process (BP). The node size is proportional to the number of DE genes 
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overlapping with the BP. The nodes that share genes are connected with edges. The black circle 

outlines group the gene ontology (GO) terms of similar BPs.  The DE genes from mock vs. 

SARS-CoV-2 predominantly enriched in inflammation and immunity related processes. (B) 

Pathway enrichment analysis of DE genes upregulated in SARS-CoV-2 infected Calu3 cells. (C) 

Pathway enrichment analysis of DE genes upregulated in MERS-CoV infected Calu3 cells. (D) 

Pathway enrichment analysis of DE genes downregulated in SARS-CoV-2 infected Calu3 cells. 

(E) Pathway enrichment analysis of DE genes downregulated in MERS-CoV infected Calu3 

cells. DE: differentially expressed. 

  

Figure 6: DE genes from Covid-19 lung compared to healthy lungs show robust 

upregulation of immunity, cytokines, and inflammatory processes. (A) Pathway enrichment 

summary map for healthy vs. Covid-19 lungs (technical replicates) (blue nodes). Each node 

represents a pathway/biological process (BP). The node size is proportional to the number of DE 

genes overlapping with the BP. The nodes that share genes are connected with edges. The black 

circle summarizes the gene ontology (GO) terms of similar BPs.  The DE genes from healthy vs. 

Covid-19 lung comparison predominantly enriched in inflammation and immunity related 

processes. (B) Pathway enrichment analysis of DE genes upregulated in Covid-19 lung vs. 

healthy lung biopsy samples. (C) Pathway enrichment analysis of DE genes downregulated in 

Covid-19 lung vs. healthy lung biopsy samples (D) UMAP visualization colored by cell types. 

DE: differentially expressed. 

Supplemental Figure Legend 
 

Supp Fig S1. (A) Volcano plot showing up (red color dots) and down regulated (blue color dots) 

DE genes in mock vs. SARS-CoV-2 (high MOI) infected A549 cells. (B) Pathway enrichment 

analysis of the DE genes from the mock vs. SARS-CoV-2 (high MOI) comparison. (C) Volcano 

plot showing up (red color dots) and down regulated (blue color dots) DE genes in mock vs. 

SARS-CoV-2 (low MOI) infected A549 cells. (D) Pathway enrichment analysis of the DE genes 

from the mock vs. SARS-CoV-2 (low MOI) comparison. DE: differentially expressed; MOI: 

multiplicity of infection. 

 

Supp Fig S2. (A) Volcano plot showing up (red color dots) and down regulated (blue color dots) 

genes in A549 cells overexpressing ACE2 infected with. SARS-CoV-2 (low MOI) or mock 

treatment. (B) Pathway enrichment analysis of DE genes from mock vs. SARS-CoV-2 in ACE2 

oe cells. (C) Venn diagram showing overlap between DE genes from mock vs. SARS-CoV-2 

(low MOI) and mock vs. SARS-CoV-2 (in ACE2 oe) comparisons. oe: overexpressing; DE: 

differentially expressed; MOI: multiplicity of infection. 

 

Supp Fig S3. (A) Pathway enrichment analysis of correlated DE genes in the brown consensus 

module. DE: differentially expressed. 

 

Supp Fig S4. (A) Volcano plot showing up (red color dots) and down regulated (blue color dots) 

DE genes in mock vs. IAV infected A549 cells. (B) Pathway enrichment analysis of the DE 

genes from the mock vs. IAV comparison. (C) Venn diagram showing DE genes overlap 

between mock vs. SARS-CoV-2 (High MOI) and mock vs. IAV comparisons. DE: differentially 

expressed; MOI: multiplicity of infection. 
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Supp Fig S5. (A) Volcano plot showing up (red color dots) and down regulated (blue color dots) 

DE genes in mock vs. SAR-CoV-2 infected Calu3 cells. (B) Pathway enrichment analysis of the 

DE genes from the mock vs. SAR-CoV-2 comparison. DE: differentially expressed. 

 

Supp Fig S6. (A) Volcano plot showing up (red color dots) and down regulated (blue color dots) 

DE genes in healthy vs. COVID-19 lung biopsy samples comparison. (B) Pathway enrichment 

analysis of the DE genes from the healthy vs. COVID-19 lung biopsy samples comparison. (C) 

tSNE plot of lung single cell (sc) RNA seq data. DE: differentially expressed. 

 

Supp Fig S7. (A) Plot showing correlation between marker genes from different lung 

subpopulations (on x-axis) and A549 and Calu3 cells lines (color coded independent samples 

with legend on the right side of the plot). 

 

Supplemental Tables 
 

Supp Table 1: Consensus module name and size (gene numbers) and its overlap with significant 

genes 

 

Supp Table 2: List of marker genes of lung cell types from single cell RNA-seq data  
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