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Low sensitivity MR techniques such as magnetic resonance spectroscopic imaging (MRSI) greatly
benefit from the gain in signal-to-noise (SNR) provided by ultra-high field MR. High-resolution
and whole-brain slab MRSI remains however very challenging due to lengthy acquisition, low signal,
lipid contamination and field inhomogeneity. In this study, we propose an acquisition-reconstruction
scheme that combines a 1H-FID-MRSI sequence with compressed sensing acceleration and low-rank
modeling with total-generalized-variation constraint to achieve metabolite imaging in two and three
dimensions at 7 Tesla. The resulting images and volumes reveal highly detailed distributions that
are specific to each metabolite and follow the underlying brain anatomy. The MRSI method was
validated in a high-resolution phantom containing fine metabolite structures, and in 3 healthy vol-
unteers. This new application of compressed sensing acceleration paves the way for high-resolution
MRSI in clinical setting with acquisition times of 5 min for 2D MRSI at 2.5 mm and of 20 min for
3D MRSI at 3.3 mm isotropic.

I. INTRODUCTION

Magnetic resonance spectroscopy (MRS) [1] has been
one of the main motivations driving MR towards ultra-
high field (≥ 7T). With the recent advent of FDA ap-
proval and CE certification of 7T MR systems for clinical
use, there is high interest in developing robust fast high-
resolution MRS imaging (MRSI) methods to map the
neurochemistry of human brain with greater anatomical
details. MRS at 7T and higher field, benefits from in-
creased sensitivity and spectral dispersion [2, 3], which
are the two intrinsic factors limiting the chemical infor-
mation that can be extracted at the current clinical (≤
3T) fields. However, capitalizing the benefits of ultra-
high field have proven more challenging for human MRS
imaging (MRSI) compared to single voxel spectroscopy
(SVS) [4]. Large B0 and B1 inhomogeneity over the hu-
man brain [5, 6] results in non-uniform image quality
across an extended field of view. Acquisition of the 4D
(k,t) space by traditional clinical MRSI sequences [7] is
slow due to long repetition time (TR) needed to sample
adequately the time domain, and due to notably high
specific-absorption rate (SAR) at ultra-high field which
further limits the minimum TR. These problems prohibit
the acquisition of spatial high-resolution MRSI to bene-
fit from the higher signal-to-noise (SNR) at ultra-high
field. Significant progress has been done in the recent
years in accelerating high-resolution MRSI at ultra-high
field [8] by employing sequences with low SAR, short TR
and short echo time (TE). In particular, the pulse ac-
quire (FID) excitation [9, 10] has grown in popularity
at ultra-high field due to the robustness of low flip an-
gle excitation to B1 transmit inhomogeneity, whereas re-
duced SAR allows for short TR, and the very short TE
reduces signal loss due to T ∗

2 relaxation. The elimination
of fat suppression pulses further reduces SAR and TR

at ultra-high field but requires advanced reconstruction
methods to decontaminate metabolic signal from skull
lipid leakage [11–14]. The problem of MRSI acquisition
time at ultra-high field was addressed with the use of
spectro-spatial encoding using echo-planar [15], concen-
tric circles [16], rosettes [17] and spiral [18] trajectories,
but also with parallel imaging methods [19, 20], and more
recently with a combination of non-Cartesian trajectories
and parallel imaging [21].

Compressed sensing (CS) is a technique that allows for
faithful recovery of an undersampled signal [22]. Its ap-
plication to MRI enable acceleration of the acquisition
by random k-space undersampling [23, 24]. Although
now being widely used in clinics [25, 26] for standard
MRI, CS has been scarcely explored for 1H-MRSI in hu-
mans, mostly at 3T [27–30] and in one study for sin-
gle slice 2D MRSI at 9.4T [31]. However, 2D MRSI is
typically performed with thick slices (8-10 mm) which
lead to partial volume averaging, while isotropic high-
resolution 3D coverage is preferable to match better the
fine details of gray/white matter structure. Initial CS
demonstrations of 1H-MRSI at 3T have been shown with
volume localization [27–30] which excludes the scalp to
avoid lipid artifacts, but also misses most of the lateral
cortex. Compressed sensing has been successfully used
to speed-up acquisition of X-nuclei MRSI with full field
of view (FOV) coverage, such as 13C [32] and 31P [33],
where spectra are more sparse, the large nuisance sig-
nals of fat and water are absent, and the effect of B0

inhomogeneity is reduced. On the other hand for whole
brain CS 1H-MRSI at ultra-high field, proper separation
between metabolites and dominant fat and water signals
is of paramount importance [34, 35]. Compared to par-
allel imaging, the random undersampling in CS has the
advantage that it does not produce structured aliasing
artefacts, is not affected by the g-factor penalty, does
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not requires a calibration scan [23], but instead involves
a more lengthy reconstruction which is acceptable when a
real-time or fast answer is not needed such as often is the
case for MRSI, although clinically acceptable reconstruc-
tion times can be obtained with optimized algorithms
[36].

In this research we investigate the potential of CS com-
bined with a low-rank (LR) constraint and sensitivity en-
coding (SENSE) in achieving fast high-resolution 2D and
isotropic 3D 1H-MRSI at 7T for a whole slab of human
brain. The ability to accelerate single slice 2D MRSI us-
ing CS-SENSE reconstruction was demonstrated at 9.4T
by Nassirpour et al. for an FID phase encoded sequence
[31] and at 3T by Otazo et al. for a spin-echo PEPSI
sequence [27] or by Chatnuntawech et al. for PRESS
with random spiral sequence [29]. On the other hand,
spectral-spatial separability exploited by low-rank mod-
elling has been shown to be very effective to improve
SNR and remove nuisance signal, enabling whole brain
high-resolution 1H-MRSI at 3T [37, 38]. To achieve the
high robustness that is needed for 3D and 2D MRSI re-
construction we combine the three most powerful meth-
ods (CS, LR and SENSE) to successfully deal with the
challenges of ultra-high field. We build on our previous
formulation of CS-SENSE-LR reconstruction developed
at 3T [14, 39], and we show that even higher spatial res-
olutions are reachable for brain metabolic mapping at
7T due to larger SNR and faster temporal encoding. In
addition, we also extend our previous 2D CS-MRSI to
3D CS-MRSI. To the best of our knowledge, CS and LR
have not been studied yet for the case of whole slab 3D
1H-MRSI in human brain either at ultra high field or at
lower fields.

II. METHODS

A. FID-MRSI Sequence

Spectroscopic imaging was acquired with a 1H-FID-
MRSI [9, 10] sequence implemented on a whole-body
7T MRI Magnetom scanner (Siemens, Erlangen, Ger-
many) with a 7T-SC72CD gradient system of 70 mT/m
total gradient strength and 200 mT/m/s nominal slew
rate, using a 31-channel receive / birdcage transmit coil
and running VB17 software. A slab selective excitation
pulse of 1 ms was optimized with a Shinnar-LeRoux algo-
rithm [40] to produce a 6.5 kHz bandwidth and was pre-
ceded by four-pulses WET [41] water suppression. The
acquisition delay or echo time (TE), between the exci-
tation and the signal acquisition was 1.3 ms in 2D and
0.9 ms in 3D. The free-induction decay (FID) was ac-
quired with 1024 points and 8 kHz sampling rate (spec-
tral window 26.93 ppm), which was followed by spoiler
gradients (Fig. 1). The repetition time (TR) was 210 ms
and the excitation flip angle was set to 15 degree to pre-
vent T1 saturation in the metabolite signal, considering
that the maximum metabolite longitudinal relaxation at

7T in the brain is 1800 ms [42]. K-space was acquired
by Cartesian elliptical phase encoding, with both fully
sampled and undersampling schemes.

B. Acquisition Protocol

An anatomical 3D T1-weighted MEMPRAGE [43] vol-
ume was acquired for positioning of the 2D or 3D MRSI.
The 2D MRSI was acquired with a 10 mm-thick slice and
210× 160 mm field of view (FOV). Encoding matrix was
84×64 yielding a 62.5 µl voxel volume (2.5×2.5×10 mm).
3D MRSI was realized with an excited slab of size
210 × 160 × 50 mm (A/P-R/L-H/F). The phase encod-
ing FOV in the head-foot direction was set slightly larger
(oversampling) to 60 mm than the 50 mm excited slab to
prevent aliasing in this direction due to RF pulse excita-
tion profile. The encoding matrix was set to 64×48×18
resulting in a 36.5 µl voxel volume (3.3 mm isotropic
resolution). For signal referencing and to determine the
coil sensitivity profiles, unsuppressed water data was ac-
quired with the same FID-MRSI sequence and parame-
ters but with lower resolution: 10×10×10 mm for 2D and
11.5×11.5×5 mm for 3D. The FOV size, the excited-slab
thickness, the TR and flip angle were identical to main
acquisition and were always acquired with a full elliptical
encoding.

C. Undersampled phase encoding

MRSI data were encoded randomly and in a sparse
manner over the 3D/2D spatial Fourier domain to grant
CS acceleration. Undersampling of the Cartesian en-
coding was performed by omitting encoding step dur-
ing the sequential acquisition. The omitting pattern
was computed individually in the preparation step of the
running sequence. Defining the Fourier domain radius

q =
√

(kx/kmaxx )2 + (ky/kmaxy )2 + (kz/kmaxz )2 , (kz = 0

in 2D), the random sampling was constructed with a den-
sity distribution following q−1. The center of the Fourier
space with q ≤ 1

5 was kept fully sampled (Fig. 1).

D. MRSI Data Processing and Reconstruction

The removal of lipid signal and residual water was per-
formed as previously described [14]. In short, water sig-
nal remaining after the WET suppression was cleared
in MRSI raw data of each coil element using the Han-
kel singular value decomposition (HSVD) method [44].
Afterwards, lipid suppression by metabolite-lipid orthog-
onality was applied to remove lipid signal in MRSI raw
data for each coil element separately [14].

Following the principles of CS acceleration, MRSI data
randomly undersampled must be reconstructed with a
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FIG. 1: (a) Sketch of the FID-MRSI sequence for 2D and 3D. (b) Example of 2D and 3D undersampling patterns in Fourier
domain.

model that imposes sparsity priors while preserving fi-
delity with the acquired data [23]. For this study we
employed a SENSE reconstruction model for arbitrary
trajectory [45, 46] including total generalized variation
(TGV) as regularization that imposes sparsity in 1st and
2nd order spatial derivatives. Previous implementation
of CS in MRSI also used a combination of Debauchies
wavelet and total variation (TV) [28, 31] or TV com-
bined with SENSE [29]. In addition, MRSI data were as-
sumed to be low rank and partially separable into spatial
and temporal components to enhance SNR [47]. For 2D,
we used the model previously published in [14, 39] and
for 3D, the same model was extended to one extra spa-
tial dimension. We describe this model shortly hereafter.
MRSI raw data measured by phased-array coil element
c = 1, . . . , N c at time t and at Fourier coordinate k are
expressed by the forward model

sc(k, t) =

∫
Ω⊂R3

Cc(r)B(r, t)ρ(r, t)e2πik·rdr, (1)

with the integration of the 3D spatial coordinates r over
Ω, the object spatial support. The integrand is com-
posed of the transverse magnetization ρ(r, t) ∈ C, the
coil sensitivity profiles Cc(r) ∈ C and the spatial fre-
quency shift B(r, t) = e2πit∆B0(r) with ∆B0(r) the field
in-homogeneity map in Hz. The transverse magnetiza-
tion is assumed to be low-rank and separable, i.e. it can
be partially separated into K spatial and temporal com-
ponents, Un(r), Vn(t) [47]:

ρ(r, t) =
K∑
n=1

Un(r)Vn(t), (2)

Combining (1) and (2), the forward model in vectorial
notation reads

s = FCBUV, (3)

where s is a multi dimensional array containing the 2 or
3 spatial dimensions, the temporal dimension and one
coil indexing dimension. F , C and B are the Fourier
transform operator, the operator applying coil sensitivity
profiles and the B0-inhomogeneity correction operator,
respectively.

The reconstruction aims to retrieve the spatial and
temporal components, Un(r), Vn(t), from the sparsely
sampled MRSI data sc(k, t). Cc(r) and ∆B0(r) were
computed from water reference acquisitions with the coils
sensitivity profiles estimated using ESPIRIT [48] and B0-
inhomogeneity profile estimated using multiple signal
classification algorithm (MUSIC) [49] on the coil com-
bined water signal spatially interpolated to the metabo-
lite acquisition resolution.

The raw data s cleared of water and lipid contamina-
tion (description above) are reconstructed with a low-
rank TGV model [14, 39]. The spatial and temporal
components were then determined by the minimization
problem including TGV spatial regularization [50]

arg min
UV

‖s−FCBUV‖22 + λ
∑K
c=1 TGV2{Uc} . (4)

In the 2D MRSI case, a Hamming filter was integrated
in the data fidelity term of the reconstruction model.
The modified model eases the convergence of the recon-
struction for 2D data with lower SNR while preserv-
ing effective voxel size ot the acquistion resolution. A
detailed description of this filtering is given in supple-
mentary material with some comparison on simulated,
in vivo and phantom data (Supplementary and fig. S2)..
The reconstruction was performed in Matlab (The Math-
Works, Inc., Natick, Massachusetts, US), required a min-
imum of 64 RAM GB and necessitate 12hour computa-
tion time for the 3D MRSI using 8 cores of a 3.00GHz
Intel(R)Xeon(R)-E5 CPU.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.13.092668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.092668


4

E. LCModel Quantification

Metabolite concentrations were quantified using
LCModel [51] and fitting the MRSI dataset ρ = UV that
resulted from the optimization process in (4). A reference
basis was simulated using GAMMA package [52] with ac-
quisition parameters identical to the MRSI sequence.

The following metabolites were included in the sim-
ulated basis: N-acetylaspartate (NAA), N-acetyl as-
partylglutamate (NAAG), creatine (Cr), phosphocrea-
tine (PCr), phosphorylcholine (PCh), glycerophospho-
rylcholine (GPC), myo-inositol (Ins), scyllo-inositol, glu-
tamate (Glu), glutamine, lactate, beta-glucose, alanine,
taurine, aspartate, gamma-aminobutyric acid and glu-
tathione. The removal of lipid signal by orthogonality
may result in a strong baseline distortion under NAA
singlet peak at 2 ppm in the form of a negative undula-
tion. To help the LCModel quantification to cope with
this distortion, a 20Hz-broad peak at 2 ppm and with
negative phase was added to the basis. LCModel control
parameters are given in the supplementary material.

The results of LCModel fitting for each voxel were fur-
ther used to create spatial maps for the concentration
of each metabolite. The spectral quality was assessed
through the goodness of the fit and was estimated by the
residuals root mean square (RMS) for each voxel.

F. High-resolution structural and metabolic
phantom

To assess precision and accuracy of the CS FID-MRSI,
a high-resolution structural and metabolic phantom con-
taining tubes of several diameters was measured with 2D
FID-MRSI without CS acceleration and with a 2 mm
in plane resolution. To simulate acceleration, the data
were undersampled retrospectively with acceleration fac-
tor 2,3,4 and 5 following the same probability distribution
in the Fourier domain as the accelerated acquisition. For
comparison, a reconstruction by the forward-model ad-
joint operator (Fourier transform and coil combination,
details in supplementary material) was also performed
on fully sampled data. The geometry and molecular con-
trast of our custom made phantom is similar to Derenzo
phantom [53, 54] used for quality control and quantifi-
cation in PET molecular imaging. Our custom made
phantom consists of a large cylindrical container of clear
cast acrylic material (outer diameter (OD)= 15.24 cm,
inner diameter (ID)= 13.33 cm, Mc-Master-Carr), 5 sets
of tubes corresponding to the diameters 2, 4, 6, 8 and
10 mm, and a tube holder of size equal to the ID that
is firmly fixed on the inner wall of the container. For
each diameter size the set consisted of 6 tubes arranged.
The tubes fixed by the holder are separated by a dis-
tance equal to twice the inner diameter of the tubes in
a triangular close packed configuration as shown in fig.2.
The tubes were filled with specific metabolite solutions of
six different concentrations and mixtures based on their

position in each size set (1-6) (top right table fig.2). Mag-
nevist (Gd-DTPA) was added (1mL/L) in each tube to
shorten T1 and create T1-weighted contrast for struc-
tural MRI. The whole tube structure was inserted in the
large container which was filled with 10mM NaCl solu-
tion. The tubes and holder of the phantom were de-
signed using 3D computer-aided design (CAD) software
(rhinoceros 6.0, Robert McNeel & Associates) and fab-
ricated using 3D printer (Formlabs, Form 2, Somerville,
MA USA). The printing material was clear resin (RS-
F2-GPLC-04) which is a mixture of acrylated monomers,
acrylated oligomers, and photoinitiators.

G. Healthy Volunteer MRSI measurement

To illustrate the feasibility of the CS FID-MRSI, an
acquisition protocol with 2D MRSI CS factor 2.5 (6 min)
and 3D MRSI CS factor 4.5 (20 min) was acquired over 3
young healthy volunteers. In addition and to measure the
effect of the CS acceleration by retrospective undersam-
pling, a highly sampled 3D MRSI with CS 2.5 (34 min)
was acquired in volunteer 1 and a fully sampled 2D MRSI
(15 min) was acquired for volunteer 3. The protocol was
approved by the institutional ethics committee and writ-
ten informed consent was given by all subjects before
participation.

III. RESULTS

A. high-resolution phantom

The metabolite images of the high-resolution phantom
reconstructed with the CS-SENSE-R model display the
tube cross-sections that are distinguishable for all diame-
ters in comparison to the adjoint operator reconstruction
that does not always permit the distiction of the 2mm
tubes (fig.2). Patterns of concentrations corresponding
to the metabolite content are visually observable for NAA
and Cho in tubes with diameter 10, 8 and 6 mm. The Cre
images and the signal variability among tubes contain-
ing all the same concentration indicate the difficulty to
obtain homogeneous signal throughout the phantom for
the Adjoint or the CS-SENSE-LR reconstructions. This
is probably caused by the strong B0 inhomogeneities and
the difficult correction of the B1 with the water signal
that varies markedly in and outside the tubes due to T1

differences (see T1w water image in fig.2). As a conse-
quence, the water signal could not be used as reference for
absolute quantification but the ratio to Cre were used. In
fig.2 right the measured concentration ratios versus the
actual concentration ratios are displayed. The measured
concentration values correspond to the voxel average in
tubes from size 2 to 10 mm at one position (1-6, as label
in top of fig.2) with the standard deviation as error bar.
Accuracy of the results can be assessed by the distance to
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the diagonal (dash blue line) and the correlation coeffi-
cient square R2. NAA/Cre, Cho/Cre and Glu/Cre show
good agreement between measured ratio and actual ratios
for both the CS-SENSE-LR and the adjoint reconstruc-
tions although low concentration of Cho or Glu seems
to be overestimated. The results for GABA/Cre and
2HG/Cre are notably less accurate with markedly low
correlation coefficients and illustrate some difficulties to
quantify metabolites that strongly overlap and have low
signal. There is large overlap between 2HG, GABA and
glutamate in short echo FID spectra which cannot be re-
solved by LCModel fitting. This is obvious in the case
of adjoint reconstruction which shows the same fitting
pattern, and hence it is a proof that it is not a result
of the CS-SENSE-LR reconstruction. In order to better
separate overlapping metabolites optimized RF excita-
tion schemes that manipulate spin evolution would need
to be used. But more importantly, the results are prac-
tically unchanged when using the CS-SENSE-LR model
and increasing acceleration factors, which confirms the
absence of reconstruction artifacts.

B. Healthy Volunteer MRSI measurement

The 2D metabolite maps reconstructed from the 3 vol-
unteer measurements with CS factor 2.5 are shown in
fig.3 for NAA, tCr, Cho, Glu, Ins and NAAG with the T1-
weighted image corresponding to the slice location. The
maps reveal spatial anatomical patterns that are specific
for each metabolite distribution in the brain and that
are common to all three volunteer datasets. NAA dis-
tribution is homogeneous throughout the slice whereas
tCr concentration is higher in grey matter (GM) than
white matter (WM). Cho map exhibits a major concen-
tration in the frontal WM while concentrations are low
in the occipital lobe. The strongest GM/WM contrast is
present in Glu concentration maps where the cortex can
be distinguished. NAAG is clearly only detected in WM
although it is the least accurate map due to NAAG’s low
signal and overlap with NAA.

The same spatial features characterizing metabolite
distributions can be observed in the 3D metabolite vol-
umes. These were measured on the same three volunteers
with 3D FID-MRSI accelerated with CS factor 4.5 and
are presented in fig.4. The T1-weighted images show the
anatomical content of the slab. The metabolite volumes
show uniform signal and quality over the whole brain slab
in spite of strong B1 and B0 inhomogeneities thanks to
the intensity and frequency correction using the water-
unsuppressed measurement as reference.

C. Retrospective Acceleration on Healthy
Volunteer MRSI measurement

To evaluate the performance of CS acceleration on re-
constructed metabolite maps and volumes in volunteers,

2D fully sampled or 3D highly sampled FID-MRSI data
were reconstructed with several acceleration factors by
retrospective undersampling (fig.5 and 6). Qualitative
analysis of the 2D metabolite maps (fig.5) show almost no
visible effect of the acceleration up to a factor CS=3. For
higher acceleration a blurring effect is visible with a loss
of small contrasts, consequence of too strong Fourier un-
dersampling. Same effect is observable on retrospective
acceleration performed on simulated data in supplemen-
tary material and figure S7. This loss of resolution was
previously reported for high accelerated CS MRI [25, 46]
.The sample spectra at three locations demonstrate that
spectral quality is not affected by Fourier undersampling
even for the acceleration factor 5. This is confirmed by
the fitting residuals RMS shown in the bottom right plot
that exhibit no change with the acceleration.

The baseline distortion produced by the lipid removal
by orthogonality and visible at 2 ppm is properly cor-
rected by the inverse peak included in the lcmodel ba-
sis. Decomposed LCModel fits are shown in supplemen-
tary material fig.S6 where the baseline distortion is fit-
ted by the ‘Inverse Broad Peak’. . This point is fur-
ther considered in the discussion. A normalized root
mean square error (NRMSE) over the brain for each
metabolite is computed for each acceleration factor rel-
ative to the no-acceleration dataset. Let CCSxv being
the metabolite concentration at voxel v for CS accelera-
tion factor x, the NRMSE for the metabolite map reads√∑

v∈{brain voxels}(CCS1
v −CCSx

v )2√∑
v∈{brain voxels}(CCS1

v )2
. The NRMSE increases

linearly or slower with the acceleration factor in agree-
ment with previously published work [31, 55, 56] and
tends to be greater for metabolite with low signal, i.e.
NAAG or Glu. The effect of CS acceleration are illus-
trated on 3D metabolite volumes of one volunteer in fig.
6 in an orthogonal view. While acceleration of the MRSI
data was progressively increased up to 6.5, only a slight
loss of fine detailed contrast can be observed and no effect
is visible on the three spectra shown. Quantitative error
analysis with NRMSE show a linear behavior similar to
the 2D case and the fitting residuals RMS stay constant
when increasing the acceleration factor. The difference
in SNR between 2D and 3D is particularly visible on the
sample spectra.

IV. DISCUSSION

Whole-brain high-resolution 2D/3D MRSI at ultra
high field can be performed with greatly reduced acqui-
sition time and high sensitivity by combining FID-MRSI
acquisition with CS-SENSE-LR acceleration and recon-
struction. This achievement was enabled by the use of
several technical improvements. The TR of the FID-
MRSI sequence was minimized to 210 ms. Cartesian
phase encoding was accelerated by random undersam-
pling. The CS-SENSE-LR model enables accurate MRSI
data reconstruction while enhancing signal with LR con-
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FIG. 2: 2D metabolite maps of the high structural and metabolic phantom acquired with 2 × 2 × 10 mm3 resolution and
accelerated retrospectively with factor 1,3 or 5 (left). The actual concentration in each tube is given in the top table in mM.
The tube labeling is the same for all five sizes. Right bottom, voxel-average metabolite ratio over creatine in tubes 1 to 6 of
all sizes as function of the actual concentration ratio at different acceleration factors. The error bars represent the standard
deviation over all the voxels within a certain tube size.

straint.

The results of retrospective acceleration applied on the
FID-MRSI data in 2D or 3D (fig.2, 5 and fig.6) showed
that the CS-SENSE-LR model allows for accurate recon-
struction albeit random undersampling is performed by
factor 3 or more. For 3D MRSI (fig.6), the reference
dataset was not fully sampled but was acquired with a
2.5 acceleration factor. A fully sampled 3D acquisition
would be lengthy (85 min) with a high risk of head mo-
tion and large scanner frequency drift. It was assumed
that considering the CS results in 2D (fig. 2, 5 and [14]),
a acceleration factor of 2.5 in 3D should contain mini-
mal acceleration distortion and represent a good starting
point for retrospective acceleration.

For the highest acceleration (≥ 4 in 2D and ≥ 6 in 3D),
a loss in fine details of the metabolite maps is observed.
The signal containing these sharp contrasts is stored in
the high spatial frequencies located in the outer Fourier
space, precisely where most of the sampling points are re-
moved. It is therefore consistent that with utmost under-
sampling, small contrast features are lost. This finding
is consistent with the literature [25, 46] where strong CS

MRI acceleration results in noticeable blurriness or loss
of image resolution. These image alteration at high CS
acceleration can affect small features or large structure
differently and therefore cannot be described as a unique
increase of the effective voxel size.

Nassirpour et al. observed an increasing contamina-
tion by lipid signal for higher acceleration [57] but that
was not the case in our results and is probably due to the
fact that in our proposed pipeline, lipid and water sup-
pression take place before the reconstruction whereas in
[57] these are performed after reconstructing the MRSI.
In particular, in the previous work [57] which investi-
gated separately the performance of low-rank and CS re-
construction, it was observed that low-rank method pro-
vided less lipid artifacts while CS provided lower CRLB
for metabolite fitting. Hence, by combining LR and CS in
our reconstruction we can take advantage of both proper-
ties to improve data quality and quantification. Spectral
quality observable in fig.5 and 6 with the different spec-
tra and assessed by the fitting residuals is unaffected by
CS acceleration, in agreement with previous observations
[57].
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FIG. 3: 2D CS-FID-MRSI metabolite maps of three healthy volunteers measured with acceleration factor of 2.5 for a total
acquisition time of 6 min. The colour scale goes from 0 till the 95th percentile for each metabolite separately. The T1-weighted
anatomical image corresponding to the MRSI slice is shown to the right.

2D MRSI results may suffer from lower SNR in com-
parison to 3D MRSI even though voxel volume is larger
in 2D case. This is a direct consequence of the larger
volume excited by the 3D sequence and might favor a 3D
over 2D multislices MRSI acquisition for particular appli-
cation that requires high SNR for detection of low signal
metabolite. Acceleration factor of 3 in 2D (5 min) and
4.5 in 3D (20 min) were found to be the best compromise
with a strong reduction in acquisition time while present-
ing minimum effects on metabolite maps. The optimal
acceleration factor of 3 found here for 2D and 2.5 mm
in-place resolution compare to the factor of 4 in 2D and
3.1 mm resolution at 9.4T found in [57]. The difference
might be explained by higher SNR at 9.4T but also by
the qualitative determination of the factor. Compared
to our previous work [14], we were able to increase the
matrix size and reduce acquisition time in 2D MRSI from
an resolution of 3.3 × 3.3 × 10mm3 in 11 min at 3T to
2.5× 2.5× 10mm3 in 6 min at 7T thanks to higher SNR
and shorter possible TR. The accelerations obtained with
CS for our 2D protocol are similar to accelerations ob-
tained for similar protocols by parallel imaging [19, 58],
with the added benefit that CS-SENSE-LR reconstruc-
tion provides effective spectral denoising and less struc-
tured artifacts from undersampling. In addition, the re-
construction presented here has the advantage to produce
metabolite image with an effective voxel size identical to

the nominal size for fully sampled dataset without accel-
eration as illustrated with the high resolution structural
phantom (fig.2) and on simulated data (fig.S2). When
acceleration by random undersampling is performed, a
loss of resolution can be visible and compare to the g-
factor noise increase for GRAPPA acceleration. .

The original 2D method was also successfully extended
to 3D here while benefiting from 7T advantages to reach
an acquisition resolution of 3.3 mm3 in 20 min. Our 3D
protocol using CS to acquire a matrix of 64 × 48 × 18
in 20 min compares well with a recently published 3D
protocol [59] using concentric rings to acquire a matrix
of 80× 80× 47 in 15 min or 64× 64× 39 in 9 min. Ad-
ditional acceleration of our 3D CS-MRSI protocol could
be obtained by combining CS with non-cartesian trajec-
tories as shown at 3T for MRSI with PRESS excitation
[29] or in the case of combining EPSI with LR as per-
fomed with SPICE [37], and similar to the accelerations
obtained at 7T by non-cartesian GRAPPA [21].

The TGV regularization parameter was adjusted to
λ = 1 × 10−3 for the 2D reconstruction (same value as
for 3T study [14]) and λ = 3 × 10−4 for the 3D recon-
struction. These same values were observed to be opti-
mal for all 3 volunteers in 3D or 2D as shown in supple-
mentary material (fig.S3). Therefore, no adjustment of
the regularization parameter is necessary for each subject
but should be slightly readjusted if acquisition parame-
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FIG. 4: 3D CS-FID-MRSI metabolite volumes of three healthy volunteers performed with acceleration factor of 4.5 for a total
acquisition time of 20min. The colour scale goes from 0 till the 95th percentile for each metabolite separately. The T1-weighted
anatomical images to the right show the MRSI slab positions.
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FIG. 5: Left, 2D 2.5mm metabolite maps measured with CS-FID-MRSI and accelerated retrospectively with several acceleration
factors. Scales are in institutional unit (common to all metabolites). Right, Corresponding T1-weighted image and three sample
spectra are shown for acceleration factor 1,3 and 5. Bottom right, the normalized root mean square error of each metabolite
relative to the fully sampled map (A.F.=1) versus the acceleration factor

ters such as slab thickness, resolution, flip-angle or coil
setup are modified. However, this is generally true not
only for our reconstruction but for all model based re-
constructions, including LCModel fitting (e.g. a change
in sequence or B0 field requires a change in fitting basis
set). The number of components in the reconstruction
(K in (2)) was chosen as follow. As described in [14], the
initial estimate of the spatial and temporal components
are computed by SVD on the adjoint solution. Initial
spatial and temporal components are then reviewed and
K was qualitatively chosen as being the minimum num-
ber of components containing some signal distinguishable
from noise. K was set to 26 for 2D and 40 for 3D.

B+
1 strong inhomogeneities present at ultra-high field

were implicitly corrected by referencing metabolite signal
with unsuppressed water data. Frequency shift yielded
by B0 variation were corrected within the CS-SENSE-LR
model based on a B0 fieldmap computed from the unsup-
pressed water data but apparent loss of signal may still
occur in region where local B0 inhomogeneity is large and
reduces strongly the metabolite T2∗. The lipid suppres-
sion by metabolite-lipid orthogonality permits a complete
removal of lipid contamination from the 2D and 3D MRSI

datasets. However, a consecutive distortion of the spec-
tra baseline under the NAA singlet at 2 ppm may be
observed. The sample spectra shown in fig.5 display this
distortion with a broad baseline dip resulting in a ’W’
shape at 2 ppm. This baseline deformation was circum-
vent with the introduction on extra peak in the LCModel
basis at 2 ppm. This peak was introduced with a neg-
ative phase opposed to NAA singlet and with a broad
20Hz width to prevent cross-correlation with NAA dur-
ing fitting by LCModel. As results, LCModel succeeds
in close fitting of the data with a smooth baseline as
shown in fig.5. This effect of the lipid suppression on
spectra is an important point. Although the additional
peak added to the basis copes correctly with the baseline
pit, we cannot fully discard an effect on NAA quantifi-
cation. This point shall be addressed more in details in
a future publication.. The computation time necessary
for the reconstruction of 3D high-resolution MRSI data
that was about 12 hours and might be a limitating factor
in the application of the technique. However, we expect
that with a reconstruction code fully optimized and with
specific dedicated computational resources such as graph-
ics processing units, it could be computed in significantly
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FIG. 6: Top, 3D 3.3mm isotropic metabolite volumes acquired with CS-FID-MRSI and different acceleration factors. Bottom
left, T1-weighted images of the corresponding metabolite slices in the three direction are shown next to three sample spectra
at acceleration factor 2.5, 4.5 and 6.5. Bottom right, the normalized root mean square error of each metabolite relative to
A.F.=2.5 versus the higher acceleration factors.

shorter time such in the case of MRI [36].
To the best of our knowledge, the first 3D images of

whole brain metabolite distributions were published by
Duijn et al. [60] with low-resolution Cartesian encoding
at 2T MRI scanner. These results were followed by devel-
opment of fast encoding EPSI/PEPSI techniques [61–64],
spiral encoding [65, 66] and rosette spectroscopic imag-
ing [67]. Group analysis of whole brain 3D MRSI pro-
vided evidence of tissue and metabolic specific differences
across the brain [68, 69]. Recent publication of metabo-
lite distributions at ultra-high field using concentric-
ring trajectories showed an apparent GM/WM contrast
in high resolution for Cho/tCr and Glx/tCr volumes
[21, 59]. To highlight the sensitivity and the reproducibil-
ity of the method presented here, these metabolite fea-
tures were retrieved in both 2D and 3D maps for all 3
volunteers (fig.4 and 3) with higher contrast of GM com-
pared to WM in tCr and Glu maps. The reconstructed
NAAG maps show a typical presence in central WM as
previously shown in literature [70, 71]. The Cho distribu-
tion exhibits a characteristic presence in WM with high
signal in frontal lobe and low level in occipital lobe.

V. CONCLUSION

An acquisition and reconstruction combination was
proposed for CS accelerated high-resolution 1H-FID-
MRSI at ultra high-field. The reconstruction model in-
cluding LR and TGV constraints enables acceleration by
phase-encoding random undersampling which is demon-
strated for the first time in 3D over human brain, with
little effects on metabolite maps. This MRSI method
grants measurement of high-resolution whole-brain slab
metabolite distributions in short acquisition times: 5 min
for 2D MRSI 2.5 mm resolution and of 20 min for 3D
MRSI at 3.3 mm isotropic.
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