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Abstract

Summary: Designing interventions to control gene regulation necessitates modeling a gene regula-
tory network by a causal graph. Currently, large-scale expression datasets from different conditions,
cell types, disease states and developmental time points are being collected. However, application
of classical causal inference algorithms to infer gene regulatory networks based on such data is still
challenging, requiring high sample sizes and computational resources. Here, we propose an algorithm
that efficiently learns the differences in gene regulatory mechanisms between different conditions. Our
difference causal inference (DCI) algorithm infers changes (i.e., edges that appeared, disappeared or
changed weight) between two causal graphs given gene expression data from the two conditions. This
algorithm is efficient in its use of samples and computation since it infers the differences between
causal graphs directly without estimating each possibly large causal graph separately. We provide
a user-friendly Python implementation of DCI and also enable the user to learn the most robust
difference causal graph across different tuning parameters via stability selection. Finally, we show
how to apply DCI to bulk and single-cell RNA-seq data from different conditions and cell states, and
we also validate our algorithm by predicting the effects of interventions.
Availability and implementation: All algorithms are freely available as a Python package at
http://uhlerlab.github.io/causaldag/dci
Contact: cuhler@mit.edu

1 Introduction

Biological processes from differentiation to disease progression are governed by gene regulatory networks.
Over the past few decades, various methods have been developed for inferring gene regulatory networks
from gene expression data (Wang and Huang, 2014). The majority of methods learn undirected graphs
of interactions between genes such as correlation-based coexpression networks (Langfelder and Horvath,
2008), Gaussian graphical models that capture partial correlations (Friedman et al., 2008), or networks
that measure dependencies between genes using mutual information (Reshef et al., 2011) . However,
the ultimate goal is often to use gene regulatory networks to predict the effect of an intervention (small
molecule, overexpression of a transcription factor, knock-out of a gene, etc.). This cannot be done using
an undirected graph and necessitates modeling a gene regulatory network by a causal (directed) graph.

One of the most common frameworks for representing causal relationships are directed acyclic graphs
(DAGs). A variety of methods including the prominent PC and GES algorithms have been developed
for learning causal graphs from observational data (Glymour et al., 2019). These methods have been
successfully applied to learning (directed) gene regulatory networks on a small number of genes, starting
with a pioneering study by Friedman et al., 2000. However, applying these methods at the whole genome-
level is still challenging due to high sample size and computational requirements of the algorithms.

We address this problem by noting that it is often of interest to learn changes in causal (regulatory)
relationships between two related gene regulatory networks corresponding to different conditions, disease
states, cell types or developmental time points, as opposed to learning the full gene regulatory network
for each condition. This can reduce the high sample and computational requirements of current causal
inference algorithms, since while the full regulatory network is often large and dense, the difference
between two related regulatory networks is often small and sparse. As of now, this problem has only
been addressed in the undirected setting, namely by KLIEP (Liu et al., 2017), DPM (Zhao et al., 2014)
and others (Fukushima, 2013; Lichtblau et al., 2017) that estimate differences between undirected graphs;
for a recent review see Shojaie (2020).
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With the recent advances in high-throughput single-cell RNA-sequencing under different contexts and
cell types (Zheng et al., 2017), there is a growing need for methods that learn changes between gene regu-
latory networks. Causal inference algorithms that infer changes between gene regulatory networks could
for example reveal that a particular gene controls different sets of target genes in different conditions.
While for small number of genes, it is feasible to apply current causal structure discovery algorithms to
learn the causal graphs for each condition seperately and take the difference of the graphs, this approach
is highly inefficient in its use of samples and computation. In this paper, we describe the difference causal
inference (DCI ) algorithm for direct estimation of the difference causal graph based on observational
data from two conditions. For theoretical properties of this algorithm, in particular the proof that DCI
provides consistent estimates of the difference causal graph, and simulations showing that it outper-
forms the naive approach of separate estimation of each causal graph and subsequent computation of
the difference, see Wang et al. (2018). In this paper, we present an easy to use Python package to apply
DCI to gene expression data from different conditions and demonstrate the algorithm’s performance on
predicting the effects of interventions on single-cell RNA-seq data. Importantly, our DCI Python imple-
mentation also allows selecting the most robust difference gene regulatory network based on a collection
of tuning parameters via stability selection (Meinshausen and Bühlmann, 2010). We also include a tuto-
rial and an example use case of DCI on a bulk RNA-seq dataset from two ovarian cancer patient cohorts
with different survival rates from Tothill et al. (2008) at http://uhlerlab.github.io/causaldag/dci tutorial
To seamlessly integrate DCI with other causal inference methods, we incorporated our DCI code into
the larger causaldag package.

2 Difference Causal Inference (DCI) package

DCI takes as input two gene expression matrices X̂(1) and X̂(2) of size n1 × p and n2 × p, where n1 and
n2 denote the number of samples in each dataset and p denotes the number of genes. These matrices
contain the RNA-seq values corresponding to two different conditions, such as healthy and diseased,
different cell types, or different time points. DCI outputs the difference causal graph between the two
conditions, i.e. the edges in the gene regulatory networks that appeared, disappeared or changed weight
between the two conditions (Fig. 1).

The data for each condition is assumed to be generated by a linear structural equation model with
Gaussian noise. More precisely, let G(1) and G(2) denote two DAGs on p nodes with weighted adjacency
matrices B(1) and B(2). Each node j ∈ {1, . . . , p} in the two graphs G(k), k ∈ {1, 2}, is associated with a

random variable X
(k)
j , which is given by a weighted sum of its parents and independent Gaussian noise

ε(k), i.e.,

X
(k)
j =

p∑
i=1

B
(k)
ij Xi + ε

(k)
j .

Figure 1: Overview of DCI algorithm: DCI takes as input two gene expression matrices X1 and X2,
representing two different conditions of interest. The function dci(X1,X2) outputs the difference gene
regulatory network consisting of the causal relationships that appeared, disappeared or changed weight
between the two conditions.
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Given data X̂(1) and X̂(2) from two unknown causal graphs G(1) and G(2), DCI determines their difference,

i.e., edges i → j for which B
(1)
ij 6= B

(2)
ij . DCI consists of three steps described below (for further details

see Supplementary Materials) and in Fig. 1. These steps are implemented in the dci function of the
causaldag package.

Step 1: Initialization with a difference undirected graph. To start with a reduced set of nodes
and edges, DCI is initialized with a difference undirected graph, which represents changes of condi-
tional dependencies among genes between the two conditions, as well as with a node set C, a superset
of the nodes in the difference undirected graph consisting of nodes to be considered as conditioning
sets in the downstream hypothesis tests. The undirected difference graph and the node set C can be
estimated using previous methods such as KLIEP (Liu et al., 2017), which we implemented in the func-
tion dci undirected graph. Alternatively, DCI can be initialized based on a user’s prior biological
knowledge or, if the number of genes to be considered is small, with the complete graph.

Step 2: Estimation of the skeleton of the difference causal graph. The function dci skeleton

removes edges from the difference undirected graph to obtain the skeleton of the difference causal graph

by testing for invariance of regression coefficients. Note that each entry B
(k)
ij corresponds to a particular

regression coefficient βij|S , namely obtained when regressing X
(k)
j on X

(k)
i given the parents of node j

in G(k). Thus, testing whether B
(1)
ij = B

(2)
ij , is equivalent to testing whether there exists a set of nodes

S ⊂ C such that β
(1)
i,j|S = β

(2)
i,j|S . These regression coefficients are estimated from the data X̂(1) and X̂(2)

and invariance of the regression coefficients across k ∈ {1, 2} is tested via an F-test.

Step 3: Orienting edges in the difference causal graph. While not all edge directions in the
difference causal graph are identifiable from observational data, the function dci orient orients all
identifiable edges by testing for invariance of residual variances giving rise to a partially oriented difference
gene regulatory network. For any edge i − j in the undirected graph obtained in Step 2, if there exists

a set of nodes S ⊆ C \ {j} such that the residual variances satisfy σ
(1)
j|S = σ

(2)
j|S , then the edge is directed

as i → j if i ∈ S and j → i otherwise (see Supplementary Materials). The residual variances are again
estimated from the data X̂(1) and X̂(2) and their invariance across k ∈ {1, 2} is tested via an F-test.

Stability selection to obtain robust difference gene regulatory network. DCI requires choosing
hyperparameters for each step, namely the `1 regularization parameter for KLIEP in step (1) and the
significance levels for the hypothesis tests of invariance of regression coefficients in step (2) and residual
variances in step (3). To overcome the difficulty of selecting hyperparameters for model selection, Mein-
shausen and Bühlmann (2010) proposed stability selection, which achieves family-wise error rate control
and has been successfully applied for learning causal graphs in genomics (Meinshausen et al., 2016).
The function dci stability selection implements DCI with stability selection by running the DCI
algorithm across a grid of tuning parameter combinations and bootstrap samples of the datasets X̂(1)

and X̂(2). The results are aggregated and only edges with a stability score above a predefined threshold
are output in the difference causal graph.

3 Applications and Conclusions

We applied DCI to two single-cell gene expression datasets, namely CROP-seq (Datlinger et al., 2017)
and Perturb-seq (Dixit et al., 2016). Both datasets also contain interventional gene expression data from
knockouts, thereby allowing us to assess the performance of DCI. In particular, we applied DCI to the
observational single-cell data and evaluated it using an ROC curve based on the interventional data (see
Supplementary Materials). By applying DCI to the CROP-seq and Perturb-seq data respectively, we
learned the difference gene regulatory network between naive and activated T-cells (SI Fig. S1-S3) as
well as between pre- and post-stimulation of dendritic cells with LPS (SI Fig. S4-S6). In both cases DCI
outperforms the naive approach of estimating two causal graphs separately and taking their difference,
and can provide valuable mechanistic insights into the biological processes of interest.

We developed the DCI package for learning differences between gene regulatory networks based on
gene expression data from two different conditions of interest, such as healthy and diseased, different
cell types or developmental time points. Our package is implemented in Python for ease-of-use and also
includes functionality to ensure that the output difference gene regulatory network is stable and robust
across different hyperparameters and data subsampling.
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Supplementary Note

Difference Causal Inference (DCI) algorithm

In the following, we provide more details regarding the DCI algorithm; for a theoretical analysis of the
algorithm see also [1]. Let G(k) = ([p], E(k)) for k ∈ {1, 2} be a directed acyclic graph (DAG) with nodes
[p] := {1, . . . , p} and directed edges E(k). The DAGs G(1) and G(2) model the gene regulatory networks
in the two conditions of interest. We assume that the two DAGs are consistent with the same ordering,
meaning that there cannot be an edge i → j in G(1) if there is a directed path j → · · · → i in G(2) and
vice-versa. This assumption is reasonable in gene regulatory networks, since genetic interactions may
appear or disappear or change edge weights, but generally do not change directions. For each graph we

associate a random variable X
(k)
i to each node i ∈ [p]. Recall that we consider the setting where we have

data from two conditions and this data is generated by a linear structural equation model

X(k) = B(k)TX(k) + ε(k) for k ∈ {1, 2}, (1)

where X = (X1, · · · , Xp)
T is a random vector, B(k) denotes the weighted adjacency matrix of the DAG

G(k) and ε(k) ∼ N (0,Ω(k)) denotes Gaussian noise with covariance matrix Ω(k) := diag(σ2
1

(k), · · · , σ2
p

(k)).

Given samples X̂(1) ∈ Rn1×p and X̂(2) ∈ Rn2×p from the two models (where n1 and n2 denote the sample
size under each condition), our goal is to estimate the difference-DAG across the two conditions. The

difference-DAG is denoted by ∆ = ([p], E) and contains an edge i→ j ∈ E if and only if B
(1)
ij 6= B

(2)
ij .

Algorithm 1 describes the three steps of our DCI algorithm for computing the difference-DAG. In
the first step, the algorithm is initialized with a difference undirected graph, which we denote by ∆̄,

with edge i − j if and only if Θ
(1)
ij 6= Θ

(2)
ij for i 6= j, where Θ(1) and Θ(2) are the precision matrices

corresponding to the DAGs G(1) and G(2). This is done to remove some edges to reduce the downstream
computational burden. The difference undirected graph can be determined either using previous methods
such as KLIEP [2–6], based on prior biological knowledge, or simply with the complete graph when the
number of considered genes is small. In addition, to reduce the number of downstream hypothesis
tests, the nodes to be considered as conditioning sets can be reduced to the nodes in the difference
undirected graph as well as nodes whose conditional distribution changes between the two conditions,

namely C =
{
i | ∃j ∈ [p] such that Θ

(1)
i,j 6= Θ

(2)
i,j

}
. The reduced node set can be determined from the

output of methods such as KLIEP [2–6], prior biological knowledge, or taken as the set of all nodes when
the number of genes to be considered is small.

In the second step, the skeleton of the difference-DAG, denoted by ∆̃, is estimated via Algorithm 2.

This is done by calculating regression coefficients β
(k)
i,j|S and testing whether they are invariant, i.e. whether

β
(1)
i,j|S =β

(2)
i,j|S , using an F-test. Given i, j ∈ [p] and S ⊆ [p] \ {i, j}, the regression coefficient β

(k)
i,j|S is

defined as the entry in β
(k)
M corresponding to i, where β

(k)
M is the best linear predictor of X

(k)
j given X

(k)
M ,

i.e., the minimizer of E[(X
(k)
j −(β

(k)
M )TX

(k)
M )2] and M := {i}∪S. Hence, β

(k)
i,j|S can be computed in closed

form. Note that B
(k)
ij corresponds to a particular regression coefficient, namely when S = Pa(k)(j) \ {i},

where Pa(k)(j) denotes the parents of node j in G(k). This means that we can determine whether

B
(1)
ij = B

(2)
ij without learning each graph G(k), namely by testing subsets S: if there exists a subset S

such that β
(1)
i,j|S =β

(2)
i,j|S , then B

(1)
ij = B

(2)
ij and hence the edge (i, j) /∈ ∆̃. In fact, it turns out that it is

sufficient to consider conditioning sets S ⊆ C [1].
Finally, in the third step we direct edges in the skeleton of the difference-DAG ∆̃ using Algorithm 3.

Similar to many prominent causal inference algorithms such as the PC [7] and GES [8] algorithms, we
may not be able to determine the directions of all edges in ∆̃, since in general, the difference-DAG ∆ is not
completely identifiable. In fact, we are able to identify the direction of all edges adjacent to nodes whose

internal node variances are unchanged across the two conditions, i.e. for which σ
(1)
i = σ

(2)
i [1]. Hence

the output of the DCI algorithm is a partially directed acyclic graph, which contains both directed
and undirected edges. Edge directions in the difference-DAG are determined by calculating residual

variances (σ
(k)
j|S)2 and testing whether they are invariant, i.e. whether (σ

(1)
j|S)2 = (σ

(2)
j|S)2, again using an

F-test. Given j ∈ [p] and S ⊆ [p] \ {j}, the residual variance (σ
(k)
j|S)2 is defined as the variance of the

regression residual when regressing X
(k)
j onto the random vector X

(k)
S . In fact it holds that σ

(1)
i = σ

(2)
i if

and only if there exists a subset S ⊆ C \ {i} such that σ
(1)
i|S = σ

(2)
i|S and if i→ j in ∆ then j /∈ S, whereas

1
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Algorithm 1 Difference Causal Inference (DCI) algorithm (dci function)

Input: Sample data X̂(1), X̂(2).
Output: Estimated difference-DAG ∆̂.

Initialize with difference undirected graph ∆̄ and conditioning set C.
Estimate the skeleton of the difference-DAG ∆̃ using Algorithm 2.
Direct edges in ∆̃ using Algorithm 3 to obtain ∆̂.

Algorithm 2 Estimating skeleton of the difference-DAG (dci skeleton function)

Input: Sample data X̂(1), X̂(2), estimated difference undirected graph ∆̄ and conditioning set C.
Output: Estimated skeleton ∆̃.

Set ∆̃ := ∆̄;
for each edge i− j in ∆̃ do

If ∃S ⊆ C \ {i, j} such that β
(k)
i,j|S is invariant across k = {1, 2}, delete i− j in ∆̃ and continue to the

next edge. Otherwise, continue.
end for

Algorithm 3 Directing edges in the difference-DAG (dci orient function)

Input: Sample data X̂(1), X̂(2), estimated skeleton ∆̃ and conditioning set C.
Output: Estimated difference-DAG ∆̂.

Set ∆̂ := ∅;
for each node j incident to at least one undirected edge in ∆̃ do

If ∃S ⊆ C \ {j} such that σ
(k)
j|S is invariant across k = {1, 2}, add i→ j to ∆̂ for all i ∈ S, and add

j → i to ∆̂ for all i 6∈ S and continue to the next node. Otherwise, add i− j to ∆̂.
end for
Orient as many undirected edges as possible via graph traversal using the following rule:

Orient i− j as i→ j whenever there is a chain i→ `1 → · · · → `t → j.

if j → i in ∆ then j ∈ S [1]. Hence determining conditioning sets that lead to the invariance of residual
variances can be used to orient some of the edges in the difference-DAG ∆.

DCI with stability selection

Running DCI requires choosing several hyperparameters, namely the `1-regularizer for estimating the
difference undirected graph via KLIEP [3] as well as the significance levels for hypothesis testing of
invariance of regression coefficients as well as residual variances. We implemented DCI with stability
selection to address the issue of choosing the correct hyperparameters. Stability selection was introduced
by [9] and has been successfully applied in tandem with other causal inference methods [10]. The idea
behind stability selection is to choose the most stable estimate across different hyperparameters as
opposed to focusing on choosing the right value for the hyperparameters.

Algorithm 4 outlines the methodology for running DCI with stability selection. Let Λ denote the
set of considered hyperparameter values consisting of `1 regularizers for KLIEP, significance levels for
hypothesis testing of invariance of regression coefficients and significance levels for hypothesis testing
of invariance of residual variances. Given a particular λ ∈ Λ, we can run DCI (Algorithm 1) and
obtain the corresponding estimated difference causal graph ∆̂λ. Stability selection relies on estimating
the probability of selection of each edge Π̂λ

k by running the DCI algorithm on subsamples of the data.
Aggregating selection probabilities across different tuning parameters λ ∈ Λ, we keep edges with high
selection probability as the stable set of estimated edges in the difference-DAG ∆̂stable.

Evaluation on real data

We evaluate DCI for learning the causal difference gene regulatory network on single-cell gene expression
data and quantify its performance in predicting the effects of gene perturbations. Note that a major
advantage of our work is the ability to learn a causal as opposed to an undirected graph, which enables
us to predict the effects of interventions on genes and evaluate them against true effects of interventions,
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Algorithm 4 DCI with stability selection (dci stability selection function)

Input: Sample data X̂(1), X̂(2), set of tuning parameters Λ, number of subsamples N of size given
by the fraction f of all samples, and threshold πthr for choosing stable variables.
Output: Stable estimate of difference-DAG ∆̂stable.

for each λ in Λ do
for each i in 1, . . . , N do

Generate subsamples of the two datasets, X̂
(1)
(i) and X̂

(2)
(i) (without replacement) of size defined by

the fraction f of the full samples size.

Run Algorithm 1 on X̂
(1)
(i) and X̂

(2)
(i) with hyperparameters λ to obtain ∆̂λ

(i).

end for
Calculate selection probability for each edge k by Π̂λ

k = 1
N

∑N
i=1 I{k ∈ ∆̂λ

(i)}.
end for
Construct stable estimate of difference-DAG ∆̂stable = {k : max

λ∈Λ
Π̂λ
k ≥ πthr}.

measured experimentally. In the following, we assess the performance of DCI on two datasets collected
via CROP-seq [11] and Perturb-seq [12]. Both of these experimental techniques collect, in a pooled
fashion, single-cell gene expression data with no interventions (observational data) as well as single-cell
gene expression data where some genes were knocked out via CRISPR/Cas9 (interventional data). We
use the observational data to learn a causal difference gene regulatory network via DCI and evaluate this
graph against the held-out CRISPR/Cas9 gene knockouts, similar in spirit to prior evaluations of causal
inference methods [13].

CROP-seq: Naive versus activated T cells

We test our method on gene expression data collected via CROP-seq for naive and activated Jurkat T
cells. In particular, we use DCI to learn the differences in the gene regulatory networks as a result of T-cell
activation. The CROP-seq data includes 615 observational naive Jurkat T cells and 1320 observational
activated Jurkat T cells. As in the original CROP-seq study [11], we normalize the gene expression of
each cell by the total number of reads corresponding to the cell, scale expression by 104 and apply a
log2(x+ 1) transformation to the data. The data is mean-centered prior to applying our algorithm. We
follow [11] in focusing on genes most relevant to T-cell activation and keep genes that have non-zero
variance, resulting in 31 genes.

We apply DCI on the observational naive and activated gene expression data to directly obtain
the causal difference gene regulatory network (difference-DAG), which contains edges that appeared,
disappeared or changed weight between the two cell states. We report the performance of DCI when
initialized in the complete graph as well as when initialized with the difference undirected graph estimated
via KLIEP (`1 regularization set to 0.005). Additionally, we compared the performance of DCI to the
naive approach of running classical causal inference algorithms such as PC [7] or GES [8] on each dataset
(naive and activated) separately, obtaining two causal graphs and then taking the difference. We consider
an edge to be in the difference-DAG if the edge was directed in one causal graph and absent in the other
causal graph.

As previously mentioned, we can use gene knockouts, collected as part of the CROP-seq study for
evaluation of the causal difference gene regulatory network. Note that if perturbing a gene affected
the gene expression distribution of another gene, this means that the perturbed gene is upstream of the
affected gene in the gene regulatory network. In the following we describe how we estimate the differences
in the effects of CRISPR/Cas9 perturbations on genes between the two states (naive and activated) to
construct an ROC curve for evaluating the DCI algorithm versus naive applications of PC and GES.

First, for each condition (naive and activated), we separately obtain a matrix that describes which
gene knockouts had an effect on which genes (Figures S1a and S1b). Then, we take the difference
between these matrices to determine the differences in the effects of perturbations (Figure S1c). In order
to construct the matrices in Figures S1a and S1b, for each condition, we estimate the impact of each gene
deletion j ∈ {1, . . . , d} on each of the measured genes i ∈ {1, . . . , p} by testing whether the observational
distribution (no intervention) of the measured gene i is significantly different from the interventional
distribution of the measured gene i when gene j was deleted using a Wilcoxon rank-sum test. We form a
p× d matrix of p-values, Q, from the Wilcoxon rank-sum tests. Next, each column j in Q is thresholded
using the entry qjj , which is the p-value obtained by comparing the distribution of the gene expression
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level of a deleted gene versus its distribution without intervention. The rationale is that knocking out a
particular gene should result in a change in its own gene expression distribution and can be used as a
baseline to threshold the other entries in the column. In particular, we conclude that qij is significant
if and only if qij ≤ qjj . After thresholding the matrix Q in this manner, we obtain the binary matrices
in Figures S1a and S1b, which summarize the effects of the interventions. By forming the difference
of these binary matrices we obtain the binary matrix Q∆ in Figure S1c. Since not all CRISPR/Cas9
knockouts were effective, here we focused our analysis on the top most effective interventions, which were
prioritized based on the maximum qjj p-value (taken over two conditions), using the mean p-value as
the cutoff to filter interventions.

We use the matrix of differences in the effects of interventions to evaluate DCI, PC and GES by
constructing an ROC curve. If the predicted difference-DAG has a directed edge from j to i, we count
this edge as a true positive if Q∆

ij = 1, i.e. there was a difference in the effect of knocking out gene j
on gene i between the two conditions. If the predicted difference-DAG has a directed edge from j → i
but Q∆

ij = 0, the edge is counted as a false positive. Note that this definition of a false positive is overly

conservative, since we may have Q∆
ij = 0 if qij is significant in both matrices, but the magnitude of

the effect changes. In other words, Q∆
ij = 1 only captures additions/deletions of edges, but does not

capture changes in edge weights. We construct an ROC curve by varying the parameters of DCI, PC
and GES. The ROC curve in Figure S2 shows that DCI outperforms PC and GES in predicting the
effects of interventions on this single-cell gene expression dataset. In Figure S3, we include examples of
the estimated difference gene regulatory networks inferred via DCI (our algorithm) and GES (the best
performing baseline).

Perturb-seq: Dendritic cells at 0 versus 3 hours post-stimulation

We perform a similar evaluation of DCI on gene expression data collected as part of the Perturb-seq
dataset [12]. Gene expression data was collected from bone-marrow derived dendritic cells (BMDCs) pre-
stimulation (0 hours) and after stimulation with LPS (3 hours). We applied DCI to learn the difference
gene regulatory network between these two time points. We used the same procedure for pre-processing
Perturb-seq data as we used for CROP-seq. Additionally, we filtered cells for quality, only keeping cells
with at least two nonzero counts (CROP-seq dataset already satisfied this filtering constraint). The
filtered Perturb-seq data includes 940 observational cells collected at 0 hours and 990 observational cells
collected at 3 hours. We followed [12] in focusing on 24 transcription factors that are important for
dendritic cell regulation.

Using the same procedure as performed on the CROP-seq dataset, we constructed the binary matrices
describing the effects of gene deletions on measured genes for the two time points (0 and 3 hours)
separately, shown in Figures S4a and S4b, and then determined the difference in the effects of the
interventions between the two time points in Figure S4c. As above, we constructed an ROC curve,
taking the differences in the effects of interventions as the ground truth. The ROC curve (Figure S5)
shows that in the majority of settings, DCI outperforms the naive approach of estimating two causal
graphs separately via PC or GES and taking the difference of the output graph. Figure S6 shows examples
of the estimated difference gene regulatory networks inferred via DCI (our algorithm) and GES (best
performing baseline).
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SI Figures

(a) (b) (c)

Fig. S1: Effects of gene deletions estimated from CROP-seq data; (a) naive T cells, (b) activated T cells,
and (c) the difference between the binary matrices in (a) and (b), i.e., the difference in the effects of each
gene deletion on the measured genes between naive and activated T cells; this binary matrix is taken to
be the ground truth for constructing ROC curves.

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.13.093765doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.093765
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S2: ROC plot evaluating DCI (initialized in the undirected difference graph estimated via KLIEP
as well as in the complete graph), GES and PC on the CROP-seq data for predicting the differences in
the effects of gene knockouts.
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(a)

(b)

Fig. S3: Examples of difference gene regulatory networks between naive and activated Jurkat T cells,
estimated from the CROP-seq data. Difference gene regulatory network inferred via (a) our algorithm,
DCI, initialized with KLIEP, which directly learns the difference causal graph from two datasets and
(b) baseline causal structure discovery algorithm, GES, which estimates two gene regulatory networks
separately and then takes the difference. Blue edges indicate true positives and pink edges indicate false
positives. Black edges are the edges inferred to be in the difference gene regulatory network for which
ground truth is not available. Graphs were chosen such that the number of false positives is the same
across the two methods (16 false positives).
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(a) (b) (c)

Fig. S4: Effects of gene deletions estimated from Perturb-seq data; (a) before stimulation with LPS, (b)
after stimulation with LPS, and (c) the difference between the binary matrices in (a) and (b), i.e., the
difference in the effects of each gene deletion on the measured genes before and after stimulation with
LPS; this binary matrix is taken to be the ground truth for constructing ROC curves.
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Fig. S5: ROC plot evaluating DCI (initialized in the undirected difference graph estimated via KLIEP
as well as in the complete graph), GES and PC on the Perturb-seq data for predicting the differences in
the effects of gene knockouts.
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(a)

(b)

Fig. S6: Examples of difference gene regulatory networks of dendritic cells before and after stimulation
with LPS, estimated from the Perturb-seq data. Difference gene regulatory network inferred via (a)
our algorithm, DCI, initialized with KLIEP, which directly learns the difference causal graph from
two datasets and (b) baseline causal structure discovery algorithm, GES, which estimates two gene
regulatory networks separately and then takes the difference. Blue edges indicate true positives and pink
edges indicate false positives. Black edges are the edges inferred to be in the difference gene regulatory
network for which ground truth is not available. Graphs were chosen such that the number of false
positives is the same across the two methods (5 false positives).
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