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Abstract 

Antibiotic resistance is becoming a common problem in health care, veterinary 

medicine, agriculture or food industry. Multi-resistant bacterial strains occur in all regions of 

the world. One of the possible future solutions is the use of bacteriophages in therapy. 

Bacteriophages are the most abundant form of life in the biosphere, so it is highly likely that 

we can purify a specific phage against each target bacterium. A standard identification and 

consistent characterization of individual bacteriophages include host-specificity of viruses. 

Unfortunately, these routine methods are also considerably time consuming.  With the advent 

of new modern sequencing methods, scientists are able to obtain multiple phage sequences 

from samples and identify more phages. However there appeared a problem with unknown host 

specificity of identified phages. The solution to this problem may be to use a bioinformatic 

approach in the form of prediction software capable to determine a bacterial host based on the 

phage whole-genome sequence. The result of our research is the machine learning algorithm 

based tool called PHERI. PHERI predicts suitable bacterial host genus for purification of 

individual viruses from different samples. In addition, the tool can identify and highlight 

protein sequences that are important for host selection. 
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Introduction 

Bacterial infections affect public health throughout human history. The introduction of 

antibiotics reduced human morbidity and mortality caused by infectious diseases dramatically. 

However, the emergence of multidrug-resistant pathogenic bacteria reverted the situation once 

again. Moreover, the situation of multidrug resistance is getting worse. WHO calls attention to 

the infections especially by Klebsiella pneumoniae, Mycobacterium tuberculosis, and 

Neisseria gonorrhoeae, blood poisoning and foodborne diseases, where these infections are 

becoming harder and sometimes nearly impossible to treat [1].  Moreover, antibiotic resistance 

is now recorded in every country [2]. One of the possible solutions is the use of bacteriophages 

in therapy. Phages have relatively simple structures composed of proteins (approx.60%) that 

encapsulate a DNA or RNA genome (40%)[3, 4]. Bacteriophages are the most abundant entities 

in the biosphere, with an estimated 1031-1032 phages in the world at any given time, moreover 

play a crucial role in regulating bacterial populations, for example, phages are responsible for 

the death of approximately 20%-40% of all marine surface bacteria every 24 h [5, 6] [7]. They 

are ubiquitously and naturally distributed in all environments populated by bacterial hosts, 

including soil, water, air, and the intestines of humans and other animals [7–10]. The idea of 

using bacteriophages in therapy is not new. Phage therapy has been used in the countries of the 

former Soviet Union for decades [11][12], but in the last few years, it has begun to be applied 

in Western countries as well. Bacteriophages have proved their usefulness not only in animal 

models such as mice [13, 14], cattle [15, 16], chicken [17], zebrafish [18], or dog [19], but also 

when used in human. Human phage therapy has gained reliance through research projects such 

as PhagoBurn [20] or practical experience in Georgia [21], leading to the first cases of phage 

use on patients in Western countries. In recent years, the phage therapy has been successfully 

used for the intravenous treatment of bacterial infections in cystic fibrosis patients in the US 

and Georgia and has been used against  multi-drug resistant pathogens such as Achromobacter 
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xylosoxidans, Pseudomonas aeruginosa, Mycobacterium abscessus and Burkholderia dolosa 

[22] [23] [24] [25].  In addition, in the treatment of Mycobacterium abscessus, the patient was 

treated with a cocktail of three phages, of which one was naturally lytic, but the other two were 

engineered to increase their lysis efficiency by deleting the receptor gene or its HTH domain 

[25]. All these studies used well-characterized phages from collections, with known host, 

which is one of the basic conditions for their successful practical use. Most of the recently 

characterized phages were amplified on the host, purified and subsequently sequenced. 

However, the introduction of high throughput sequencing allowed us to examine metagenomic 

colonies of bacteria or viruses right from the environment. This method has the potential to 

discover a huge amount of new species, which were not cultivable before. However, it also 

produces more and more phage genomic sequence data without an identified host. Luckily, the 

host range of phages tends to be relatively narrow, often consisting of only a subset of strains 

making up a single bacterial species [26]. The problem of unknown hosts can be solved or at 

least alleviated by a bioinformatic approach. Successful use of a bioinformatic approach can 

be challenging. For a successful phage infection, it need not only adsorb to the host surface and 

insert its genetic information, but it also needs to overcome its immune response and ensure 

successful transcription and translation. It is therefore important to remember changes in a 

bacterial surface structures and thus in the presence of phage receptors on individual strains 

membranes within the species [27]. Equally important is the perception of the bacterial host 

immune response as restriction-modification systems [28, 29], CRISPR mechanism [30] or 

abortive systems [31][32]. Also important are factors affecting phage gene transcription and 

translation, such as the availability of specific tRNA or sufficient amino acids. However, the 

change in a customary specificity may also be due to overcoming the host response, such as in 

obtaining the resistance of the CRISPR system [33]. All these parameters can negatively affect 

the host prediction. Nevertheless, several groups have already attempted to bioinformatically 
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elucidate the phage-host interaction using a variety of approaches and tools such as 

Virsorter[34], MGTAXA[34, 35] or HostPhinder [36]. Our goal was also to create a 

bioinformatic tool for predicting the host from the whole genome sequence, but we chose the 

machine learning algorithms approach.  The use of machine learning algorithms has proved to 

be suitable for phage biology, as evidenced by their use in the search for phage virions[37], 

improved phage genome annotation[38] as well as phage classification[39, 40]. Our pipeline, 

PHERI, re-annotates phage genomes, uses TRIBE-MCL for rapid and accurate clustering of 

annotated protein sequences [41, 42] and binary decision tree classifier to predict phage host 

genus. The rationale behind our method lies in a close relationship between the genomic 

sequence of a gene and biological function of translated protein. Even, if the function of the 

gene is unknown, the presence of similar sequences in the phages infecting the same hosts 

indicate that mentioned sequences are related to the host specificity. Presence of such 

sequences in the tested genome may resolve potential host.  

Material and Methods 

Collection of phage sequences 

We downloaded genomic sequences of phages from three publicly available databases 

using automated in-house scripts. Database consisted of 6,091 records from GenBank [43], 

2,070 records from ViralZone [44, 45] and 2,567 records from PhageDB [46]. Although these 

databases cover the majority of currently sequenced and published phages, we made 

downloading step easily extensible for adding new sources of phage sequences that may 

emerge in the future. Downloaded records were highly redundant, mainly because a lot of 

phage sequences were simultaneously presented in more databases. Therefore, we merged 

downloaded datasets together, and removed duplicated records resulting in a non-redundant 

dataset of 7,064 phage sequences capable to infect 183 bacterial genera (Fig.1). The hostname 
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and taxonomy for each sequence were obtained and unified according to NCBI taxonomy to 

allow computer processing. The phages with hosts from the 50 most abundant bacteria species 

were selected for further analysis. The phages outside this group were discarded due to an 

insufficient number of samples for machine learning analysis. Genomes were further divided 

into two distinct datasets; the training set with 4,723 (80%) sequences and the testing set with 

1,202 (20%) sequences. Sequences in the training set were utilized to identify clusters of 

common gene sequences and train parameters of the classifier. The accuracy of the method has 

been validated on sequences from the testing set (Tab. 1). 

 

Figure 1:  

Composition of hosts infected by bacteriophages from the PHERI database. The database 

is made up of bacteriophages infecting at least one representative of 183 bacterial genera  
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Extraction and annotation of genes 

Phage genome sequences were annotated with locations of genes and their biological 

function. Although gene annotations of particular genomes are part of genomic records in the 

used databases, we decided to annotate sequences from scratch. This way we ensured 

consistency of annotations across our data with up-to-date knowledge. We used publicly 

available pipeline called Prokka [47] to identify and annotate genes. First, coordinates of 

coding DNA sequences (CDS) were found with Prodigal tool [48]. After the locations of genes 

are predicted, Prokka can start to annotate functions of all CDSs. This is usually done through 

comparison of a sequence to several databases of sequences with an experimentally determined 

function [45, 49] or pre-processed protein families and domains [45, 50, 51]. 

Clustering of gene sequences 

We compared extracted genes to identify clusters of recurrent sequences, presumably 

with the same biological function. Since thorough pairwise comparison of all sequences in the 

training set would be overly time consuming, we employed a two-step heuristic approach. At 

first, genome pairs with at least some local sequence similarity were recovered using an 

optimized implementation of the Blast alignment tool [52], called CrocoBLAST [53]. Only 

they underwent thorough pairwise alignment [54] to retrieve similarity scores. The rest of the 

pairs without any significant local similarity were scored with the lowest assumed similarity 

value. Based on summarized similarity scores we identified sequence clusters using the Markov 

Cluster Algorithm implemented in package MCL [55]. We recovered 32,281 gene clusters. A 

substantial portion of clusters was represented by a small number of gene sequences. We, 

therefore, removed all clusters present in less than 1% of phages as these clusters do not contain 

enough information to greatly help the classifier. In the result, we obtained 1,965 clusters that 

were used further in the classification. 
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Training classification model 

We trained a binary decision tree classifier [56] for each bacterial host from the dataset 

separately, since united classifier for all potential hosts was too complex for coherent 

interpretation. In addition, the phage sequence may be labelled with multiple bacterial hosts. 

The separate classification allows to label less-specific phages with multiple admissible hosts. 

At first, phage sequences from the training set were transformed to the reduced integer vector 

representation, where value ai,j represents a number of  genes from cluster j belonging to phage 

i. For each host, we trained a classifier to predict if an input vector represents a phage that can 

infect given host. Each node in the resulting decision tree represents a single gene cluster with 

informative value regarding a phage specificity. Presence or absence of such gene guides 

decision along the tree. Each informative cluster may be annotated with biological function to 

improve the interpretation of the decision process. Gene clusters without known function are 

good candidates for follow-up experimental evaluation. 

Classifying novel phage sequence 

A novel phage genome sequence is classified using similar steps. At first, gene 

sequences are identified using Prokka. Then, collected gene sequences are compared with the 

gene clusters using Blast. Genes with significant matches with any sequence from a cluster are 

assumed as members of clusters. Finally, genes are transformed into a reduced vector 

representation. The vector is labelled with all trained classifiers. All bacteria with positive 

classification are assumed as potential hosts for the phage.  

 

Bacterial strains and growth conditions 

All bacterial strains used in this study were isolated from clinical or food samples in 

our laboratory or were obtained from the collections of Nottingham Trent University, UK, the 
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Belgian Coordinated Collections of Microorganisms, the Czech Collection of Microorganisms 

or from the Slovak Food Research Institute.  Luria-Bertani (LB) broth and LB agar were the 

general-purpose media used to cultivate strains. 

 

Isolation of bacteriophages 

Bacteriophages vB_EcoM_VP1, vB-EcoM_KMB43, vB_KpnP_VP3, vB_EcoP_VP5, 

PetSE1 and Dev-CS701, were isolated from a wastewater samples from wastewater treatment 

plants in Bratislava, Slovakia. Wastewater was sterilized by passage through a 22-μm filter and 

mixed with an equal volume of twofold concentrated LB medium and up to 1% of overnight 

bacterial culture. The inoculated mixture was cultivated overnight at 37 °C with shaking. 

Single-species phages were isolated by three repeated isolations from single plaques on double 

agar followed by ultracentrifugation in the CsCl gradient.[57] 

 

The Plaque assay and host range 

The 200μl overnight bacterial culture was supplemented with 10 μl of 1 M CaCl2 and 

10 μl of 1 M MgCl2, mixed with 5 ml of top agar (0.2% peptone, 0.7% NaCl and 0.7% agar), 

and poured onto an LB agar plate. 10 μl of the appropriate bacteriophage suspension (102-1010 

PFU/ml) was spotted onto the plate and incubated overnight. Alternatively, 20 μl of 

bacteriophage suspension was mixed with 200 μl of overnight bacterial culture and with 5 ml 

of top agar and poured onto the LB agar. After overnight cultivation at 37 °C the plaques were 

counted. The strain C.sakazakii NTU701 was used as a reference for determination of the 

efficiency of plating (EOP) for phage Dev-CS701. 

 

The Phage adsorption 
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One 180 μl overnight bacterial culture (OD600 =1) was mixed with 20 μl of phage 

suspension (108 PFU/ml; the multiplicity of infection = 0.001) at 37 °C. After 10 min, 10μl of 

the sample was diluted in 0.99 ml of cold SM buffer (100 mM NaCl, 8 mM MgSO4, 50 mM 

Tris-HCl, pH 7.5, 0.002% gelatin) and centrifuged. Unadsorbed phages from supernatants were 

counted by plaque assay, and the amount of phage adsorbed was calculated as the percentage 

of cell-bound phage. The measurements were repeated in triplicate. 

 

Results 

Developing PHERI method 

The method uses a reference database that we made from unique phage sequences of 

publicly available databases GenBank, ViralZone and PhagesDB. The python library scikit-

learn [58] was used for principal component analysis. Reduced representation of phages in the 

form of a binary matrix was used as an input. First few principal components were used to 

create plots in python library matplotlib. In the Figure 2 we can see data visualized with the 

principal component one on the x-axis and the principal component two on the y-axis. Each 

data point represents one phage record and the color of the particular data point corresponds to 

genus of that phage. Most phage records are located around the centre, with some distinct 

groups of Mycobacterium and Staphylococcus phages outside the centre. Although this could 

suggest difficulties with distinguishing different genera, it was not the case as the first two 

principal components retained less than 21\% of dataset variability. Therefore, we assumed a 

binary representation of phages is reasonable and proceeded with a different method of 

analysis.  
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Figure 2: Principal component analysis: first two principal components, PC1 (11.57% of 

variability) on the x-axis, PC2 (9.19% of variability) on the y-axis 

 

Our training dataset consisted of a matrix with 4723 rows, representing phages and 

32281 columns, representing gene clusters. This high dimensionality of our data could lead to 

the increased probability of overfitting of models on data. To address this concern, we decided 

to perform feature selection as a process of removing dimensions with low importance from 

the dataset. The reason to prefer feature selection over feature extraction methods as PCA 

presented in the previous section was that we wanted our tree models to be representable in 

terms of important clusters rather than in terms of principal components. Because we expected 

a lot of clusters with small number of genes, our choice for feature selection method was the 

\emph{Variance Threshold}. The Variance Threshold method is a simple method that removes 
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columns with variance under certain threshold. With this technique, all columns in the matrix 

with ones in more than 99\% of cases or with zeros in more than 99\% of cases were removed. 

The reduced matrix had 4723 rows and 1965 columns.  

 For decision tree development, Decision Tree Classifier from python library scikit-learn was 

used. For each group of phages with hosts from selected genera, we created one model. Each 

of those models was trained to answer a question, whether one particular phage was able to 

infect bacteria from a particular genus. Models were trained with reduced matrix used as 

features. The ability to infect a particular genus was used as labels. To prevent overfitting of 

our trees, the parameter min_impurity_split=0.03 was used.  This enabled a threshold for 

splitting leaves and therefore only nodes with an impurity index greater than 0.03 were divided. 

The threshold 0.03 was determined empirically. Lower values created a tree with many nodes, 

where the risk of overfitting was high and greater values did not have enough nodes to maintain 

a model’s accuracy. With this approach a model for each of our 50 selected host genera was 

created and visualized with a python library graphviz. For classification, we expected to have 

complete sequence of bacteriophage.  

 

Host prediction evaluation  

To examine accuracy of our models, all bacteriophages from our test dataset were 

classified. Test dataset contained 1,202 phage records (Tab.1). Resulting predictions were 

aggregated and the number of correctly predicted (TP + TN), false-positive (FP), and false-

negative (FN), sensitivity (TPR = TP/P), specificity (TNR = TN/N) and informedness (BM = 

TPR + TNR - 1) was recorded. From the identified values, the accuracy, sensitivity, specificity 

and informedness prediction for 50 bacterial genera with the highest number of infecting 

phages was determined. PHERI best predicted a host for bacteriophages infecting Leuconostoc, 

Reugenia and Helicobacter. Accuracy, sensitivity and specificity equal to or close to 100%. At 
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the opposite end of the prediction accuracy spectrum were bacteriophages infecting the genera 

Stenotrophomonas, Citrobacter and Mycobacterium (Fig. 3).  The complete documentation as 

well as the application itself can be downloaded here (https://hub.docker.com/r/andynet/pheri. 

). The source code of the tool can be found here (https://github.com/andynet/pheri. ).PHERI  

 

  
 

Figure 3: Informedness of PHERI host prediction. Bacterial families were divided into three 

groups, according to the number of infecting phages in the database, more than 100, more than 

50 and more than 10. The value Informedness estimates the probability of an informed decision, 

the closer the values are to one, the more credible the prediction is. 
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Table 1: The accuracy of the method validated on phage sequences from the testing set  

Test dataset n=1202 t_pos t_neg f_pos f_neg  t_pos t_neg f_pos f_neg 

Leuconostoc 4 1198 0 0 Escherichia 82 1044 31 45 

Ruegeria 3 1197 2 0 Enterococcus 6 1189 3 4 

Helicobacter 6 1194 2 0 Listeria 4 1195 0 3 

Paenibacillus 6 1192 4 0 Erwinia 5 1192 1 4 

Cutibacterium 25 1173 4 0 Campylobacter 8 1180 7 7 

Moraxella 7 1190 5 0 Salmonella 20 1147 13 22 

Synechococcus 29 1166 7 0 Lactobacillus 5 1185 6 6 

Lactococcus 47 1145 9 1 Clostridioides 2 1197 0 3 

Streptococcus 39 1152 10 1 Clostridium 2 1195 2 3 

Mycolicibacterium 320 847 33 2 Yersinia 2 1192 5 3 

Staphylococcus 37 1155 8 2 Vibrio 13 1163 6 20 

Arthrobacter 45 1150 4 3 Rhizobium 1 1198 1 2 

Rhodococcus 11 1189 1 1 Klebsiella 5 1176 8 13 

Microbacterium 21 1171 8 2 Xanthomonas 1 1194 3 4 

Bacillus 32 1156 11 3 Cronobacter 1 1193 4 4 

Gordonia 55 1135 5 7 Pectobacterium 1 1194 2 5 

Flavobacterium 6 1194 1 1 Pseudoalteromonas 1 1192 4 5 

Acinetobacter 9 1188 3 2 Brucella 1 1194 1 6 

Pseudomonas 46 1129 16 11 Ralstonia 1 1193 2 6 

Aeromonas 7 1190 3 2 Cellulophaga 1 1193 2 6 

Corynebacterium 3 1194 4 1 Burkholderia 1 1191 4 6 

Caulobacter 3 1193 5 1 Shigella 1 1184 7 10 

Proteus 2 1199 0 1 Stenotrophomonas 0 1199 0 3 

Mannheimia 2 1197 2 1 Citrobacter 0 1196 1 5 

Streptomyces 23 1164 3 12 Mycobacterium 0 1196 4 2 
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Host prediction for new isolated bacteriophages 

The functionality of the tool was also verified by determining the host of phages isolated 

in our lab and were not added to the public databases. Tested bacteriophages were isolated from 

wastewater from Bratislava, Slovakia. Their host specificity, as well as whole-genome 

sequence, was previously determined using standard wet science methods. The bacterial host 

genus for five out of six phages was successfully predicted using the PHERI method. However, 

for the DevCS-701 phage, PHERI determined different bacterial genus (Tab. 2). According to 

laboratory tests, bacteriophage Dev-CS701 infects strains from the genus Cronobacter, 

although PHERI predicted Citrobacter genus as the most likely candidate.  For this reason, the 

host panel was expanded to include Citrobacter strains and specificity was re-established. 

Extended host panel proved PHERI prediction since the Dev-CS701 phage infected a 

representative of the genus Citrobacter, namely Citrobacter gillenii CCM 4711. However, the 

bacteriophage was not able to infect all Citrobacter strains. For this reason, we also examined 

the bacteriophage adsorption rate to the tested isolates. Dev-CS701 was able to bind to six out 

of seven Cronobacter strains and two out of four Citrobacter strains as well. Other strains did 

not reach high values, but the increased rate of adsorption on Enterobacter strains are also 

interesting (Fig. 4). Despite partial proof of the accuracy of the prediction, we decided to 

determine the cause of the selection of the genus Citrobacter instead of the genus Cronobacter 

by examining the decision trees. Phage contains sequences classified into clusters from both 

Citrobacter and Cronobacter decision trees, actually clusters 54 and 170 were found in both 

trees. In total, the phage contained six sequences that were classified in five clusters for both 

decision trees. However, PHERI was able to classified phage only according to the Citrobacter 

decision tree. 
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Table2. Host prediction for newly isolated and sequenced phages from Slovakia. 

Bacteriophage Closest relative  

(accession number) 

Real host PHERI prediction 

Dev-CS701 vB_CsaM_leB (KX431559.1) Cronobacter Citrobacter 

vB_EcoM_VP1 vB_EcoM_JS09 (KF582788) E.coli Escherichia 

vB-EcoM_KMB43 Rb49 like virus (AY343333) E.coli Escherichia 

vB_KpnP_VP3 KPV811(KY000081) Klebsiella Klebsiella 

vB_EcoP_VP5  64795_ec1(KU927499) E.coli Escherichia 

PetSE1 vB_SenS-Ent1(NC_019539.1) Salmonella Salmonella 

 

 

 

  
 

Figure 4: Effectivity of plating and adsorption rate of DevCS701 phage on various hosts. 
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Discussion 

The bacteriophages research could solve many of the problems with resistant bacteria 

in medicine, veterinary, food and other industries. One of the basic criteria for bacteriophage 

utilization is the knowledge of their whole genome sequence as well as the host specificity 

[59][60]. The classic bacteriophage characterization methods were based on phage studies with 

a known host range and subsequent sequencing, but with the advent of new massively parallel 

sequencing methods, the procedures often reversed. In addition, it is also possible to identify 

bacteriophages that infect non-cultivable bacteria, the so-called “bacterial dark matter”. Our 

studies have been previously focused on the identification of specific bacteriophages capable 

to infect foodborne pathogens [61, 62]. However, by exploring new possibilities for phage 

identification, we obtained metagenomic data containing bacteriophages without a known host. 

Therefore, we developed a bioinformatics tool based on machine learning algorithms for 

predicting phage bacterial host genus from the whole-genome sequences, PHERI. A couple of 

groups have already tested the idea of using a bioinformatic approach to identify phage hosts. 

One possibility of identifying a host without cultivation has been described by Martínez-Garcia 

et al.. They retrieved genomic content of individual cells from an environmental sample using 

single-cell genomic technologies, then hybridized against a set of phage genomes from the 

same sample, immobilized on a microarray and sequenced positive hybridization cases. Using 

this method, they were able to pinpoint viruses infecting the ubiquitous hyperhalophilic 

Nanohaloarchaeota, included in the so-called ‘microbial dark matter’[63]  Another approach 

of the virus-host adaptation analysis was chosen by Roux et al., They developed a 

bioinformatics tool for virus sequence identification. VirSorter identified prophage sequences 

through a combination of detection of hallmarks viral genes, enrichment in viral-like genes, 

depletion in PFAM affiliated genes, enrichment in uncharacterized genes, enrichment in short 

genes and depletion in strand switching [34]. This tool was able to identify 12,498 virus-host 
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linkages from almost 15 000 bacterial and archeal genomes. Identified prophage sequences 

came from 5492 microbial genomes, and provided first viral sequences for 13 new bacterial 

phyla. In their study, they also analysed the virus-host adaptation in compositions in terms of 

nucleotide frequency and codon usage showing the strongest signal of adaptation to the host 

genome given by tetranucleotide frequency (TNF)[64]. Another classification method to 

predict the taxonomy of bacterial hosts for uncharacterized viral metagenomic sequences, that 

does not rely on homology or sequence alignment, was developed by Willianson et al. In their 

study explaining the composition of the marine virome in the Indian Ocean, they also described 

the bioinformatic tool MGTAXA, which links phage sequences to the highest scoring bacterial 

taxonomic model based on polynucleotide genome composition similarity between the virus 

and host genomes[35]. An excellent tool for host prediction is also HostPhinder created by 

Villarroel et. al. The HostPhinder is based on the assumption that genetically similar phages 

are likely to share bacterial hosts. The tool utilizes a phage database with known sequences that 

are divided into k-mers. Phages with an unknown host are also divided into k-mers and 

compared to a database.  The high similarity of short DNA sequences between two phages will 

determine the likely host [36]. Our tool, bases its prediction on machine learning algorithms. 

The disadvantage of this pipeline is the dependence on the amount and quality of available 

data. We used phage whole-genomics records from public databases with known host to create 

clusters of similar gene sequences that are specific to certain genus.  Sequences were annotated 

using Prokka [47] and genes were extracted using a custom script. Extracted genes were aligned 

using BLAST with a database of genes from the training set. We assigned a cluster number to 

all newly obtained genes based on the cluster number of the most similar gene from the BLAST 

database. Thereafter, vector of ones and zeros was created for each phage representing. This 

vector was passed to the decision tree model and resulting prediction was saved. Moreover, for 

each of the 50 genera tested a decision tree based on the necessity of specific clusters to infect 
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the genus was created. Considering the mosaic structure of phage genomes, one of the 

advantages of using machine learning algorithms for phage host predictions is that only 

presence, absence and quantity of genetic elements influence the outcome. Thus, differences 

in locating and organizing individual genes do not affect the outcome of the pipeline prediction. 

In the evaluation test consisting of 1202 phages from the database, PHERI performed well 

when it reached the accuracy 99.37% for the host genus prediction. However, the differences 

between bacterial genera were considerable as some hosts were easier to predict than others. 

We noticed a more accurate prediction of host genera with more than 100 phages in the 

database (Fig.3). The average sensitivity of prediction here was 80%. The prediction was less 

sensitive for families with more than 50 and more than 10 phages, reaching 56 and 49%, 

respectively. The data therefore shows that more representatives in the database increase the 

accuracy of the prediction. This is probably due to the greater number of different host-specific 

protein sequences that PHERI clustered and incorporated into the decision tree. This reduces 

the likelihood of incorrect prediction in a case of phage with different mechanism of infection. 

Improvements in prediction based on machine learning algorithms based on the number of 

phages in the database have already been described by Chibani et al. in their phage 

classification study [39]. The small number of phages that infect individual species was the 

main reason why we designed PHERI to identify genera. In this way, we were able to increase 

the accuracy of the prediction and thus allow narrowing the range of hosts for later wet science 

host specificity tests. At the same time, we assume that by increasing the number of specific 

phages in the database, PHERI has the potential not only to increase the accuracy of genus 

prediction, but also to predict the host at the species level. The number of specific phages in 

the database was not the only factor affecting the accuracy of the prediction. In particular, 

PHERI has identified all phages infecting the genus Leuconostoc, which had only 17 specific 

phages in the database. In contrast, in the case of the detection of bacteriophages of the genus 
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Stenotrophomonas with 13 phages in the database, none could be identified. By comparing 

bacteriophages infecting Leuconoctoc we found that Leuconostoc-specific phages form two 

highly related groups belonging to the genera Limdunavirus and Unaquatrovirus within the 

family Siphoviridae and subfamily Mccleskeyvirinae. Homologous phages have probably a 

similar mechanism of infection that provides similar proteins. A similar conclusion was 

reached by Kot et al. in comparative genomic analysis of leuconostoc phages. [65].  PHERI, 

therefore, constructs a decision tree for a group of genetically-related phages easier and did not 

need a large number of viruses in the database. Similar results were obtained with the prediction 

of phage hosts of other bacterial genera with a small number of specific viruses. For example, 

the genera Paenibacillus or Ruegenia with 26 and 12 genetically related viruses, achieved a 

sensitivity of prediction over 99%. By contrast, phages infecting Stenotrophomonas are not 

genetically related, since some such as IME13( NC_029000.1) phage belong to the Myoviridae 

family[66], phage vB_SmaS_DLP_5(NC_042082.1) to the Siphoviridae family, or phages 

such as PSH1 (NC_010429.1) to the Inoviridae family[67]. Numberless and variable group of 

phages does not allow to construct a reliable decision tree.  

Another factor that could affect the accuracy of the prediction is the ability of 

bacteriophages to infect bacteria of different species, even genera. Especially in cases of 

genetically related bacterial genera, several cases of phages with the ability to infect multiple 

genera have been described [62][68, 69]. Even in these cases of known cross genera host 

specificity, only one genus name is found in the database.  

We have also used our tool to locate a host of several phages isolated and characterized 

in our laboratory in the past. The phages had established host specificity for 82 strains of the 

genera Escherichia, Cronobacter, Enterobacter, Salmonella, Klebsiella, Staphylococcus, 

Proteus, and Morganella. PHERI correctly identified the host genus for five out of six phages 

(Tab.2). In the case of the phage Dev-CS701, which infected strains of the genus Cronobacter, 
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it predicted as a suitable host the bacteria from genus Citrobacter. Subsequent extended host 

specificity tests against strains of the genus Citrobacter confirmed that the phage also infected 

Citrobacter gillenii CCM 4711. Unfortunately, the phage was unable to form plaques on other 

strains of the genus. We have therefore tested the bacteriophage ability to recognize the 

bacterial surface, which confirmed that Dev-CS701 actually recognizes the surface not only of 

C. gillenii but also of C. werkmanii (Fig. 4). In addition, a comparison of whole-genome 

sequences of phages by BLAST showed that Dev-CS701, besides to the closest relative 

cronophage vB_CsaM_IeB (KX431559.1) [70], achieved similarity of over 96% to the 

citrobacter-specific phages Margaery (KT381880.1) and Maroon (MH823906.1). 

Unfortunately, the detailed host specificity of the closest related phages is not yet publicly 

available.  

With our tool, we wanted to show a new possible way in the prediction of phage hosts 

mainly from metagenomic data. PHERI can help isolate live viruses from samples in wet labs 

by narrowing the range of possible hosts. There is also the potential to refine the prediction 

with the increasing number of new phages in databases. One of the advantages of host 

prediction based on the clustering of individual genes is the possibility of highlighting genes 

with unknown function necessary for infection. The identification of such genes may in the 

future help scientists to elucidate the mechanisms of infection of individual bacteriophages  
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