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Abstract7

Several studies profile similar single cell RNA-Seq (scRNA-Seq) data using different technologies and plat-8

forms. A number of alignment methods have been developed to enable the integration and comparison of9

scRNA-Seq data from such studies. While each performs well on some of the datasets, to date no method10

was able to both perform the alignment using the original expression space and generalize to new data.11

To enable such analysis we developed Single Cell Iterative Point set Registration (SCIPR) which extends12

methods that were successfully applied to align image data to scRNA-Seq. We discuss the required changes13

needed, the resulting optimization function, and algorithms for learning a transformation function for align-14

ing data. We tested SCIPR on several scRNA-Seq datasets. As we show it successfully aligns data from15

several different cell types, improving upon prior methods proposed for this task. In addition, we show the16

parameters learned by SCIPR can be used to align data not used in the training and to identify key cell17

type-specific genes.18
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Author Summary19

Integrating single cell expression data (scRNA-Seq) across labs, platforms, and technologies is a major20

challenge. Current methods for addressing this problem attempt to align cells in one study to match cells in21

another. While successful, current methods are unable to learn a general alignment in gene space that can be22

used to process new or additional data not used in the learning. Here we show that the scRNA-Seq alignment23

problem resembles a well known problem in the field of computer vision and robotics: point-cloud registration.24

We next extend traditional iterative rigid-object alignment methods for scRNA-seq while satisfying a set25

of unique constraints that distinguishes our solution from past methods. Analysis of transcriptomics data26

demonstrates that our method can accurately align scRNA-seq data, can generalize to unseen datasets, and27

can provide useful insights about genes active in the cells being studied.28

1 Introduction29

While only recently introduced, single-cell RNA-sequencing (scRNA-seq) has quickly developed into an30

indispensable tool for transcriptomics research. Driven by the development of droplet microfluidics-based31

methods [1, 2, 3, 4], current experiments are able to simultaneously profile expression of genes in tens of32

thousands of single cells. Studies ranging from cell type and state identification [5, 6] to tracking early33

development [7, 8] to unveiling the spatial organization of cells [9, 10] are all utilizing scRNA-Seq data,34

providing new insights about the activity of genes within and between cells.35

While the size and number of individual scRNA-seq datasets is large and constantly growing, the question36

of how to integrate scRNA-Seq data from multiple experiments or platforms has become increasingly relevant.37

Different labs are seeking to analyze related tissues in an organ system, such as mapping out the cell types in38

the human pancreas [11] or building an adult mouse brain cell atlas [12]. On on even larger scale, consortia39

such as the Human Cell Atlas [13, 14] or the HUBMaP [15] are organizing researchers globally with the goal40

of mapping cells in the entire human body.41

Combining datasets, even for the same tissue, across platforms or labs is a challenging problem. This42

process is often referred to “dataset alignment”, “dataset harmonization”, or “batch correction,” and is an43

active area of research. A number of methods have been recently suggested to address this problem. Many44

of these rely on nearest neighbors computations. For example, Mutual Nearest Neighbors (MNN) integrates45

two datasets by first identifying cells in the two datasets that are mutual nearest neighbors (in each other’s46

set of k nearest neighbors) [16]. It then computes vector differences between these pairs and uses weighted47
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averages of these vector differences to shift one batch onto the other. Another method, Seurat [17], extends48

this idea by first computing MNNs in a reduced dimension space, via canonical correlation analysis (CCA)49

which identifies common sources of variation between the two datasets, and then proceeding to correct the50

batch effects in a similar fashion as MNN. Other methods such as scVI [18] and ScAlign [19] use a neural51

network embedding to align the two datasets. These methods seek to encode the scRNA-seq datasets using52

a common reduced dimensional space in which the batch effects are reduced. While the above methods are53

unsupervised, there are also a few supervised methods proposed for this task. These method require as input54

the correct cell type labels for cells in the training data and use that to learn a function to assign cell types55

for the test data. An example of such method is Single Cell Domain Generalization Network (scDGN) which56

uses a supervised neural network trained with adversarial objectives to improve cell type classification [20].57

Another example is Moana, which uses hierarchical cell type classifiers robust to batch effects to project58

labels from one dataset onto another [21].59

Each of the methods mentioned above offers different features and so might be appropriate for different60

settings. For example, some methods align the data in the given gene space and thus maintain gene semantics61

while others, namely the neural network-based methods, do the alignment in a new embedded space (i.e.62

a reduced dimensional space). On the other hand, the neural network methods typically are learning an63

alignment function which enables the alignment to be applied to new data (generalization). A comparison64

of the features of each of the methods is summarized in Table 1.65

As the table shows, non of the current methods enables both, maintenance of semantics (required for66

analyzing genes following the alignment) and generalization (required for keeping the alignment consistent67

when new data arrives). Here we propose a new method, Single Cell Iterative Point set Registration (SCIPR),68

which achieves both using an unsupervised framework. Our method extends a well known method in image69

analysis termed iterative closest points (ICP), which is used for the problem of point-set or point-cloud70

registration [22]. In ICP, two datasets are represented as sets of points in a common coordinate system, and71

the method proceeds by pairing together points between the two sets and learning a transformation to move72

one set closer to (the corresponding points) in the other [23].73

We tested SCIPR on three benchmark datasets and compared its performance to several prior methods74

suggested for the alignment task. As we show, single cell iterative point set registration outperforms prior75

methods for most of the tasks and is able to generalize to both unseen data in the target and in the source76

batch by learning a general function which can be applied to new data. Finally, since it retains the original77

(gene space) representation, the coefficients learned by single cell iterative point set registration can be used78
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Method Unsupervised? Corrects input? Maintains semantics? Generalizable? Transfers labels?

scDGN D D D
Moana D D
ScAlign D D D7∗

scVI D D D
Harmony D D

Scanorama D D D
MNN D D D
Seurat D D D
SCIPR D D D D

Table 1: Comparison of features and properties of various scRNA-seq alignment methods. The “Corrects
input?” column refers to whether the method actually aligns (transforms) the input data batches in order
to integrate them. The “Maintains semantics?” column refers to whether the output of the method retains
the gene semantics given as input. The “Generalizable?” column refers to whether the method learns a
model which can be applied to new data. The “Transfers labels?” column refers to whether the method also
explicitly aims to apply the cell type labels of one data batch onto another, unlabeled batch.
∗ ScAlign is theoretically able to be applied on new data, as it learns a neural network embedding model, but the ability to

save and load the function in different sessions to apply it on new data was not available in software at the time of testing.

to identify key genes related to the cell types being analyzed.79
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2 Results80

2.1 Method and benchmarking overview81

We developed SCIPR which aligns two batches of scRNA-seq data (termed source and target) using methods82

motivated by point set registration algorithms. SCIPR first identifies corresponding pairs of cells between83

source and target batches (Figure 1 panel 1). Rather than using the closest cell (as defined by euclidean84

distance) in the target to match a source cell, SCIPR uses either of two matching algorithms to account85

for the heterogeneity and noise in scRNA-seq data: Mutual Nearest Neighbors (MNN) matching [16], and86

a novel greedy matching algorithm (Algorithm S1, Methods). Once a pairing of cells is established (Figure87

1 panel 2), a transformation function is learned to transform source cells so that they are closer to their88

matched target cell (Figure 1 panel 3). To allow for accurate alignment of high-dimensional scRNA-seq data,89

we replace the rigid transformation commonly used for point cloud registration with affine transformations.90

After fitting the transformation function (Methods), we apply it to the source cells (Figure 1 panel 4), and91

iteratively repeat the process until convergence. The final alignment function we learn is a composition of92

the transformation functions learned at each iteration (Methods) (Figure 1 panels 5,6).93

We used three datasets to test and compare two versions of SCIPR to prior alignment methods (Methods).94

These comparisons were performed by testing the methods on several “alignment tasks”. An alignment task95

is defined by:96

• A dataset (e.g. Pancreas)97

• A source batch A within that dataset, which you would like to transform (e.g. indrop1)98

• A target batch B within that dataset, which you would like to transform A onto (e.g. indrop 3)99

For example, an alignment task can be summarized with the notation: Pancreas: indrop1 → indrop3. In100

the comparisons we performed we fix the target within a dataset to be the largest batch in that dataset. We101

scored the performance of the methods using local inverse Simpson’s Index (LISI) in which higher integration102

LISI (iLISI) is better and lower cell-type LISI (cLISI) is better [24] (Methods).103

2.2 An affine global transformation function yields well-mixed alignments104

We first evaluated the ability of SCIPR and other methods to integrate pairs of batches from three different105

datasets. Results for 8 alignment tasks in three datasets are presented in Figure 2. As the figure shows,106

for 7 of the 8 alignment tasks the two version of SCIPR ranked at the top. SCIPR-mnn was the overall107
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1.) 3.) Fit a transformation
function to move points in S
from A towards B

2.) Choose set of pairs of
corresponding cells S

4.) Apply the transformation
function to update all of the
points in A

...
5.) Repeat for T iterations

6.) Final transformation function after T iterations:

Figure 1: Summary of steps in iterative point set registration for scRNA-seq data. Each cell in an scRNA-seq
dataset can be viewed as a point in high dimensional space. 1) We start with two unaligned batches (sources,
blue and targets, orange). 2) A matching algorithm (e.g. picking the closest corresponding point, or using
mutual nearest neighbors) is used to pair source cells from A with a corresponding target cell in B. The
number of source and / or target cells matched can vary for different matching strategies. 3) Based on the
selected pairs, a global transformation function is learned so that source cells in A become closer to their
paired cell in B. 4) The learned transformation is next applied to all points in A. 5) This process (steps 2-4)
is repeated, iteratively aligning set A onto B until the mean distance between the assigned pairs of cells no
longer improves. 6) The final global transformation function is the composition of the functions learned in
each iteration at step 3.
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Figure 2: Quantitative scoring of alignment methods on benchmark datasets. Each row of subplots are tasks
from the same dataset, where each column uses a different source batch (all are aligned to the same largest
reference batch). The scores are iLISI (green, batch integration score), and cLISI (orange, cell type mixing
score). In each subplot the methods are ordered from top to bottom in order of largest difference (median
iLISI - median cLISI) of scores. The center of each box is the median, and whiskers represent 1.5 times the
IQR past the low and high quartiles.
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Figure 3: Quantitative scoring of alignment methods on the CellBench dataset with a cell type held out from
the target set. Each row of subplots are alignment tasks with the same source batch, where each column
uses a different cell type as a hold-out from the target set (the 10x batch). Order and box plot computation
are similar to Figure 2.

top performer ranking first on 4 tasks and 2nd on 2 whereas SCIPR-gdy ranked first on 3 tasks and 2nd108

on 1. The only other method that performed well is ScAlign which ranked first on 1 task and 2nd on 4.109

For example, for the CellBench alignment tasks (first row of Figure 2), we see that SCIPR-mnn, which uses110

the MNN matching for the cell pair assignment stage, has consistent better performance, and achieves high111

batch mixing (1.70 and 1.76 median iLISI scores on CELseq2→10x and Dropseq→10x respectively) with very112

little cell type mixing (1.00 median iLISI score on both CELseq2→10x and Dropseq→10x ). When looking113

at the same dataset, on the CELseq2→10x task the other methods such as ScAlign (iLISI: 1.00, cLISI: 1.00)114

or SeuratV3 (iLISI: 1.51, cLISI: 1.00) are also able to avoid cell type mixing, but are not able to mix the115

batches as much as SCIPR (Figure 2). Full alignment quantitative scores for these tasks and all others in the116

paper are listed in Table S5. These quantitative metrics are also corroborated by a qualitative assessment117

(Figure 4). There we can see that both SCIPR-gdy and SCIPR-mnn (top two rows) mix the batches well118

(1st and 3rd columns) compared to methods like MNN and ScAlign while successfully keeping cell types119

separate (2nd and 4th columns).120
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Figure 4: Embedding (t-SNE) visualization from alignment tasks on the CellBench dataset using various
alignment methods. Each row is a different alignment method (the bottom row is with no alignment). The
columns are in two groups based on alignment task: the left two columns pertain to aligning the CELseq2
batch onto the 10x batch, the right two columns are for aligning the Dropseq batch onto the 10x batch. The
first and third columns are colored by batch, and the second and fourth columns are colored by cell type.
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Figure 5: Embedding (t-SNE) visualization from the PBMC:10x Chrom. (v2) A→10x Chrom. (v2) task
using SCIPR-gdy showing generalizability to new cells. In each alignment task (rows), a different cell type
is completely held-out from the source set. The model is then fitted to align the source and the target, and
the model is then used to transform the full source set, including the held-out cell type which the model
did not see in the source set used for fitting. The first column shows just the held-out cell type colored by
batch, after applying the fitted SCIPR-gdy model to align it. The second column shows all of the data after
applying the fitted model, colored by cell type.
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2.3 SCIPR robustly mixes batches with non-overlapping cell types121

The comparisons presented above involved sources and target batches with the same set of cells. However,122

in practice it is often unknown if both source and target indeed contain the same cell types. To test the123

robustness of SCIPR and other methods for such realistic scenarios we hold-out a complete cell type from the124

target set B in each of the alignment tasks from section 2.2. As the figures show, for these alignment tasks125

SCIPR is able to mix batches well, while keeping the median cell type mixing (iLISI) score low, though with126

a longer tail (Figures 3, S4, S5). For example, for the CellBench: CELseq2→10x (H1975 cell type held-out127

from target) task, SCIPR-mnn had median iLISI and cLISI scores of 1.63 and 1.02 respectively while the128

second best method, SeuratV3, had iLIS and cLISI scores of 1.49 and 1.01 respectively (Figure 3). On the129

other hand, for the task Pancreas: indrop1→indrop3 (acinar cell type held-out from target), SCIPR-mnn130

achieves a higher median batch mixing score of iLISI=1.69 compared to ScAlign’s score of 1.57, but also131

mixes the cell types slightly more (SCIPR-mnn median cLISI score: 1.28, ScAlign median cLISI score:1.00)132

(Figure S4).133

2.4 SCIPR generalizes to unseen data134

One of the advantages of SCIPR compared to most previous methods is the fact that it learns a general135

transformation function that can be applied to additional data when it becomes available (Table 1). Such136

a function allows researchers to “fix” a specific setting rather than have all results completely change when137

new data is introduced. To test the use of the learned transformation function for unseen cell types in the138

source dataset we repeated our analysis, this time holding out a complete cell type from the source set in139

each alignment task. We next learned the transformation based on the available data and then applied the140

learned function to the held out data to evaluate the batch and cell type mixing. Results are presented in141

Figures 5, S6, S7, S8. As the figures show, the transformation learned by SCIPR allows it to keep cell types142

distinct, even for the unseen source cell type, while also being able to mix the batches of unseen cell types.143

This is evident in the high median iLISI (1.69) and low median cLISI (1.04) scores of SCIPR-gdy on the task144

PBMC:10x Chrom. (v2) A→10x Chrom. (v2) (CD4+ T cell held-out from source), where the model is fit145

without seeing CD4+ T cells in the source set, but is then used to transform the full source set in evaluation146

(Figure S8). Figure 5 displays the aligned results for the cell type not used in the learning. As the figure147

shows, for CD4+ and Cytotoxic T cells SCIPR-gdy is able to mix the two batches even though it had never148

seen these in fitting.149
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2.5 SCIPR identifies biologically relevant genes150

The above results demonstrate SCIPR’s ability to integrate batches quantitatively and qualitatively. Since151

SCIPR achieves these results by learning a transformation function that places different weights on different152

genes, we next asked whether the learned weights provide information on the importance of specific genes153

for the set of cells being studied. To evaluate such an approach we compared ranking genes based on their154

SCIPR coefficients to a baseline that ranks them based on differential expression (DE) (Appendix S6, S7).155

Next we performed gene set enrichment analysis using the Gene Ontology to identify the significant functions156

associated with top genes and test their relevance (Appendix S8). The PBMC dataset, which is the largest,157

was also the one with the most number of significant categories identified (Table S2). When comparing top158

ranked genes by SCIPR and DE for the “PBMC: 10x Chrom. (v2) A → 10x Chrom. (v2)” alignment task159

we observed that SCIPR genes significantly overlapped with much more relevant terms when compared to160

DE genes for the same dataset (Table S3). For example, the top three categories for top ranked SCIPR genes161

are “Defense response”, “Regulation of immune response”, and “Humoral immune response” (all with adj.162

p-value 9.743e-9, Table S3). These categories are very relevant for blood cells given their immune system163

function. On the other hand, the top three categories recovered by top DE genes are much more generic164

and include “Ribonucleoprotein complex biogenisis”, “Ribosome assembly”, and “Cellular amide metabolic165

process” (Table S2).166

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.13.093948doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.093948
http://creativecommons.org/licenses/by/4.0/


3 Discussion167

We presented SCIPR which extends point set registration for the alignment of scRNA-Seq data. SCIPR168

combines many of the desirable features of previous methods including the fact that its unsupervised, gen-169

eralizable, and keeps the original (gene space) representation. Analysis of several datasets show that SCIPR170

successfully aligns scRNA-Seq data improving upon other methods proposed for this task. When data is171

missing from either the source or the target the transformation function learned by SCIPR can be used to172

accurately align it when it becomes available. Finally, the coefficients learned by SCIPR provide valuable173

information on the key genes related to the cells being analyzed.174

Framing scRNA-seq alignment as a point set registration problem opens the door to applying many of175

the developments and advancements in that area to scRNA-seq alignment. Point set registration is a mature176

area that has been widely used for more than two decades. As part of this researchers looked at several177

different types of transformation functions, data filtration, outlier handling, and association mapping, all of178

which may find applications in scRNA-seq analysis.179

When evaluating SCIPR and prior methods we used the local inverse Simpson’s Index (LISI) to quantify180

both cell type mixing and batch mixing. This leads to two values for each alignment task which can be181

combined for ranking the different methods by computing the difference of the medians iLISI − cLISI.182

Such ranking places equal weight on both issues. However, this score may not tell the whole story since some183

methods may be much better at one task vs. the other. For example, while SCIPR was ranked as the top184

method for most of the comparisons we performed, it has a tendency of to sacrifice some cell type separation185

in order to achieve greater batch mixing. Thus, depending on the user priorities between cell type and batch186

mixing, different methods may be more attractive even if the combined score is lower when compared to187

other methods.188

While SCIPR performed best in our analysis, there are a number of ways in which it can be further189

improved. As mentioned above, SCIPR tends to weight batch mixing higher than cell type separation. A190

possible way to overcome this would be to add a regularization term to the transformation function to increase191

the weight of high scoring matches. Another option is to explore the use of non-linear transformations with192

strong customized regularization.193

SCIPR is implemented as a Python package and can be downloaded from https://github.com/AmirAlavi/194

scipr, and our benchmarking pipeline and data used are available at https://github.com/AmirAlavi/195

sc-alignment-benchmarking (see Appendix S1).196

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.13.093948doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.093948
http://creativecommons.org/licenses/by/4.0/


4 Methods197

4.1 Dataset selection198

To evaluate SCIPR and to compare its performance to previous alignment methods we used different scRNA-199

Seq datasets, each profiling similar cells in multiple batches. The first is the CellBench dataset (GEO:200

GSE118767) [25], which profiled human lung cancer cell lines and contained three batches, each from a201

different platform: 10x Chromium [4], Dropseq [2], and CEL-seq2 [26] (Table S1a). The smallest batch had202

210 cells (Dropseq) and the largest had 895 (10x Chromium) after removing cells with low reads, and we203

filtered the genes to the most highly variable genes across all batches leaving us with 2351 genes (Appendix204

S2). The second was data from human pancreatic cells (GEO: GSE84133) [27], with four batches all using205

Indrop sequencing [3] where the largest batch had 1488 cells (indrop3), the smallest had 834 cells (indrop4),206

and we used the five largest cell types and the set of 2629 highly variable genes (Table S1b). Finally, the third207

and largest dataset is a PBMC dataset (GEO: GSE132044) [28] which consisted of four different batches208

using 10x Chromium [4] sequencing. We used the three largest cell types and the largest batch had 2510209

cells (10x Chorm. (v2)), the smallest had 2011 cells (10x Chrom. (v2) A), and we used the set of 1466 highly210

variable genes (Table S1c). See Appendix for complete details.211

4.2 scRNA-seq alignment212

In the scRNA-seq alignment task, our goal is to learn a new representation of the data (either in the same213

dimensions as the original data, or in a new reduced dimension) to accomplish the following:214

Property 1 Cell type identification: Cells from different cell types are distinct and cells from the same type215

are in close proximity216

Property 2 Batch mixing: Cells from different batches are mixed together as much as possible while re-217

specting the first property218

4.3 Point set registration for single cell alignment219

Unsupervised alignment of single cell data relies on the implicit assumption that the different datasets share220

several of the same cell types though potentially using different representations for the same type. A similar221

assumption is central to much of the literature in point set registration, a well-studied problem in the robotics222

and computer vision fields [22]. In the point set registration problem, we wish to assign correspondences223
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between two sets of points (two “point clouds”), and learn a transformation that maps one set onto the other224

(Figure 1). Point sets are commonly the 2D or 3D coordinates of rigid objects, and the class of transformation225

function under consideration is often rigid transforms (rotations, reflections, and translations). The various226

point sets often originate from differing settings of sensors (viewing angle, lighting, resolution, etc) viewing227

the same objects or scene. Among the most widely used and classical of point-cloud registration algorithms228

is Bessl and McKay’s Iterative Closest Point (ICP) algorithm [23]. Briefly, each iteration of ICP has two229

steps: 1) assigning each point in one set (A, “source”) to its closest point in the other set (B, “target”), 2)230

update the rigid transformation function to transform the points in A as close as possible to their assigned231

points in set B. At the end of each iteration, the points in A are transformed via the current rigid transform232

and the process is repeated until convergence. Thus, each iteration of ICP can be concisely represented as233

minimizing the following loss function:234

LICP (A,B, fθ) =
∑
i∈A

min
j∈B

1

d
||fθ(Ai)−Bj ||22 (1)

where A,B ∈ Rd, and d is the number of genes

and fθ is further constrained to rigid transformation functions

However, applying ICP as-is to align two scRNA-seq datasets could be problematic since:235

• ICP assumes that every point in A corresponds to a point in set B, whereas scRNA-seq datasets236

may not fully overlap in cell types. For example, in studying embyronic development, we observe the237

transcriptome at different embryonic days, where some cell fates exist only after a certain day [29, 30].238

• ICP assumes that a rigid transform relates the two sets. This may have been appropriate for 3D rigid239

objects, but not for the complicated, high-dimensional single cell transcriptome data.240

• ICP is prone to assigning many points in A to the same point in B (collapsing a point) even when they241

are not fully compatible [31]. In contrast, if the same cell type exists in both datasets we can expect242

the number of cells to be more balanced.243

Thus, while ICP has been very successful in image analysis, it requires modifications in order to accurately244

align scRNA-Seq data.245
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4.4 Adapting ICP for scRNA-seq dataset alignment246

Given the discussion above, both stages of ICP need to be changed in order to align scRNA-Seq data. More247

formally, these two stages are:248

1. Assignment stage (input: point sets A and B) - assign pair set S ⊆ {(i, j) | 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|}249

(Figure 1 panel 2). Options for this stage may vary in the cardinality of S, and whether or not it250

allows points to be shared between pairs.251

2. Transformation stage (input: assigned pairs S) - given S from the Assignment stage, learn a transform252

function that transforms points in A to reduce the mean squared error (MSE) between the assigned253

pairs in S (Figure 1 panel 3). Options for this stage vary based on the family of functions considered.254

To adapt stage 1, we propose two approaches for assigning points in section 4.5: one based on a novel255

greedy algorithm and another based on Mutual Nearest Neighbors (MNNs). For stage 2, we set the family256

of transformation functions to be affine transformations (section 4.6).257

4.5 Assigning cells between datasets258

First, we focus on the Assignment stage. The input to this stage is the target set B and the current state259

of the source set of points A (A is being updated at every iteration of the algorithm). ICP computes the260

pairwise distance matrix between members of these sets D ∈ Rn×m where n = |A| and m = |B| (Figure S1),261

and finds the element in each row with the smallest distance to match to that point in A.262

In contrast, for scRNA-seq alignment we would like to require the following:263

• Not too many points in A are matched with the same point in B (avoid collapsing many points in one264

dataset onto a single point).265

• Not all points must be assigned (since the two dataset may not fully overlap in terms of cell types).266

One approach for addressing the first requirement is using a bipartite matching algorithm [32] instead267

of picking the closest point. In such an algorithm a global optimal matching is found such that each point268

is only matched to a single point in the other set. However, such algorithms violate the second requirement269

since they result in “perfect” matchings, where all points in A are matched. An alternative is to use partial270

matching algorithms in which only a subset (or a fraction) of the points in A are required to be matched271

to points in B. Optimal partial matching is a well studied problem in the computer science literature and272
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requires solving a min-cost flow graph problem [33]. The problem can be solved via an efficient network273

simplex algorithm, however, for graphs with thousands of nodes (as in single cell data) this is still rather274

time consuming. If we let the number of vertices be V = n + m (e.g. number of cells in both batches),275

the number of edges be E = n ×m, and the largest edge weight (distance between points) be C, then the276

polynomial time network simplex algorithm has a run time of O(V E log V log(V C)) [34]. Given the large277

number of cells in each dataset such partial matching methods are too time consuming in practice (Figure278

S2).279

Instead, in Algorithm S1 we propose an efficient greedy algorithm for partial assignment between A and280

B. The algorithm sorts all of the edges between members of the two sets based on distance. Next, we281

proceed along the ordered edges starting from the smallest distance. If an edge includes a point in set B282

that has already been selected β times by previously chosen edges, we discard it and continues down the list.283

Our algorithm has parameters to adjust how many times we allow each point in B to be matched to (β),284

and how many of the points in A must be matched (α). In our experiments, we set β = 2 and α = 0.5. The285

runtime of this algorithm is dominated by the sortElementsAscending function which sorts the distances286

leading to a worst case runtime of O(E2) and a much faster O(E log(E)) on average. Though not an optimal287

solution to the partial bipartite matching problem, we find that this works well in our related scRNA-seq288

cell pair assignment problem for alignment.289

We also experiment with a matching procedure which follows the foundational work of using mutual290

nearest neighbors (MNNs) [16] to define our pair assignments between the two sets. For a point i in set A291

and a point j in set B, if i is in the set of k-nearest neighbors among A for point j, and j is in the set of292

k-nearest neighbors among B for point i, then i and j are MNNs. In our experiments, we set k = 10.293

4.6 Learning a transformation function294

So far we focused on matching points given their distance. In the next stage, we will fit a transformation295

function to align the matched points. As discussed above, the family of rigid transforms is not well suited296

to compute such alignments for scRNA-seq data (Figure S3). Instead, we propose to use the family of affine297

transformations to align scRNA-seq datasets. Affine transforms are of the form fθ(x) = WTx + b where298

θ = {W, b} is the learnable weights of the function, and include rotation, reflection, scaling, and shearing.299

To learn this function, we minimize an objective function that aims to move the assigned points closer to300

each other, via such an affine transformation. Given a pair assignment S from the previous step (section 4.5)301

(which may be the result of the classic “closest” strategy from ICP, our greedy algorithm, or MNN matching),302
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learning the transformation function (Figure 1 panel 3) is equivalent to minimizing the loss function given303

as Equation 2. We note that this objective function is not over all pairs of points in sets A and B; it is304

computed over only those pairs of points selected in S, denoted by the subscript under the sum.305

L(A,B, fθ, S) =
1

|S|
∑
i,j∈S

1

d
||fθ(Ai)−Bj ||22

=
1

|S|
∑
i,j∈S

1

d
||(WTAi + b)−Bj ||22 (2)

where A,B ∈ Rd, and d is the number of genes

This is a least-squares objective function. If the system is overdetermined, this could be solved exactly.306

However, due to the high dimension we are working in (each point is the expression of thousands of genes),307

the matrix inversion for the exact solution is expensive to compute, as matrix inversion is O(d3). To avoid308

this, we approximate the solution using gradient descent to arrive at our transformation function f
(t)
θ for the309

current iteration t (see Appendix S5 for gradient descent settings).310

4.7 Iterative step311

After each of the stages (assignment and transformation function update), we use our learned transformation312

function at the current iteration f
(t)
θ to transform the all points in A (not just those in the set S from the313

matching algorithm) (Figure 1 panel 4), and then repeat the stages for T iterations (Figure 1 panel 5). The314

final learned transformation of source points A to target points B is a chained series of transformations315

(composite function) from each iteration (Figure 1 panel 6). Since our function class for fθ is affine trans-316

formations, and the composition of affine transformations is itself an affine transformation, we can combine317

this chain of transformations into a single affine transformation. See Appendix S4 for details.318

4.8 Validation319

A number of methods have been proposed to test the accuracy of alignment based methods [35, 24]. These320

evaluation metrics try to balance two, sometimes competing, attributes. The first is dataset mixing which321

is the goal of the alignment. The second is cell type coherence. A method that randomly mixes the two322

datasets would score high on the first measure and low on the second while a method that clusters each of323
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the datasets very well but cannot match them will score high on the second and not on the first.324

To track both dataset mixing and biological signal preservation, we follow [24] and use the local inverse325

Simpson’s Index (LISI). LISI measures the amount of diversity within a small neighborhood around each326

point in a dataset, with respect to a particular label. The lowest value of LISI is 1 (no diversity). As in [24],327

we define integration LISI (iLISI) as the score computed when using the batch label for each datapoint, and328

cell-type LISI (cLISI) as the score when using the cell-type label. iLISI measures the effective number of329

datasets within the neighborhood (so the higher the better). cLISI measures the effective number cell types330

within the neighborhood (so the lower the better). With these two metrics in hand, we can keep track of331

not only the ability of our algorithms to align one dataset onto another, but also their ability to preserve332

original signal. In our figures which report the iLISI and cLISI scores, we rank the methods based on the333

difference of medians iLISI − cLISI score to capture the ability of the emthods to maximize and minimize334

these two quantities respectively.335
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