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Chemotherapeutic resistance via the mechanism of competitive release of resistant tumor cell
subpopulations is a major problem associated with cancer treatments and one of the main causes of
tumor recurrence. Often, chemoresistance is mitigated by using multidrug schedules (two or more
combination therapies) that can act synergistically, additively, or antagonistically on the heteroge-
neous population of cells as they evolve. In this paper, we develop a three-component evolutionary
game theory model to design two-drug adaptive schedules (timing and dose levels associated with
C1(t) and C2(t)) that mitigate chemoresistance and delay tumor recurrence in an evolving collection
of tumor cells with two resistant subpopulations: R1 (sensitive to drug 1, resistant to drug 2), and
R2 (sensitive to drug 2, resistant to drug 1). A key parameter, e, takes us from synergistic (e > 0),
to additive (e = 0), to antagonistic (e < 0) drug interactions. In addition to the two resistant popu-
lations, the model includes a population of chemosensitive cells, S that have higher baseline fitness
but are not resistant to either drug. Using the nonlinear replicator dynamical system with a payoff
matrix of Prisoner’s Dilemma (PD) type (enforcing a cost to resistance), we investigate the nonlinear
dynamics of the three-component system (S,R1, R2), along with an additional tumor growth model
whose growth rate is a function of the fitness landscape of the tumor cell populations. We show
that antagonistic drug interactions generally result in slower rates of adaptation of the resistant
cells than synergistic ones, making them more effective in combating the evolution of resistance.
We then design closed loops in the three-component phase space by shaping the fitness landscape
of the cell populations (i.e. altering the evolutionary stable states of the game) using appropriately
designed time-dependent schedules (adaptive therapy), altering the dosages and timing of the two
drugs using information gleaned from constant dosing schedules. We show that the bifurcations
associated with the evolutionary stable states are transcritical, and we detail a typical antagonistic
bifurcation that takes place between the sensitive cell population S and the R1 population, and a
synergistic bifurcation that takes place between the sensitive cell population S and the R2 popula-
tion for fixed values of C1 and C2. These bifurcations help us further understand why antagonistic
interactions are more effective at controlling competitive release of the resistant population than
synergistic interactions in the context of an evolving tumor.

PACS numbers: 87.23.Kg; 87.55.de; 87.19.Xj; 87.19.lr

I. INTRODUCTION

We study a mathematical model to explore the role
of synergisitic vs. antagonistic multidrug interactions on
an evolving population of cancer cells in a tumor. Our
model builds on the (single drug) adaptive therapy model
developed in [1] and is based on a replicator dynamical
system of three (well-mixed) populations of cells: (i) sen-
sitive cancer cells, S, that are sensitive to both drug 1 and
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drug 2, (ii) a resistant population, R1, that is sensitive to
drug 1 but resistant to drug 2, and (iii) resistant popula-
tion, R2, that is sensitive to drug 2 but resistant to drug
1. The replicator dynamical system governing the rela-
tive frequencies of (S,R1, R2) makes use of a 3×3 payoff
matrix A of Prisoner’s Dilemma type [2–5]. We intro-
duce chemotherapeutic schedules using time-dependent
dosing functions C1(t), C2(t) that alter the fitness lev-
els of the sensitive cell population and the two resistant
populations independently allowing us to shape the fit-
ness landscape of the population of cells adaptively as
the tumor evolves [6–13]. Our general goal in this con-
text is to design schedules that delay tumor recurrence
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(re-growth) due to competitive release of the resistant cell
population [14–17] and to quantify the role of synergistic
and antagonistic drug interactions in this process.

To quantify the synergistic vs. antagonistic effects of
the two toxins on the evolving populations, we use a pa-
rameter e which we alter. When e > 0, the drugs interact
synergistically, when e = 0, the drugs are additive, and
when e < 0, they interact antagonistically. Level curves
of the fitness profiles as a function of C1 and C2 are shown
in figure 1 which can be compared with figure 1 of [18].
Details of how we define our fitness functions in the con-
text of our replicator model will be described in §II. In
the neutral case, additive drug interactions (figure 1(b))
accomplish exactly the kill rate that the sum of each of
the two would accomplish acting independently. By con-
trast, synergistic drug interactions (figure 1(a)) bend the
curves inward, indicating that the growth rates (fitness)
are lowered more than the two dosages would accom-
plish independently, while antagonistic interactions (fig-
ure 1(c)) bend the curves outward, indicating that the
growth rates are lowered less than the two dosages would
accomplish independently.

There is a large and dedicated literature on character-
izing the interactions of many different combinations of
toxins on static cell populations. As far as we are aware,
the first comprehensive study of synergistic vs antago-
nistic effects was carried out by Bliss [19] in 1939, using
joint probabilities, leading to a formula that is commonly
called the Bliss index for drug interactions. A similar but
slightly modified criterion was introduced by Loewe [20]
and more recently developed further by Chou and col-
laborators [21]. These indices have all been used to help
quantify the many different types of interactions that can
occur with two or more toxins applied jointly in a static
population of cells. In this context, it is common to as-
sume that synergistic interactions are desirable in most
circumstances, as a lower total dosage accomplishes the
same kill rate as a higher dose would accomplish if the
drugs acted independently. These kinds of studies have
been used effectively to choose appropriate drug cocktails
to individual patients by testing wide ranges of combi-
nations on tissue samples obtained from patient tumors
[22].

When the interacting population of cells are evolv-
ing, however, the relevant criteria become more complex.
This is due to the fact that the subpopulations of cells
respond differently to the different toxins applied, and
as they respond, an ever-changing (adaptive) combina-
tion of toxins might be required to accomplish a given
goal. Instead of necessarily killing the maximum num-
ber of cancer cells with the least amount of toxin, it is
often the case that the goal becomes avoiding chemo-
resistance and delaying unwelcome tumor recurrence to
the maximum extent possible. A strategy called resis-
tance management [23] is often advocated and occasion-
ally implemented [24]. These kinds of strategies have
been advocated and implemented in chemotherapy set-
tings [7, 10, 11, 14, 25–27], but perhaps have been most

FIG. 1. (a) e > 0 showing synergistic profiles; (b) e = 0 show-
ing additive profiles; (c) e < 0 showing antagonistic profiles.

elegantly and thoroughly carried out in a bacterial set-
ting (since experiments are more practical) by Kishony
and collaborators [18, 28–32] who even discuss strate-
gies that might reverse antibiotic resistance [31]. See
also [33] for recent work discussing both microbial pop-
ulations and cancer cells and [34, 35] for novel sequen-
tial therapy methods. In the context of evolving micro-
bial populations [36], mutations occur frequently and it
is important to consider not only pre-existing mutated
subpopulations, but also mutations that occur as a re-
sult of the application of antibiotic agents. In the case
of chemotherapeutic resistance in tumors, it is often as-
sumed that resistant mutations occured before the ap-
plication of treatment, hence it is common to separate
the subpopulations into sensitive and resistant subpopu-
lations as we do in our deterministic model which does
not include further mutations during treatment. See [37]
for further discussions of these and related issues, and
[38, 39] for discussions of the general approach of using
evolutionary game theory in biology.

In section §II we introduce the details of the three-
component replicator dynamical system that we use. Sec-
tion §III describes the effects of constant chemotherapy
schedules on the evolving populations, using the range
of values 0 ≤ C1 ≤ 1, 0 ≤ C2 ≤ 1 (with a total dose
upper threshold C1 + C2 ≤ 1), along with our param-
eter e over a range of positive (synergistic) to negative
(antagonistic) values. We describe in detail the trans-
critical bifurcations that occur and the tumor growth in
response to the chemotoxins. In §IV we introduce adap-
tive time-dependent schedules (C1(t), C2(t)) along with
the parameter e with the goal of delaying tumor recur-
rence and we discuss the rate of adaptation of the cell
populations in this context. Finally in §V we discuss the
relevance of our model to the design of adaptive-therapy
clinical trials.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.05.13.094375doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.094375
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

II. A THREE-COMPONENT REPLICATOR
SYSTEM

A. Why the prisoner’s dilemma game?

To understand why the prisoner’s dilemma (PD) game
is a useful paradigm for tumor growth, consider a two-
component system, with a population of healthy cells H,
and a population of sensitive cancer cells S, each com-
peting for the best payoffs. The standard version of the
prisoner’s dilemma payoff matrix is:

A =

[
a b
c d

]
=

[
3 0
5 1

]
, (1)

where the first row corresponds to my payoffs if I choose
to cooperate (associated with the healthy cell population
(H)) and the second row corresponds to my payoffs if
I choose to defect (associated with chemo-sensitive cells
(S)). I am better off defecting than cooperating if my
opponent cooperates (first column), since my payoff is
5 instead of 3. I am also better off defecting than co-
operating if my opponent defects (second column), since
my payoff is 1 rather than 0. No matter what my oppo-
nent does, I am better off defecting. But my opponent
uses the same logic and comes to the same conclusion
- that she is also better off defecting, no matter what I
do. The result is that we both defect and get a payoff
of 1 (second row, second column) which is less than we
would have gotten had we both cooperated (payoff of 3).
The fact that defect-defect is a sub-optimal Nash equi-
librium (neither player is better off by making a differ-
ent choice) is the essence of the prisoner’s dilemma game
[2, 3] and the reason it is so widely used as the basis for
modeling the evolution of cooperation in many different
contexts. For cancer cell modeling, the healthy cells are
the cooperators and the cancer cells are the defectors.
Unlike other contexts in which game theory is used, cells
are not making strategic decisions, instead, their strat-
egy is encoded in their reproductive prowess, and selec-
tion is frequency dependent. In any mixed population
~x = (xH , xS)T , 0 ≤ xH ≤ 1; 0 ≤ xS ≤ 1; xH + xS = 1,

the fitness functions, ~f = (fH , fS)T , associated with the
two subpopulations are:

~f = A~x, (2)

which in component form yields:

fH = (A~x)1 = 3 · xH + 0 · xS , (3)

fS = (A~x)2 = 5 · xH + 1 · xS , (4)

while the average fitness of the total population is given
by the quadratic form:

〈f〉 = ~xTA~x = 3x2H + 5xHxS + x2S ≥ 1. (5)

The average fitness of the healthy state (xH , xS) = (1, 0)
is given by 〈f〉|(xH=1) = 3, while that of the cancerous
state (xH , xS) = (0, 1) is given by 〈f〉|(xS=1) = 1, which

minimizes the average fitness. For the static game, the
cancerous state (xH , xS) = (0, 1) ≡ p∗T is a strict Nash

equilibrium since p∗TAp∗ > pTAp∗, for all p [2]. We can
then embed this static game into an evolutionary context
using the replicator dynamical system [3]:

ẋH = (fH − 〈f〉)xH , (6)

ẋS = (fS − 〈f〉)xS , (7)

from which (using values from eqn (1)) it is straightfor-
ward to show:

ẋS = xS(1− xS)(2− xS), (8)

with fixed points at xS = 0, 1, 2. The cancerous state
(xs = 1) then becomes an asymptotically stable fixed
point of the dynamical system (8) and an evolutionary
stable state (ESS) of the system (6), (7) which serves to
drive the system to the strict Nash equilibrium under the
flow. The fact that this ESS also corresponds to the one
with the lowest average fitness is an extra feature of the
PD game. For any initial condition containing at least
one cancer cell: 0 < xS(0) ≤ 1, we have:

(i) xS → 1, xH → 0 as t→∞

(ii) 〈f〉 → 1 as t→∞.

The first condition (and the structure of the nonlin-
ear equations) guarantees that the cancer cell popula-
tion will saturate at the carrying capacity of 1 in an S-
shaped (logistic) growth curve, while the second guar-
antees that this asmptotically stable carrying capacity is
sub-optimal, since 〈f〉|(xS=1) < 〈f〉|(xH=1). For these two
reasons, the prisoner’s dilemma evolutionary game serves
as a simple paradigm for tumor growth both in finite
population models, as well as replicator system (infinite
population) models [5, 25, 40, 41]. This two-component
system alone, however, is not able to account for the evo-
lution of resistance.

B. The three-component model

The model we employ is a three-component replicator
dynamical system for the three subpopulations of cells:
(S,R1, R2) ≡ (x1, x2, x3)

ẋ1 = (f1 − 〈f〉)x1, (9)

ẋ2 = (f2 − 〈f〉)x2, (10)

ẋ3 = (f3 − 〈f〉)x3, (11)

where each dependent variable represents the relative fre-
quencies of cells, with x1+x2+x3 = 1. In these equations,
fi represents the fitness of subpopulation i = 1, 2, 3, while
〈f〉 represents the average fitness of all three subpopu-
lations. These equations then give rise to the obvious
interpretation that if a given subpopulation’s fitness is
above(below) the average, it grows(decays) exponentially
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- reproductive prowess is directly associated with the de-
viation of the fitness of a subpopulation from the average
fitness of the entire population.

The fitness functions are frequency-dependent (i.e.
non-constant), which couples eqns (9)-(11) nonlinearly.
The subpopulation fitness fi (i = 1, 2, 3) function is given
by:

fi = 1− wi + wi(A~x)i (12)

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (13)

where A is a 3 × 3 payoff matrix which introduces the
evolutionary game being played by x1, x2, and x3. In this
paradigm, the sensitive population (x1) are the defectors
(higher fitness) and both groups of resistant cells (x2 and
x3) are the cooperators (lower, but not equal fitness). We
use 0 ≤ wi ≤ 1 as a parameter to determine the strength
of selection in the system. When wi ∼ 0, selection is
relatively weak and the evolutionary game does not play a
big role in the balance of the three subpopulations. When
wi ∼ 1, selection is strong, and the game plays a bigger
role. Both of those limiting cases have been discussed in
the literature [42, 43], but the tumor response through
the full range of values is poorly understood. We use the
selection parameters wi as our mechanism to introduce
chemotherapy, by way of altering the relative fitness of
the three subpopulations:

w1 = w0(1− C1 − C2 − eC1C2) (14)

w2 = w0(1− C1) (15)

w3 = w0(1− C2). (16)

Here, C1 is the chemotherapy parameter associated with
drug 1, C2 is that for drug 2, and e is our synergy (e > 0)
vs. antagonism (e < 0) parameter, and we take w0 = 0.1
which sets the timescale in our simulations. Level curves
of the effective fitness functions defined by eqns (14)-
(16) are shown in figure 1. The average fitness of the
population is given by:

〈f〉 = f1x1 + f2x2 + f3x3. (17)

The condition for the payoff matrix A to be of (PD) type
is:

a21 < a11 < a22 < a12 (18)

a31 < a11 < a33 < a13 (19)

a32 < a22 < a33 < a23 (20)

and for definiteness, we choose the specific values:

A =

 2 2.8 2.8
1.5 2.1 2.3
1.5 1.8 2.2

 (21)

For the static game, it is easy to show that the cancer-
ous state (S,R1, R2) = (x1, x2, x3) = (1, 0, 0) ≡ p∗T is a
strict Nash equilibrium in the absence of chemotherapy
(C1 = 0, C2 = 0) and an ESS for the replicator system,
as shown in the diagram of figure 2(a) where the entire
triangular region is the basin of attraction for the S pop-
ulation.

A seperate important ingredient in our model is our
tumor-growth equation, which we take as:

ẋtumor = (〈f〉 − g)xtumor (22)

where the growth(decay) of the tumor is a function
of the average fitness associated with the tumor minus
a constant background fitness level g, associated with
the surrounding tissue (say healthy cells) and micro-
environment [44]. When the average fitness level of the
population of cancer cells is higher than g, the tumor
grows, and when it is lower, it regresses. Our chemother-
apy functions C1 and C2 largely control this complex
dynamic by modifying the Nash equilibria and ESS’s of
the system via the fitness function (12).

III. CONSTANT CHEMOTHERAPY

First, we examine the dynamical system for different
constant levels of the chemo-parameters C1, C2 (0 ≤
C1 ≤ 1; 0 ≤ C2 ≤ 1; C1 + C2 ≤ 1) in the case of ad-
ditive e = 0 interations, synergistic (e > 0) interactions,
and antagonistic (e < 0) interactions.

A. Additive interactions e = 0

Figure 2 shows the panel of trajectories for three differ-
ent scenarios. To start, figure 2(a) shows the trajectories
with no chemotherapy – all trajectories lead to the S
corner which saturates the tumor. In these figures, solid
circles denote the ESS states, while open circles denote
the unstable states. Figure 2(b) shows trajectories with
C1 = 0, C2 = 0.8. In this case, competitive release of the
R1 population allows it to take over the tumor, with all
trajectories leading to the R1 corner. For these param-
eter values, R1 is the ESS (and strict Nash equilibrium)
of the system. Figure 2(c) with C1 = 0.8, C2 = 0 depicts
competitive release of the R2 population, with all trajec-
tories leading to the R2 corner, showing that R2 is the
ESS of the system.

In figure 2(d) we plot three different constant therapy
schedules together, showing how they can intersect at dif-
ferent times. This gives the possibility of switching the
therapies off and on at the intersection times in order to
create a trajectory that stays in a closed loop and never
reaches any of the corners – these closed loops represent
scenarios in which the three subpopulations stay in per-
petual competition, driven by a time-dependent schedule
that shapes the fitness landscapes in such a way as to
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manage chemotherapeutic resistance. We will describe
the systematic construction of these closed loops in §IV.
Figure 3 shows the tumor size (using eqn (22)) plotted
logarithmically. The untreated tumor (C1 = 0, C2 = 0)
grows exponentially, while each of the treated tumors ini-
tially show tumor regression up until t ∼ 75, then tumor
recurrence due to chemotherapeutic resistance (either of
the R1 or R2 populations), an unwelcome common sce-
nario. This scenario is clearly depicted in prostate cancer
data sets shown in [45] and widely discussed in the clini-
cal literature. Our goal is to show how specially designed
adaptive multi-chemotherapies can push the tumor recur-
rence point further to the right on these plots.

The full range of possible profiles are shown in figure
4. For certain ranges of chemo-dosing, there are mixed
basins of attraction to each of the corners, hence multiple
evolutionary stable states of the system. In the top row,
with C1 = 0, the two critical values where the ESS’s bi-
furcate are C2 = 1/3 (R1 changes from unstable to stable
via a transcritical bifurcation) and C2 = 1/2 (S changes
from stable to unstable via a transcritical bifurcation).
In the left column, with C2 = 0, the two critical values
where the ESS’s bifurcate are C1 = 7/18 (R2 changes
from unstable to stable via a transcritical bifurcation)
and C2 = 1/2 (S changes from stable to unstable via a
transcritical bifurcation). This panel shows the complex-
ity associated with the stability and basins of attraction
of the three tumor subpopulations even in such a simple
model, but also gives us the opportunity to exploit the
inherent underlying dynamics associated with the differ-
ent trajectories using piecewise constant chemo-dosing
protocols.

B. Non-additive interactions

Using the panel in figure 2 as our guide, we fo-
cus in more detail on the values C1 = 0.35, C2 =
0.27, comparing the effects of synergistic interac-
tions and antagonistic interactions with values e =
−0.4,−0.3,−0.2,−01., 0, 0.1, 0.2, 0.3, 0.4 in figure 5. For
strongly antagonistic interactions (e = −0.4,−0.3,−0.2),
only the two subpopulations S and R2 compete for
dominance (both ESS), with the R1 population being
an unstable state. For strongly synergistic interactions
(e = 0.2, 0.3, 0.4), the two subpopulations R1 and R2

compete for dominance (both ESS), with the popula-
tion of cells S sensitive to both drugs being an unstable
state. It is the intermediate regime e = −0.1, 0, 0.1 that
is the most interesting, and has all three evolutionary sta-
ble populations competing for dominance (all three ESS)
with intertwined basins of attraction for each. We ex-
amine the details of the bifurcations that occur between
the two-species co-existence and three-species co-existing
states next.

(a) (b)

(c) (d)

FIG. 2. Depiction of evolutionary stable states (ESS) for
different chemotherapy values. (a) With no chemotherapy,
the tumor saturates to the S corner regardless of the initial
make-up of the three subpopulations. (b) With C1 = 0, and
C2 = 0.8, competitive release of the resistant population R1

drives all trajectories to the R1 corner. (c) With C1 = 0.8
and C2 = 0, competitive release of the resistant population
R2 drives all trajectories to the R2 corner. (d) Trajectories
associated with three different constant combinations of C1

and C2, depicting the overlap of the trajectories at different
times.

FIG. 3. Tumor growth curves (log-plots) for untreated and
constant therapies. Tumor recurrence (dashed line) occurs at
t ∼ 75 dimensionless time units.

Transcritical bifurcations

In figure 6, we focus on the range of antagonistic val-
ues e = −0.21,−0.19,−0.175,−0.15 for fixed values of
C1 and C2. The relevant bifurcation that occurs at the

critical value e
(a)
c = −310/1701 = −0.1822 takes place at

the R1 corner, when the fixed point R1 = 1 goes from un-

stable (e < e
(a)
c ) to asymptotically stable (e > e

(a)
c ) in a

transcritical bifurcation (exchange of stability). Through
the bifurcation point, a stable fixed point (shown in fig-
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FIG. 4. Panel showing the full range of trajectories, ESS and their basins of attraction for constant additive therapies in the
range 0 ≤ C1 ≤ 1, 0 ≤ C2 ≤ 1, C1 + C2 ≤ 1. Bifurcation values along top row are C2 = 1/3, C2 = 1/2. Bifurcation values
along left column are C1 = 7/18, C1 = 1/2.

ure 6(a) outside the triangle below R1) moves up the
R1 − S side of the triangle (R2 = 0), and exchanges sta-
bility with the fixed point at the R1 corner. In figure 7
we show the details of the collision of eigenvalues that
takes place (figure 7(a)) and the process in the dS/dt vs.
S plane (figure 7(b)-(e)). Figure 7(b) shows the classic
transcritical bifurcation diagram (see [46]). When the
level of antagonism is sufficiently large, there are only
the two evolutionary stable states S and R2.

In figure 8 we highlight the bifurcation that takes place
in the synergistic regime around values e = 0, 0.1, 0.2, 0.3
for fixed values of C1 and C2. The transcritical bifurca-

tion occurs at the critical value e
(s)
c = 30/189 = 0.1587

takes place at the S corner, when the fixed point S = 1

goes from unstable (e > e
(s)
c ) to asymptotically stable

(e < e
(s)
c ). In figure 9 we show the details of the bifur-

cation diagram that governs this synergistic transcritical
bifurcation. When the level of synergism is sufficiently
large, there are only the two evolutionary stable states
R1 and R2.

In figure 10 we show the areas of three basins of attrac-
tion through the full range of values −0.3 ≤ e ≤ 0.3. The
basin areas begin to rapidly change in the antagonistic
regime at e = −0.2 and, in general, show much more sen-
sitivity to changes in e in the antogonistic regime than
the synergistic regime.

Figure 11 shows the average fitness curves (figure
11(a)) and tumor growth curves (figure 11(b)) through a
range of values of e. Notice, in the beginning, the average
fitness of the antagonistic case e = −0.3 is higher, but
ends up lower over time. The tumor growth curve in this
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. The effect of synergy (e > 0) vs. antagonism (e < 0)
on the ESS and the basins of attraction for a fixed choice of
constant combination therapies C1 = 0.35, C2 = 0.27. (a)
e = −0.4; (b) e = −0.3; (c) e = −0.2; (d) e = −0.1; (e) e = 0;
(f) e = 0.1; (g) e = 0.2; (h) e = 0.3; (i) e = 0.4.

case follows the same trend - initially tumor growth is
highest, then ends up lowest. Tumor recurrence time
for the antagonistic case is also pushed later in time
(t ∼ 300) showing the effectiveness of antagonistic drug
interactions in terms of managing resistance.

IV. DESIGNING ADAPTIVE SCHEDULES

Many new possibilities can be created with time-
dependent chemoschedules C1(t), C2(t), if we monitor
the balance of the subpopulations and adaptively make
changes at judiciously chosen time points. The basic idea
is shown in figure 2(d) where we see how the trajectories
associated with different constant chemotherapy sched-
ules cross. At any of the crossing times, it is possible
to switch from one trajectory to another by switching
the values of C1 or C2 at those crossing times (typically
termed bang-bang control [47]). This basic procedure al-
lows us to design schedules that take us from any point
A in the triangle to any other point B along the legs of
a path that are separated by the switching times. Using
multiple time-switching, we can also design trajectories
that form closed loops and never converge to any of the
corners.

Figure 12 shows examples of how closed (piecewise dif-
ferentiable) orbits are designed in practice. In each of
the figures, point O is fixed, as is the untreated (blue)
curve with C1 = 0, C2 = 0. Consider the loop OABO

(a) (b)

(c) (d)

FIG. 6. The opening of the basin of attraction for R1 via
a transcritical bifurcation at e = −310/1701 = −0.1822,
C1 = 0.35, C2 = 0.27. At the bifurcation point, the ar-
eas of the basins of attraction of the respective regions are
S = 76.2%, R2 = 13.8%. (a) e = −0.21; (b) e = −0.19; (c)
e = −0.175; (d) e = −0.15.

(a) (b)

(c) (d) (e)

FIG. 7. Four ways of depicting the antagonistic transcritical
bifurcation. (a) Eigenvalue collision that takes place as the
two fixed points collide at the R1 corner. The other eigen-
value remains negative for both fixed points; (b) Transcritical
bifurcation diagram; (c) Pre-bifurcation phase plane; (d) Bi-
furcation phase plane; (e) Post-bifurcation phase plane.

created figure 12(a), with additive interaction parame-
ter e = 0. In traversing the OA leg, we use C1 = 0.5,
C2 = 0.2. When the trajectory reaches point A, we
switch to C1 = 0, C2 = 0, i.e. no therapy. When we
reach point B, we switch to C1 = 0.2, C2 = 0.5 until
we reach point O, and then we start the schedule again
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(a) (b)

(c) (d)

FIG. 8. The closing of the basin of attraction for S via a
transcritical bifurcation at e = 30/189 = 0.1587, C1 = 0.35,
C2 = 0.27. At the bifurcation point, the areas of the basins
of attraction of the respective regions are R1 = 72.3%, R2 =
17.7%. (a) e = 0; (b) e = 0.1; (c) e = 0.2; (d) e = 0.3.

(a) (b)

(c) (d) (e)

FIG. 9. Four ways of depicting the synergistic transcritical
bifurcation. (a) Eigenvalue collision that takes place as the
two fixed points collide at the S corner. The other eigen-
value remains negative for both fixed points; (b) Transcritical
bifurcation diagram; (c) Pre-bifurcation phase plane; (d) Bi-
furcation phase plane; (e) Post-bifurcation phase plane.

to traverse the same loop as many times as we desire.
The dose density plot is shown in figure 12(b). Figures
12(c),(d) uses the same dosing values, but with e = 0.3
(synergistic). The loop in this case is larger (encloses
more area), so there is a larger deviation in the sub-
populations throughout the loop than there was for the
additive case. Figure 12(e),(f) shows an example of an
antagonistic e = −0.3 adaptive therapy loop. Table I

FIG. 10. Areas of the three basins of attraction as a function
of the parameter e. Note the sensitivity of the S and R1

regions in the antagonistic regime −0.2 ≤ e ≤ −0.1.

(a) (b)

FIG. 11. (a) Average fitness curves for e =
0.3, 0.15, 0,−0.15,−0.3; (b) Tumor growth curves (log-
plot) for e = 0.3, 0.15, 0,−0.15,−0.3.

shows the total dose D, time period T , and average dose
D/T for each case. The antagonistic adaptive loop deliv-
ers the smallest total dose over the shortest time-period
to achieve one closed loop, whereas the synergistic adap-
tive loop delivers the smallest average dose over the loop,
since the time-period is longest.

e -0.3 0 0.3
D 118.23 119.42 120.47
T 178.7 192.5 206.7

D/T 0.6616 0.6204 05828

TABLE I. Total dose (D), Time period (T), and Average Dose
(D/T) associated with adaptive therapies with antagonistic,
additive, and synergistic drug interactions.

Figure 13 shows the tumor growth curves for each of
the adaptive schedules as compared with the untreated
growth curve (exponential growth), and constant ther-
apy curve (each shows tumor regression followed by re-
currence). In each case, the adaptive loop overcomes re-
currence, with the antagonistic schedule minimizing the
tumor re-growth leg (AB) of the schedule.

A final metric that we use for comparisons is the rate
of adaptation of the subpopulation i, defined by:
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(a) (b)

(c) (d)

(e) (f)

FIG. 12. Closed loop adaptive schedules OABO using three
cycles for e = 0, 0.3,−0.3. (a)e = 0, OA: C1 = 0.5, C2 =
0.2, AB: C1 = 0, C2 = 0, BO: C1 = 0.2, C2 = 0.5; (b)
Corresponding adaptive schedule; (c) e = 0.3, OA: C1 =
0.5, C2 = 0.2, AB: C1 = 0, C2 = 0, BO: C1 = 0.2, C2 = 0.5;
(d) Corresponding adaptive schedule; (e) e = −0.3, OA: C1 =
0.5, C2 = 0.2, AB: C1 = 0, C2 = 0, BO: C1 = 0.2, C2 = 0.5;
(f) Corresponding adaptive schedule.

αi(t) =
1

t

∫ t

0

xi(s)ds, (23)

which is the time-average of subpopulation level xi(t).
Figure 14 shows the rates of adaptation associated with

the two resistant subpopulations R1 and R2 during the
course of the adaptive schedules. Notice the rate of adap-
tation is lowest for the antagonistic interaction, which is
the main reason the tumor growth curve in figure 13(c)
is most effective at controlling and delaying tumor recur-
rence as the cell population evolves.

V. DISCUSSION

The role of synergistic vs. antagonistic combination
drug interactions on the dynamical balance of evolving
subpopulations of cells is not simple to characterize. In

(a) (b) (c)

FIG. 13. Tumor growth curves for the adaptive schedules
from figure 12 as compared with untreated growth (exponen-
tial) and constant schedule which eventually leads to tumor
recurrence. (a) e = 0; (b) e = 0.3; (c) e = −0.3.

(a) (b)

FIG. 14. Rates of adaptation for e = 0, 0.3,−0.3: (a) R1

rate of adaptation; (b) R2 rate of adaptation; (c) x1 rate of
adaptation; (d) x2 rate of adaptation;

general terms, antagonistic interactions are able to ex-
ert a more targeted and subtle range of influences on an
evolving population than synergistic ones which, roughly
speaking, cause the two drug combination to effectively
act as one. This limits their flexibility for designing effec-
tive strategies to manage resistance, although might be
useful in producing a bigger killing effect with a smaller
dose. As a by-product of the ability to deliver a more
nuanced effect on the balance of cells, the sensitivity to
small changes in the relative doses of the two drugs in an
antagonistic setting seems to be higher than in a syner-
gistic setting (as shown best in figure 10). This, perhaps,
makes these interactions harder to control. Tumor re-
currence times for the antagonistic drug interactions are
delayed more effectively than for synergistic interactions,
consistent with the fact that adaptation rates are slower
for antagonistic interactions. Anatagonistic drug inter-
actions provide more flexibiility in designing adaptive re-
sistance management schedules. Additional features to
our model could be the introduction of mutations that
might occur in response to the chemotherapy, which po-
tentially could be handled using a mutational replicator
system [3], or a finite-cell Moran process based model
[40]. It might also be possible to analyze existing indi-
vidual patient data and tumor response curves (as was
done in [45]) to design and optimize better multi-drug
strategies retrospectively, which is ongoing by our group.
There are also ongoing adaptive multi-drug clinical tri-
als at the Moffitt Cancer Center that show promise in
prostate cancer patients.
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