1 Title

2	Metabolite	profiling	ofext	perimental	cutaneous	leishm	aniasis	lesions	demonstrates	significant
_	1.10.000.01100	P	r		• • • • • • • • • • • • • • • • • • • •					0.0

3 perturbations in tissue phospholipids

4 Short Title

5 Metabolism of infection in cutaneous leishmaniasis skin lesions

6 Authors and Affiliations

- 7 Adwaita R. Parab^{1,2}, Diane Thomas³, Sharon Lostracco-Johnson³, Jair Lage de Siqueira-Neto³,
- 8 James McKerrow³, Pieter C. Dorrestein^{3,4,5}, Laura-Isobel McCall^{1,2,6*}

9

¹Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma,
 United States of America.

²Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma,
 Norman, Oklahoma, United States of America.

³Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
 La Jolla, California, United States of America.

⁴Center for Microbiome Innovation, University of California San Diego, La Jolla, California,
 United States of America.

- ⁵Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La
 Jolla, California, United States of America.
- ⁶Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma,
 United States of America.

22

- 23 *Corresponding author
- 24 E-mail: <u>lmccall@ou.edu</u> (LIM)
- 25

26 Abstract

27 Each year 700,000 to 1.2 million new cases of cutaneous leishmaniasis (CL) are reported 28 and yet CL remains one of thirteen diseases classified as neglected tropical diseases (NTDs). 29 *Leishmania major* is one of several different species of that same genus that can cause CL. 30 Current CL treatments are limited by adverse effects and rising resistance. Studying disease 31 metabolism at the site of infection can lead to new drug targets. In this study, samples were 32 collected from mice infected in the ear and footpad with L. major and analyzed by untargeted 33 liquid chromatography-tandem mass spectrometry (LC-MS/MS). Significant differences in 34 overall metabolite profiles were noted in the ear at the site of the lesion. Interestingly, lesion-35 adjacent, macroscopically healthy sites also showed alterations in specific metabolites, including 36 select phosphocholines (PCs). Host-derived PCs in the lower m/z range (m/z 200-799) showed an 37 increase with infection in the ear at the lesion site, while those in the higher m/z range (m/z 800-38 899) were decreased with infection at the lesion site. Overall, our results expanded our 39 understanding of the mechanisms of CL pathogenesis through the host metabolism and may lead 40 to new curative measures against infection with Leishmania.

41 Author summary

Cutaneous leishmaniasis (CL) is one of thirteen neglected tropical diseases in the world today. It is an infectious disease with a wide distribution spanning five continents, with increasing distribution expected due to climate change. CL manifests as skin lesions and ulcers that are disabling and stigmatized. With the current treatment options being limited, studying host-pathogen metabolism can uncover mechanisms of disease pathogenesis that may lead to new curative measures against infection. In this paper we used untargeted metabolomics to address molecular-level changes occurring *in vivo* in experimental skin lesions of *Leishmania* 49 *major*. Distinct global metabolic profiles were observed. Total phosphocholines (PCs) and those 50 in the lower *m/z* ranges were significantly higher at the site of the skin lesion in the ear. In 51 addition, specific PCs as well as PCs of varied *m/z* ranges were also affected at healthy-52 appearing lesion-adjacent sites, indicating that infection-induced metabolic perturbations are not 53 restricted to the lesion site. Ultimately, these results provide essential clues to the metabolic 54 pathways affected by CL.

55 Introduction

70

56 Leishmaniasis affects people in 88 countries worldwide in tropical, subtropical and 57 temperate regions, putting approximately 350 million individuals at risk of infection, with 58 approximately 12 million battling the disease [1]. It is one of the three most impactful vector-59 borne protozoan neglected tropical diseases, causing approximately 2.1 million DALYs 60 (Disability-Adjusted Life Years) and 51,000 deaths. With recent population movements, 61 leishmaniasis is now affecting people in non-endemic regions as well. The expanding spread of 62 leishmaniasis can be attributed to climate change and social constraints of populations living in poverty and conflict. Leishmaniasis is a disease that is exacerbated by poverty and socio-63 64 economic barriers, increasing rates of disease progression, mortality and morbidity [2]. It comes 65 at the high cost of treatment with the consequences of low or no income due to social stigmas 66 associated with the symptoms of skin lesions, ulcers and disfigurement. Ultimately it puts 67 financial burdens on individuals as well as societies as a whole [3]. Leishmaniasis is caused by about 20 different species of the parasite Leishmania, with 68 69 three clinical syndromes: visceral, cutaneous (CL) and mucocutaneous leishmaniasis. CL is the

71 parts of the body. Mucocutaneous leishmaniasis is a disabling form in which the lesions can lead

most common form of the disease and symptoms include skin lesions and ulcers on exposed

72 to destruction of soft tissue of the nose, mouth and throat cavities. Of the three clinical forms of 73 the disease, visceral leishmaniasis (kala-azar) is the most deadly, with serious symptoms like 74 swelling of the liver and spleen, extreme anemia and frequent bouts of fever. Infection is 75 transmitted through female sand-flies of the Phlebotomus genus in the Old World and Lutzomyia 76 genus in the New World [4]. Promastigotes enter the body upon being bitten by a female sandfly. 77 They are taken up by macrophages, where they enter the amastigote stage, multiplying and 78 affecting various tissue types depending on whether infection is initiated by a viscerotropic or 79 dermotropic parasite strain [5][6]. This initiates the clinical manifestations of the disease. 80 Humans as well as other mammals serve as host reservoirs for the parasite [7]. The current course of treatment for CL is usually antimonial drug compounds. These are 81 82 known to be highly toxic compounds, in addition to the threat of increased parasite-resistance to 83 antimony in several regions of the world. Miltefosine, amphotericin B and paromomycin are 84 among the other drugs that are administered for CL treatment, all of which have the drawbacks 85 of high level of toxicity, increased drug resistance and treatment failure. Miltefosine is also teratogenic and should not be given to women in childbearing age. Treatment failure can be 86 attributed to the characteristics of the host (immune system and nutritional status), of the parasite 87 88 (mechanisms of survival within the host, drug resistance mechanisms, tissue location, etc.) and 89 environmental factors such as awareness and treatment accessibility [8]. Approaching disease 90 pathogenesis from a molecular perspective could uncover new mechanisms of infection and aid 91 in developing new cures for leishmaniasis [9]. Alongside genes and proteins, metabolites play an important role in the life of an 92 93 organism. The metabolome reflects the true functional endpoint of a complex biological system

94 and provides a functional view of the organism by taking into account the sum of its genes,

95	RNA, proteins and its environment [10]. Untargeted metabolomics can help identify metabolites
96	involved in disease pathogenesis, in an unbiased fashion, acquiring data across a broad mass
97	range [11]. For example, untargeted metabolomics has shown that miltefosine's mode of action
98	may be related to modulation of parasite lipid metabolism, particularly increased levels of by-
99	products of lipid turnover [12]. The overall aim of this work was to perform an untargeted
100	metabolic analysis of CL lesions in mice infected with Leishmania major. Our results showed
101	significant changes in the host metabolism, specifically the PC pathway, in the skin lesions of
102	CL.
103	Methods
104	Ethics statement
104 105	Ethics statement All vertebrate animal studies were performed in accordance with the USDA Animal
105	All vertebrate animal studies were performed in accordance with the USDA Animal
105 106	All vertebrate animal studies were performed in accordance with the USDA Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals of the National Institutes
105 106 107	All vertebrate animal studies were performed in accordance with the USDA Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Euthanasia was performed by isoflurane overdose followed by cervical dislocation,

110 In vivo experimentation

Female BALB/c mice (6-8 week-old) were injected intradermally in the left ear with 1x10⁶ luciferase-expressing *L. major* strain LV39 promastigotes or in the left rear footpad with 5x10⁶ luciferase-expressing *L. major* strain LV39 promastigotes in PBS [13]. Infected and uninfected ear tissue were collected 8 weeks post-infection and infected and uninfected footpads were collected 7 weeks post-infection, and immediately snap-frozen. Samples were stored at -80°C until metabolite extraction. Parasites were maintained at 28 °C in M199 medium (Sigma) supplemented with 10% fetal bovine serum (Sigma), 1% penicillin-streptomycin, RPMI 1640 118 vitamin mix (1%), HEPES (25 mM), adenosine (100 µM), glutamine (1 mM), hemin (0.005%),

119 NaHCO₃ (12 mM) and folic acid (10 μ M) (pH 7.2) [14].

120 LC-MS/MS

121 Metabolite extraction, liquid chromatography and mass spectrometry were performed as 122 previously described [15]. Briefly, metabolites were extracted with 50% methanol (aqueous 123 extract) followed by 3:1 dichloromethane:methanol (organic extract). LC was performed on an 124 UltiMate 3000 UHPLC (Thermo Scientific) with Phenomenex UHPLC 1.7 µm 100 Å Kinetex 125 C8 column (50 X 2.1 mm), and with water and 0.1% formic acid as mobile phase A and 126 acetonitrile and 0.1% formic acid as mobile phase B, flow rate of 0.5 mL/min and column 127 temperature of 40°C. Daily MS calibration was performed with ESI-L Low Concentration 128 Tuning Mix (Agilent Technologies). The internal calibrant was Hexakis(1H,1H,3H-129 tetrafluoropropoxy)phosphazene (Synquest Laboratories), m/z 922.009798 which was present 130 throughout the run. MS/MS data for each run was collected by fragmentation of the ten most 131 intense ions, in range 80-2,000 m/z, with active exclusion after 4 spectra and release after 30s. 132 LC gradients and MS parameters for each extraction were as follows (Table 1 and Table 2).

Table 1. LC Gradients.

Ear aqueous extraction			
Start	2% B		
1 min	2% B		
1.5 min	40% B		

4 min	98% B
5 min	98% B
6 min	2% B
7 min	2% B
Ear orga	anic extraction
Start	2% B
1 min	2% B
1.5 min	60% B
5.5 min	98% B
7.5 min	98% B
8.5 min	2% B
10.5 min	2% B
Footpad aq	ueous extraction
Start	2% B
1 min	2% B
1.5 min	40% B
6 min	98% B
6.5 min	98% B

7 min	2% B			
Footpad organic extraction				
Start	2% B			
1 min	2% B			
1.5 min	70% B			
7 min	98% B			
8 min	98% B			
9 min	2% B			
10.5 min	2% B			

133

Table 2. MS parameters.

Nebulizer gas pressure	2 Bar
Capillary voltage	4,500 V
Ion source temperature	200°C
Dry gas flow	9.0 L/min

Spectra rate acquisition	3 spectra/s

134

135 LC-MS/MS Data analysis

- 136 LC-MS/MS data was processed using MZmine 2.37 [16], with parameters as shown in
- 137 Table 3.

Table 3. MZmine parameters

Mass Detection					
MS level 1: Noise level	1.00E+03				
MS level 2: Noise level	10				
Mass detector	Centroid				
Chromatogram Buil	der				
Min time span	0.06 min				
Min peak height	3.00E+03				
m/z tolerance	1e-6 or 10 ppm				
Chromatogram Deconve	olution				
Algorithm	Baseline cutoff				
Min peak height	3.00E+03				
Peak duration range (min)	0.06-2 min (ear), 0.01-7 min (footpad)				

Baseline level	1.00E+02 (ear), 1.50E+03 (footpad)		
m/z range for MS2 scan pairing (Da)	0.01		
RT range for MS2 scan pairing (min)	0.2 min		
Isotopic Peaks	s Grouper		
m/z tolerance	1e-6 or 10 ppm		
Retention time tolerance (absolute: min)	0.05 min		
Monotonic shape	Enabled		
Maximum charge	3		
Representative isotope	Most intense		
Join Ali	gner		
m/z tolerance	1e-6 or 10 ppm		
Weight for m/z	7		
Retention time tolerance (absolute: min)	0.5 min		
Weight for RT	3		
Manual Fi	Itering		
Min number of peaks per row	3		
RT range	0.2-10.5 (ear organic and footpad), 0.2-6.9 (ear aqueous),		

MS2	required	
Manual validation of peak shape		
Gap-filing		
m/z tolerance	0.000001 or 10 ppm	
RT tolerance	0.5 min	
Intensity tolerance	30%	
RT correction	Enabled	

138

139 Total ion current (TIC) normalization and data processing was performed in Jupyter 140 notebook with R [17]. Principal Coordinate Analysis (PCoA) was done using the Bray-Curtis-141 Faith dissimilarity matrix implemented in OIIME1 [18] and PERMANOVA calculations were 142 performed using the R package "vegan" to compare the chemical similarity of samples from the 143 four groups of varying condition and position of infection [19,20]. EMPeror was used to 144 visualize PCoA plots [21]. randomForest package in R was used to find variables of importance 145 associated with infection and sampling conditions, using 7000 trees [22]. Global Natural 146 Products Social Molecular Networking platform (GNPS) was used to annotate molecules from 147 spectral library references and to perform feature-based molecular networking [23][24][25]. The 148 following parameters were used in GNPS: precursor ion mass tolerance of 0.02 Da, fragment ion 149 mass tolerance of 0.02 Da, minimum cosine score of 0.7 and 4 or more matched fragment ions. 150 The maximum shift allowed between two MS/MS spectra was 500 Da, 10 maximum neighbor 151 nodes allowed and maximum difference between precursor ion mass of searched MS/MS

4 5 0	, 1 1 1 1		100 D C	. 1 . 1	1 / 11	• 1 •	•
152	spectrum and library	snectra was	100 Da N	nectral matches	were evaluated by	considering	cosine.
102	speed and and notary	spectra mas	100 Du. D	peetiai materies	mere evaluated by	considering	cosme

- 153 scores, quality of mirror plots, as well as the number of matched peaks. Molecular network
- 154 visualization was done in Cytoscape 3.7.2 [26]. Notched box plots showing metabolite feature
- abundance for the four different groups (infected/uninfected vs. center/edge) for the ear samples
- and two different groups (infected vs. uninfected) for the footpad samples along with non-
- 157 parametric two-tailed Wilcoxon statistical tests were both performed in R. Boxplot whiskers
- 158 represent the lowest and largest data points and non-overlapping boxplot notches indicate
- 159 different medians between groups (95% confidence).

160 Data Availability Statement

- 161 Data has been deposited in MassIVE (massive.ucsd.edu, accession numbers
- 162 MSV000081004 (ear) and MSV000080239 (footpad)). Molecular networking can be accessed
- 163 here: <u>https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=451754c383de461e9e4abdf6eb3199d2</u>
- 164 (aqueous ear extraction),
- 165 <u>https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0d092bbb213347c3bd7a19b9cae2bcf4</u>
- 166 (organic ear extraction),
- 167 <u>https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=becfa09afe7b4f83a7c5621029f2df24</u> (aqueous
- 168 footpad extraction),
- 169 <u>https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=fb6f32dcafe34ec587bb264341814217</u>
- 170 (organic footpad extraction).
- 171 **Results**
- 172 To better understand the impact of infection on tissue metabolites, we analyzed overall
- and specific metabolite differences in the presence and absence of infection with *L. major*, at
- 174 sites of lesion and lesion-adjacent sites (with no visible signs of infection). BALB/c mice were

175	injected intradermally in the ear. Eight weeks post-infection, samples were collected from the
176	area where the parasites were injected, which showed skin lesions ("infected ear center"), the
177	surrounding area that appeared infection-free ("infected ear edge"), and the matched tissue
178	regions from the uninfected ear ("uninfected ear center", "uninfected ear edge") (Fig 1 A).
179	Metabolites were extracted with aqueous and organic solvents and analyzed by untargeted LC-
180	MS/MS (see Methods). Overall, for both aqueous and organic extractions, distinct global
181	metabolite profiles were observed by Principal Coordinate Analysis (PCoA) for the infected ear
182	center compared to infected ear edge (PERMANOVA p<0.01, aqueous extraction $R^2 = 0.743$,
183	organic extraction R ² = 0.643, Fig 1 B and 1 C), to uninfected ear center (PERMANOVA p<0.01,
184	aqueous extraction R ² =0.739, organic extraction R ² =0.805, Fig 1 B and 1 C) and to uninfected
185	ear edge (PERMANOVA p<0.01, aqueous extraction R ² =0.288, organic extraction R ² =0.248,
186	Fig 1 B and 1 C). In contrast, no significant differences for both aqueous and organic extracts by
187	PCoA analysis in terms of overall metabolite profile were observed between infected ear edge
188	and uninfected ear samples (PERMANOVA p>0.1, Fig 1 B and 1 C). Thus, L. major infection
189	changes the overall tissue chemical composition at the lesion location in the ear. In contrast, the
190	impact of L. major infection on overall footpad metabolite profile for the organic
191	(PERMANOVA p=0.218 R ² =0.156, S1 Fig) and aqueous (PERMANOVA p=0.244 R ² =0.146,
192	S1 Fig) extractions was much more minor.

193

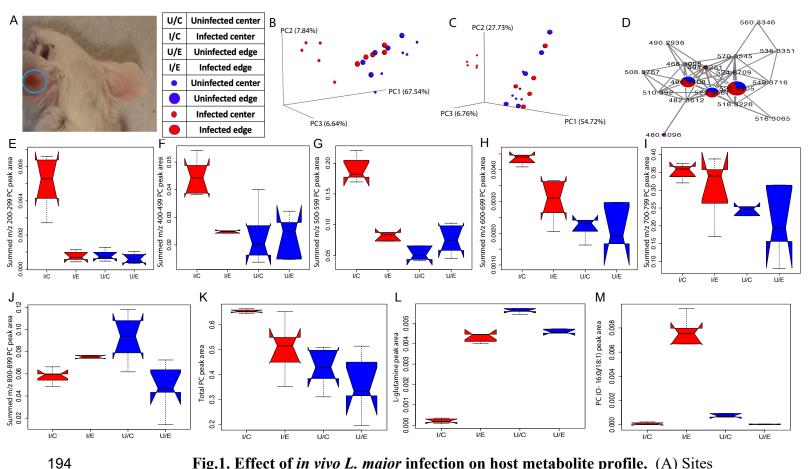


Fig.1. Effect of in vivo L. major infection on host metabolite profile. (A) Sites 195 of infection and sample collection. Lesion at the center of the infected ear is 196 circled in blue. (B) PCoA analysis of aqueous extraction from infected and 197 uninfected ear samples, showing overall differences in metabolite profiles 198 between sampling sites. PERMANOVA p=0.004, $R^2=0.288$. (C) PCoA analysis 199 of organic extraction from infected and uninfected ears, showing differences in 200 global metabolite profiles between sampling sites. PERMANOVA p=0.003, 201 $R^2=0.248$. (D) Representative subnetwork of phosphocholine (PC) molecular 202 family members found in ear tissue and showing high relative abundance with 203 infection (red) and low abundance without infection (blue). (E-J) PCs in the m/z

204	range 200-299, 400-499, 500-599, 600-699, 700-799 and 800-899, respectively,
205	change with infection and sampling position in the ear. (K) Total PC levels were
206	increased at the site of infection in the ear. Non-overlapping boxplot notches
207	indicate significantly different medians between groups [27]. (L) Representative
208	metabolite decreased by infection at the site of the lesion: glutamine (Wilcoxon
209	rank-sum test comparing infected ear center vs infected ear edge p=0.007937).
210	(M) Representative metabolite increased only at infection-adjacent sites: 1-
211	hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (PC(O-16:0/18:1),
212	Wilcoxon rank-sum test comparing infected ear center vs infected ear edge
213	p=0.007937).
214	Random forest machine learning analysis [22] was performed to identify the metabolites
215	most affected by infection in both experimental systems, with annotation performed using
216	molecular networking and GNPS [23]. Annotatable molecules most highly affected by infection
217	include metabolites of the phosphocholine (PC) family of phospholipids, glutamine, and
218	eicosatrienoic acid (Table 4, 5, 6, 7, S2 Fig). Glutamine was decreased with infection at the site
219	of the ear lesion (Wilcoxon rank sum test p value=0.0079 compared to the uninfected ear center,
220	Fig 1 L), although it was unaffected by infection in the footpad, and eicosatrienoic acid was
221	increased in the infected footpad (Wilcoxon rank sum test p value=0.0079). Given that many of
222	the differential molecules are PCs, we investigated the impact of infection on this family in
223	greater detail. Molecular network analysis of PC family molecules in both aqueous and organic
224	ear extracts showed that most detected PCs were strongly affected by infection (Fig 1 D, S3 Fig).
225	In particular, total PCs and PCs in the lower ranges of m/z 200-299, 400-499, 500-599, 600-699
226	were significantly higher in the infected ear center compared to the infected ear edge, to

227 uninfected ear center, and to uninfected ear edge, as well as for all uninfected samples (both 228 positions combined) vs all infected samples (both positions combined) (Wilcoxon rank sum test 229 p value<0.05 for each pairwise comparison, Fig 1 E, F, G, H, K). Given that all these PCs were 230 detected in both infected and uninfected samples, albeit at differential abundances, they are host-231 derived rather than parasite-derived. No PCs were detected in the m/z 300-399 range. PCs in the 232 range of m/z 700-799 showed a similar trend where the infected and uninfected sample groups 233 were significantly different (Wilcoxon rank sum test p value < 0.05). PCs in the range of m/z 700-234 799 were significantly higher in the infected ear center compared to the uninfected ear edge and 235 center (Wilcoxon rank sum test p value<0.05, Fig 1 I), while the levels of PCs were comparable 236 between infected ear center and edge (Wilcoxon rank sum test p value = 0.55, Fig 1 I). In the m/z237 800-899 range the opposite trend was seen, where the uninfected ear samples were not 238 significantly different from the infected ear (Wilcoxon sum rank test p value=0.9, Fig 1 J). 239 However, PCs in the range m/z 800-899 were significantly higher in the uninfected ear center 240 than the infected ear center (Wilcoxon rank sum test p value<0.05, Fig 1 J). In contrast, the 241 footpad PCs aggregated into m/z ranges did not show significant differences between the infected 242 and uninfected groups, although specific PCs were increased by infection in the footpad (Table 243 6, 7). These results indicate that PCs are strongly affected by cutaneous *Leishmania* infection. In 244 addition, our observation that specific PCs as well as PCs of varied m/z ranges are also affected 245 at lesion-adjacent sites ("infected ear edge") indicates that infection-induced metabolic 246 perturbations are not restricted to the lesion site, revealing a better picture of what is happening 247 to the host during the disease state and providing clues to the pathways involved.

Table 4. Most differential metabolite features	s (as identified by	y random forest analysis) for ear aqueous extraction

m/z	RT	Spectral match	Mass	PPM	Cosine	Number	Impact of	P value	P value	P values	Effect in	Effect in
		on GNPS /	difference	error	score	of	infection	(infected	(infected ear	(infected ear	Footpad	Footpad
		LIPID MAPS				matched	in the ear	ear center	edge vs	VS	(Aqueous	(Organic
		annotation				peaks		VS	uninfected	uninfected	extraction)	extraction)
						-		uninfected	ear edge)	ear)		
								ear center)				
794.6051	4.42	PC family	NA	NA	NA	NA	increased	0.056	0.0079	0.48	ND	increased
		member;					in					in infected
		LipidMAPS:					infected					footpad
		PC(O-38:5)					ear edge					
772.6201	4.73	PC family	NA	NA	NA	NA	increased	0.016	0.0079	0.39	ND	ND
		member					in					
							infected					
							ear edge					
750.5435	5.06	PC family	NA	NA	NA	NA	increased	0.0079	0.0079	2.2E-05	ND	unaffected
		member					in					by
							infected					infection
155.0400	0.05						ear center	0.0070	0.00	0.00	• 1	ND
155.0498	0.85	NA	NA	NA	NA	NA	increased	0.0079	0.22	0.68	increased	ND
							in				in infected	
							infected				footpads	
							& uninfected					
752.5585	5.07	NA	NA	NA	NA	NA	ear edges increased	0.0079	0.0079	1.1E-05	ND	increased
152.3383	5.07	INA	INA	INA	INA	INA		0.0079	0.0079	1.1E-03		in infected
							in infected					
												footpad (not
							ear center					statistically
												significant)
												significant)

744.5906	4.48	PC family member	NA	NA	NA	NA	increased in infected ear edge	0.0079	0.0079	0.052	ND	increased in infected footpad (not statistically significant)
746.6052	4.78	1-headecyl-2- (9Z- octadecenoyl)- sn-glycero-3- phosphocholine	0	4	0.96	14	increased in infected ear edge	0.032	0.0079	0.28	ND	increased in infected footpad
796.6205	4.91	PC family member	NA	NA	NA	NA	increased in infected ear edge	0.15	0.0079	0.11	ND	increased in infected footpad
147.0815	0.34	glutamine	0.005	31	0.87	4	decreased in infected ear center	0.0079	0.42	0.00073	unaffected by infection	unaffected by infection
770.605	4.58	PC family member	NA	NA	NA	NA	increased in infected ear edge	0.31	0.0079	0.22	ND	unaffected by infection
720.5887	4.7	PC family member	NA	NA	NA	NA	increased in infected ear edge	0.095	0.0079	0.28	ND	increased in infected footpad
794.6052	6.13	PC(O-38:5)	NA	NA	NA	NA	increased in infected ear center	0.0079	0.0079	1.1E-05	ND	increased in infected footpad
330.1314	6.4	NA	NA	NA	NA	NA	increased in	0.0079	0.0079	1.1E-05	ND	ND

							infected					
							ear center					
169.0624	0.31	NA	NA	NA	NA	NA	decreased	0.011	0.55	0.011	unaffected	unaffected
							in				by	by
							infected				infection	infection
							ear center					
261.1474	0.47	NA	NA	NA	NA	NA	increased	0.095	0.31	0.31	unaffected	unaffected
							in				by	by
							infected				infection	infection
							&					
							uninfected					
							ear edges					

248 NA: not applicable; ND: not detected

Table 5 Most differential motabolite features (a	as identified by random forest analysis) for ear organic extraction
Table 5. Most unterential metabolite features (a	as identified by random forest analysis) for ear organic extraction
···· · · · · · · · · · · · · · · · · ·	

				(•		• /	8			
m/z	RT	Spectral	Mass	PPM	Cosine	Number	Impact	P value	P value	P values	Effect in	Effect in
		match on	difference	error	score	of	of	(infected	(infected	(infected	Footpad	Footpad
		GNPS /				matched	infection	ear center	ear edge	ear vs	(Aqueous	(Organic
		LIPID				peaks	in the	VS	VS	uninfected	extraction)	extraction)
		MAPS					ear	uninfected	uninfected	ear)		
		annotation						ear center)	ear edge)			
768.5862	5.26	PC family	NA	NA	NA	NA	increase	0.0079	0.0079	1.1E-05	ND	increased in
		member					d in					infected
							infected					footpad
							ear					1
792.5574	5.71	docosahea	0.01	8	0.86	7	increase	0.012	0.69	0.026	ND	unaffected by
		enoyl PAF					d in					infection
		C-16					infected					
							ear					
							center					
856.5826	5.87	PC(42:9)	NA	NA	NA	NA	increase	0.0079	1	0.11	ND	ND
		x ,					d in					
							uninfect					
							ed ear					
							center					
856.5826	5.9	PC(42:9)	NA	NA	NA	NA	increase	0.0079	0.84	0.075	ND	ND
		x ,					d in					
							uninfect					
							ed ear					
							center					
813.6845	5.27	N-	0	1	0.96	6	increase	0.016	0.0079	0.91	ND	increased in
		tetracosen					d in					infected
		oyl-4-					infected					footpad
												L
		oyi-4- sphingeny					ear edge					Tootpad

		l-1-O- phosphory lcholine										
790.5424	5.43	PC family member	NA	NA	NA	NA	increase d in infected & uninfect ed ear center	0.55	0.69	0.63	ND	unaffected by infection
828.5516	5.44	PC family member	NA	NA	NA	NA	increase d in uninfect ed ear center	0.0079	0.69	0.14	ND	increased in uninfected footpad
854.5676	5.36	PC(42:10)	NA	NA	NA	NA	increase d in infected & uninfect ed ear center	0.056	0.22	0.22	ND	unaffected by infection
806.5682	5.42	1- palmitoyl- 2- docosahea enoyl-sn- glycero-3- phosphoch oline	0.02	22	0.81	18	increase d in uninfect ed ear center	0.0079	1	0.089	ND	ND
834.5994	5.91	PC family member	NA	NA	NA	NA	increase d in uninfect	0.0079	0.55	0.35	ND	unaffected by infection

							ed ear center					
1017.687 3	3.04	NA	NA	NA	NA	NA	increase d in infected ear center	0.0079	0.15	0.0015	ND	ND
770.6019	5.7	PC family member	NA	NA	NA	NA	increase d in infected ear center	0.0079	0.095	0.00013	ND	ND
744.5848	5.59	PC family member	NA	NA	NA	NA	increase d in infected ear center	0.011	0.052	0.00033	ND	unaffected by infection
332.6611	2.29	NA	0	4	0.8	4	increase d in uninfect ed ear	0.0079	0.22	0.00032	ND	ND
377.2679	3.53	NA	NA	NA	NA	NA	increase d in infected ear center	0.0079	0.22	0.043	unaffected by infection	ND

250 NA: not applicable; ND: not detected

m/z	RT	Spectral match on GNPS / LIPID MAPS annotation	Mass difference	PPM	Cosine	Number of	Impact of infection	P values
		MAPS annotation	amerence	error	score	matched peaks	Infection	
331.2638	4.31	NA	NA	NA	NA	NA	increased in infected footpad	0.0079
368.2591	4.06	acylcarnitine family member	NA	NA	NA	NA	increased in infected footpad	0.0079
377.1461	2.41	NA	NA	NA	NA	NA	increased in infected footpad	0.012
425.3375	3.18	NA	NA	NA	NA	NA	increased in uninfected footpad	0.0079
210.1121	2.74	NA	NA	NA	NA	NA	increased in infected footpad	0.0079
212.1651	2.75	NA	NA	NA	NA	NA	increased in uninfected footpad	0.0079
206.1067	4.51	NA	NA	NA	NA	NA	increased in infected footpad	0.0079
549.2233	2.49	NA	NA	NA	NA	NA	increased in uninfected footpad	0.0079
522.2834	4.16	1-(9Z-octadecenoyl)-sn-glycero-3- phosphocholine	0	0	0.95	15	increased in infected footpad	0.0079
303.2323	4.1	5,6-epoy-8Z,11Z,14Z- eicosatrienoic acid	0	4	0.89	8	increased in infected footpad	0.0079
327.2325	4.05	NA					increased in infected footpad	0.0079
508.3764	4.01	1-(1Z-octadecenyl)-sn-glycero-3- phosphocholine	0	2	0.91	10	increased in infected footpad	0.0079

Table 6. Most differential metabolite features (as identified by random forest analysis) for footpad aqueous extraction

281.0052	2.55	NA	NA	NA	NA	NA	increased in	0.0079
							infected footpad	
377.2661	4.32	NA	NA	NA	NA	NA	increased in	0.0079
							infected footpad	
230.1756	2.74	NA	NA	NA	NA	NA	increased in	0.0079
							uninfected	
							footpad	

251 NA: not applicable

RT	Spectral match on GNPS / LIPID	Mass	PPM	Cosine	Number	Impact of	P values
	MAPS annotation	differenc e	error	score	of matche	infection	
5.9 7	PC O-38:5 / PC 37:5	0	2	0.81	d peaks	increased in infected footpad	0.0079
5.8 9	PC family member	NA	NA	NA	NA	increased in infected footpad	0.0079
4.7	PC family member	NA	NA	NA	NA	increased in infected footpad	0.0079
6.6 3	PC(O-32:0)	NA	NA	NA	NA	increased in infected footpad	0.0079
6.6 4	1-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine	0	3	0.8	6	increased in infected footpad	0.0079
5.3 6	PC(40:9)	NA	NA	NA	NA	increased in uninfected footpad	0.0079
6.5 5	PC family member	NA	NA	NA	NA	increased in infected footpad	0.0079
6.5 9	1-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine	0	3	0.8	6	increased in infected footpad	0.00791
6.0 1	1,2-di-(9Z-octadecenoyl)-sn-glycero-3- phosphoethanolamine	0	4	0.76	13	increased in infected footpad	0.0079
4.7 1	NA	NA	NA	NA	NA	increased in infected footpad	0.0079
3.7 9	NA	NA	NA	NA	NA	increased in infected footpad	0.0079
	$5.9 \\ 7 \\ 5.8 \\ 9 \\ 4.7 \\ 6.6 \\ 3 \\ 6.6 \\ 4 \\ 5.3 \\ 6 \\ 6.5 \\ 5 \\ 6.5 \\ 9 \\ 6.0 \\ 1 \\ 4.7 \\ 1 \\ 3.7 \\ 1 \\ 1 \\ 3.7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	MAPS annotation5.9PC O-38:5 / PC 37:5775.8PC family member94.74.7PC family member6.6PC(O-32:0)36.61-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine5.3PC(40:9)61-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine6.5PC family member51-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine6.01,2-di-(9Z-octadecenoyl)-sn-glycero-3- phosphoethanolamine4.7NA13.73.7NA	MAPS annotationdifferenc e5.9PC 0-38:5 / PC 37:507005.8PC family memberNA9904.7PC family memberNA6.6PC(0-32:0)NA6.61-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine05.3PC(40:9)NA6.5PC family memberNA6.51-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine06.51-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine06.01,2-di-(9Z-octadecenoyl)-sn-glycero-3- phosphocholine04.7NANA1113.7NANA	MAPS annotationdifferenc eerror 5.9 PC 0-38:5 / PC 37:502 7 $ 5.8$ PC family memberNANA 9 $ 4.7$ PC family memberNANA 6.6 PC(0-32:0)NANA 6.6 1-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine $ 5.3$ PC(40:9)NANA 6.5 PC family memberNANA 6.5 PC family member $ 6.5$ PC family member $ 6.5$ PC family member $ 6.5$ $ 6.5$ $ 6.5$ $ 6.5$ $ 6.5$ $ 6.5$ $ 6.0$ $1,2$ -di-(9Z-octadecenoyl)-sn-glycero-3- phosphocholine $ 6.0$ $1,2$ -di-(9Z-octadecenoyl)-sn-glycero-3- phosphoethanolamine $ 4.7$ NANANA 1 $ 3.7$ NANANA	MAPS annotationdifferenc eerrorscore5.9 7PC 0-38:5 / PC 37:5020.815.8 9PC family memberNANANA4.7PC family memberNANANA6.6 3PC(0-32:0)NANANA6.6 41-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine030.85.3 6PC family memberNANANA6.5 5PC family memberNANANA6.5 5PC family memberNANANA6.5 9I-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine030.86.5 91-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine040.766.0 1,2-di-(9Z-octadecenoyl)-sn-glycero-3- phosphoethanolamine040.764.7 1NANANANANA	MAPS annotationdifferenc eerror escoreof matche d peaks5.9PC 0-38:5 / PC 37:5020.8175.8PC family memberNANANANA4.7PC family memberNANANANA6.6PC(0-32:0)NANANANA6.61-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine030.865.3PC (40:9)NANANANANA6.51-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine030.866.51-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholineNANANANA6.51-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine030.866.01,2-di-(9Z-octadecenoyl)-sn-glycero-3- phosphoethanolamine040.76134.7NANANANANANA3.7NANANANANANA	MAPS annotationdifferenc eerror escore eof matche d peaksinfection5.9PC 0-38:5 / PC 37:5020.817increased in infected footpad5.8PC family memberNANANANAincreased in infected footpad4.7PC family memberNANANANAincreased in infected footpad6.6PC(0-32:0)NANANANAincreased in infected footpad6.61-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine030.86increased in infected footpad5.3PC(40:9)NANANANANAincreased in infected footpad6.51-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholineNANANANA6.5PC family memberNANANAincreased in infected footpad6.5PC family memberNANANANAincreased in infected footpad6.51-heptadecanoyl-2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-sn-glycero-3- phosphocholine030.86increased in infected footpad6.01,2-di-(9Z-octadecenoyl)-sn-glycero-3- phosphocholine040.7613increased in infected footpad6.01,2-di-(9Z-octadecenoyl)-sn-glycero-3- phosphocholineNANANANAindected footpad6.11-heptadecanoyl-sn-glycero-3- phosphocholineNA

Table 7. Most differential metabolite features (as identified by random forest analysis) for footpad organic extraction

480.3097	2.8 1	PC family member	NA	NA	NA	NA	increased in uninfected footpa	0.0079
813.6867	7.5	N-tetracosenoyl-4-sphingenyl-1-O- phosphorylcholine	0	4	0.91	6	increased in infected footpad	0.0079
585.534	3.5 3	NA	NA	NA	NA	NA	increased in infected footpad	0.016

252 NA: not applicable

253 **Discussion**

254 The metabolome provides a link between genotype and phenotype by identifying changes 255 occurring at the molecular level, for example when parasites and their hosts interact [28]. 256 Metabolism is also an indicator of the host physiological state. Understanding the infection-257 induced host metabolic alterations could lead to new treatments for parasitic diseases [29], 258 particularly host-targeted drug therapy focused on pathways otherwise redundant to the host but 259 important for parasite invasion, replication and survival [30], or on mitigating damage caused by 260 the parasite [29]. In addition, host metabolism, as measured in plasma samples, has been shown 261 to be able to serve as an indicator of response to CL treatment [31]. Several studies have 262 investigated Leishmania metabolism during in vitro macrophage infection (e.g. [32]), or in 263 amastigotes purified from mouse granulomatous lesions [33], but there is still a lack of 264 knowledge of host metabolic responses during in vivo infection. Given the relative host vs 265 parasite biomass and the slow replication of Leishmania during in vivo infection [33], it is likely 266 that most metabolites identified in our study were host-derived, thereby expanding our 267 understanding of host metabolic contributions to CL pathogenesis. 268 Amongst annotatable metabolites in our study, members of the PC family were most 269 affected by infection. PCs were detected in both infected and uninfected groups. PCs of the 270 smaller m/z range (m/z 200-799) were significantly higher with infection and those in the larger 271 m/z range (m/z 800-899) showed the opposite trend, where PC levels were decreased by infection 272 at the lesion site (Fig. 1E-J). Total PCs were significantly higher in the infected ear center vs the 273 infected ear edge, uninfected ear center and uninfected ear edge (Fig. 1K). Select PCs were also 274 increased in the infected footpad (Tables 6-7). Miltefosine is a commonly administered oral 275 drug for the treatment of visceral and CL that targets the PC biosynthetic pathway [34]. Importantly, miltefosine was originally developed for its anti-tumor properties against cancer, 276

and as such can be expected to also proceed via host-directed effects in addition to impacts on
parasite metabolism. We speculate that miltefosine mechanism of action in CL may thus also
involve re-normalization of infection-induced changes in host PCs. Future studies are thus
needed to investigate the mechanism of action of miltefosine with respect to host metabolism in
CL.

Additional annotatable metabolites also included the omega-3 fatty acid eicosatrienoic acid and glutamine. Glutamine was noted to be significantly lower with infection at the site of the ear lesion. A recent study in mice infected with *L. donovani* showed heightened glutamine consumption with infection and a role of glutamine supplementation in clearing parasite load [35]. Additionally, glutamine uptake is also essential to the pathogenesis of *Toxoplasmosis gondii* parasite infection [36]. Future studies should aim to look at the specific functional role of glutamine metabolism in *L. major* infection.

289 The clinical presentations of CL lesions can vary and are capable of self-healing in some 290 cases. However, resolving these can take several months to years at a time, leaving behind a 291 significant amount of scarring. In cases of Post-Kala Azar dermal leishmaniasis, patients can 292 continue to serve as a reservoir for the parasites after the lesions have long been healed [37]. Our 293 results showed significant perturbations in the metabolism of the skin lesions, with the area near 294 the skin lesions also being affected in experimental CL. Our study relied on bioluminescence to 295 measure parasite burden and as such we only have low spatial resolution and cannot ascertain 296 whether parasites were still present at low levels in the sites adjacent to the skin lesions. There is 297 therefore still a strong need to understand the role of lesion-free tissues in transmission of 298 Leishmania and in disease pathogenesis.

This study looked at both ear and footpad infection models, although the effect of infection was found to be more minor in the footpad. This could be attributed to the limited sample size for the footpad sampling and a reduced magnitude of metabolic changes, making the study underpowered. Nevertheless, specific PC family metabolites were increased with infection in the footpad, drawing parallels to the ear data and showcasing similarities in pathogenesis processes between these two infection models.

305 While this untargeted metabolomics study enabled us to uncover several metabolic 306 pathways affected in CL, on average unannotatable compounds (level 2 annotations according to 307 metabolites standards initiative [38]) still represent 88.3% of our data. Molecular networking did 308 enable us to extend annotations further, so that 61.7% of our top 15 most differential metabolite 309 features identified by random forest had at least family-level (level 3) annotations [38]. 310 Nevertheless, metabolomics annotation rates are continuously improving. Our results have been 311 deposited in a "living data" database [23], where they are continuously being re-annotated as 312 reference libraries and computational tools expand. As such, they will continue to yield more 313 insights into CL pathogenesis and serve as a building point for expanded studies of metabolism 314 in CL. Such results will help guide the next generation of CL drug treatments.

315

316 Acknowledgments

317 Luciferase-expressing *L. major* parasites were provided by Dr. Martin Olivier, McGill
318 University.

319 Financial Disclosure Statement

320		Data collection was supported by a postdoctoral fellowship from the Canadian Institutes		
321	of Health Research, award number 338511 to L-IM (<u>www.cihr-irsc.gc.ca/</u>). Work in the McCall			
322	lab	laboratory at the University of Oklahoma is supported by start-up funds from the University of		
323	Ok	lahoma (http://www.ou.edu/). This work was also partially supported by US National		
324	Ins	titutes of Health (NIH) grant 5P41GM103484-07 to PCD (<u>www.nih.gov/</u>). We further		
325	acknowledge NIH Grant GMS10RR029121 (<u>www.nih.gov/</u>) and Bruker (<u>www.bruker.com/</u>) for			
326	the shared instrumentation infrastructure that enabled this work (to PCD). The funders had no			
327	role	e in study design, data collection and analysis, decision to publish, or preparation of the		
328	ma	nuscript.		
329	Re	ferences		
330	1.	Georgiadou SP, Makaritsis KP, Dalekos GN. Leishmaniasis revisited: Current aspects on		
331		epidemiology, diagnosis and treatment. J Transl Int Med. 2015;3: 43-50.		
332	2.	Alvar J, Yactayo S, Bern C. Leishmaniasis and poverty. Trends in Parasitology. 2006. pp.		
333		552-557. doi:10.1016/j.pt.2006.09.004		
334	3.	Bern C, Maguire JH, Alvar J. Complexities of assessing the disease burden attributable to		
335		leishmaniasis. PLoS Negl Trop Dis. 2008;2: e313.		
336	4.	Leishmaniasis. In: World Health Organization [Internet]. [cited 20 Jan 2020]. Available:		
337		https://www.who.int/leishmaniasis/disease/clinical_forms_leishmaniases/en/		
338 339	5.	McCall L-I, Zhang W-W, Matlashewski G. Determinants for the Development of Visceral Leishmaniasis Disease. PLoS Pathog. 2013;9: e1003053.		

- McCall L-I, McKerrow JH. Determinants of disease phenotype in trypanosomatid parasites.
 Trends Parasitol. 2014;30: 342–349.
- 342 7. Parasites-Leishmaniasis. In: Centers for Disease Control and Prevention [Internet]. [cited 20
- 343 Jan 2020]. Available: https://www.cdc.gov/parasites/leishmaniasis/biology.html
- 8. Ponte-Sucre A, Gamarro F, Dujardin J-C, Barrett MP, López-Vélez R, García-Hernández R,
- et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS
 Negl Trop Dis. 2017;11: e0006052.
- 347 9. Bueno-Marí R, Jiménez-Peydró R. Global change and human vulnerability to vector-borne
 348 diseases. Front Physiol. 2013;4: 158.
- 349 10. Deidda M, Piras C, Bassareo PP, Dessalvi CC, Mercuro G. Metabolomics, a promising
 350 approach to translational research in cardiology. IJC Metabolic & Endocrine. 2015. pp. 31–
- 351 38. doi:10.1016/j.ijcme.2015.10.001
- 352 11. Vinayavekhin N, Saghatelian A. Untargeted Metabolomics. Current Protocols in Molecular
 353 Biology. 2010. doi:10.1002/0471142727.mb3001s90
- Vincent IM, Weidt S, Rivas L, Burgess K, Smith TK, Ouellette M. Untargeted metabolomic
 analysis of miltefosine action in Leishmania infantum reveals changes to the internal lipid
 metabolism. Int J Parasitol Drugs Drug Resist. 2014;4: 20–27.
- Roy G, Dumas C, Sereno D, Wu Y, Singh AK, Tremblay MJ, et al. Episomal and stable
 expression of the luciferase reporter gene for quantifying Leishmania spp. infections in
 macrophages and in animal models. Mol Biochem Parasitol. 2000;110: 195–206.

360	14.	McCall L-I, El Aroussi A, Choi JY, Vieira DF, De Muylder G, Johnston JB, et al. Targeting
361		Ergosterol Biosynthesis in Leishmania donovani: Essentiality of Sterol 14alpha-
362		demethylase. PLOS Neglected Tropical Diseases. 2015. p. e0003588.
363		doi:10.1371/journal.pntd.0003588
364	15.	McCall L-I, Morton JT, Bernatchez JA, de Siqueira-Neto JL, Knight R, Dorrestein PC, et
365		al. Mass Spectrometry-Based Chemical Cartography of a Cardiac Parasitic Infection. Anal
366		Chem. 2017;89: 10414–10421.
367	16.	Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: Modular framework for
368		processing, visualizing, and analyzing mass spectrometry-based molecular profile data.
369		BMC Bioinformatics. 2010. doi:10.1186/1471-2105-11-395
370	17.	Perez F, Granger BE. IPython: A System for Interactive Scientific Computing. Computing
371		in Science & Engineering. 2007. pp. 21–29. doi:10.1109/mcse.2007.53
372	18.	Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al.
373		QIIME allows analysis of high-throughput community sequencing data. Nat Methods.
374		2010;7: 335–336.
375	19.	Bray JR, Roger Bray J, Curtis JT. An Ordination of the Upland Forest Communities of
376		Southern Wisconsin. Ecological Monographs. 1957. pp. 325-349. doi:10.2307/1942268
377	20.	Faith DP, Minchin PR, Belbin L. Compositional dissimilarity as a robust measure of
378		ecological distance. Theory and models in vegetation science. 1987. pp. 57-68.
379		doi:10.1007/978-94-009-4061-1_6

380	21.	Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: a tool for visualizing high-
381		throughput microbial community data. Gigascience. 2013;2: 16.
382	22.	Breiman L. Random Forests. Mach Learn. 2001;45: 5–32.
383	23.	Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and
384		community curation of mass spectrometry data with Global Natural Products Social
385		Molecular Networking. Nat Biotechnol. 2016;34: 828–837.
386	24.	Phelan VV. Feature-Based Molecular Networking for Metabolite Annotation.
387		Computational Methods and Data Analysis for Metabolomics. 2020. pp. 227–243.
388		doi:10.1007/978-1-0716-0239-3_13
389	25.	Nothias Louis Felix. Feature-based Molecular Networking in the GNPS Analysis
390		Environment. BioRXiv. 2019. doi:10.1101/812404
391	26.	Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a
392		software environment for integrated models of biomolecular interaction networks. Genome
393		Res. 2003;13: 2498–2504.
394	27.	Chambers JM. Graphical methods for data analysis. Wadsworth International Group; 1983.
395	28.	Newsom SN, McCall L-I. Metabolomics: Eavesdropping on silent conversations between
396		hosts and their unwelcome guests. PLoS Pathog. 2018;14: e1006926.
397	29.	Hossain E, Khanam S, Wu C, Lostracco-Johnson S, Thomas D, Katemauswa M, et al. 3D
398		mapping of host-parasite-microbiome interactions reveals metabolic determinants of tissue
399		tropism and disease tolerance in Chagas disease. doi:10.1101/727917

400	30.	Varikuti S, Jha BK, Volpedo G, Ryan NM, Halsey G, Hamza OM, et al. Host-Directed
401		Drug Therapies for Neglected Tropical Diseases Caused by Protozoan Parasites. Front
402		Microbiol. 2018;9: 2655.
403	31.	Vargas DA, Prieto MD, Martínez-Valencia AJ, Cossio A, Burgess KEV, Burchmore RJS, et
404		al. Pharmacometabolomics of Meglumine Antimoniate in Patients With Cutaneous
405		Leishmaniasis. Front Pharmacol. 2019;10. doi:10.3389/fphar.2019.00657
406	32.	Saunders EC, Ng WW, Kloehn J, Chambers JM, Ng M, McConville MJ. Induction of a
407		Stringent Metabolic Response in Intracellular Stages of Leishmania mexicana Leads to
408		Increased Dependence on Mitochondrial Metabolism. PLoS Pathog. 2014;10: e1003888.
409	33.	Kloehn J, Saunders EC, O'Callaghan S, Dagley MJ, McConville MJ. Characterization of
410		metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling.
411		PLoS Pathog. 2015;11: e1004683.
412	34.	Rakotomanga M, Blanc S, Gaudin K, Chaminade P, Loiseau PM. Miltefosine affects lipid
413		metabolism in Leishmania donovani promastigotes. Antimicrob Agents Chemother.
414		2007;51: 1425–1430.
415	35.	Ferreira C, Mesquita I, Barbosa AM, Osório NS, Torrado E, Beauparlant C-J, et al.
416		Glutamine supplementation improves the efficacy of miltefosine treatment for visceral
417		leishmaniasis. PLoS Negl Trop Dis. 2020;14: e0008125.
418	36.	Lee I-P, Evans AK, Yang C, Works MG, Kumar V, De Miguel Z, et al. Toxoplasma gondii
419		is dependent on glutamine and alters migratory profile of infected host bone marrow
420		derived immune cells through SNAT2 and CXCR4 pathways. PLoS One. 2014;9: e109803.

- 421 37. Scorza BM, Carvalho EM, Wilson ME. Cutaneous Manifestations of Human and Murine
- 422 Leishmaniasis. Int J Mol Sci. 2017;18. doi:10.3390/ijms18061296
- 423 38. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed
- 424 minimum reporting standards for chemical analysis Chemical Analysis Working Group
- 425 (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007;3: 211–221.