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Abstract: Many quantitative traits are subject to selection, where several 17 

genomic regions undergo small, simultaneous changes in allele frequency that 18 

collectively alter a phenotype. The widespread availability of genome data, along 19 

with novel statistical techniques, has made it easier to detect these changes. We 20 

apply one such method, the ‘Singleton Density Score’, to the Holstein breed of 21 

Bos taurus to detect recent selection (arising up to around 740 years ago). We 22 

identify several candidate genes for recent selection, including some relating to 23 

protein and cell regulation, the synaptic system, body growth, and immunity. We 24 

do not find strong evidence that two traits important for humans, milk–protein 25 

content and stature, have been subject to directional selection. These results 26 

inform on which genes underlie recent domestication in B. taurus. We propose 27 

how polygenic selection can be best investigated in future studies. 28 
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Introduction 29 

 Determining which genomic regions have been subject to selection is a major 30 

research goal in evolutionary genetics. Traditional methods have focused on 31 

detecting strong selection affecting individual genes (Nielsen, 2005; Vitti et al., 2013; 32 

Stephan, 2019). An alternative process is ‘polygenic selection’, where many loci 33 

contribute to genetic variation in a trait, so selection acting on it is expected to 34 

generate small and simultaneous allele frequency changes at multiple loci (Pritchard 35 

and Di Rienzo, 2010; Pritchard et al., 2010). Many polygenic models have been 36 

formulated that account for both the response to phenotypic selection, and the 37 

maintenance of genetic variance at quantitative traits (reviewed by Sella and Barton 38 

[2019]). Among them is Fisher’s infinitesimal model, which is important for its 39 

historical role in uniting population and quantitative genetics, and it’s recent 40 

renaissance in the context of genome–wide association studies (Fisher, 1918; Barton 41 

and Keightley, 2002; Barton et al., 2017; Charlesworth and Edwards, 2018; Visscher 42 

and Goddard, 2019). However, whereas it has been possible to identify which genetic 43 

regions contribute to trait variation, it has historically been hard to infer which alleles 44 

have been involved in the polygenic selection response. Extensive theoretical studies 45 

of how alleles at multiple loci act when a population adapts to a new optimum 46 

generally find that ‘large–effect’ alleles, which strongly affect a trait, are the first to 47 

spread and fix while ‘small–effect’ alleles take much longer to reach high frequencies 48 

(de Vladar and Barton, 2014; Wollstein and Stephan, 2014; Jain and Stephan, 2015, 49 

2017a, 2017b; Stetter et al., 2018; Thornton, 2019; Hayward and Sella, 2019). 50 

Furthermore, if epistasis exists between variants, many selected alleles do not reach 51 

fixation as they eventually become deleterious (de Vladar and Barton, 2014; Jain and 52 

Stephan, 2017b). The spread of large–effect alleles may also be impeded if a faster 53 
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adaptive response can be otherwise realised through changes at many small–effect 54 

alleles (Lande, 1983; Chevin and Hospital, 2008; Pavlidis et al., 2012; Chevin, 2019). 55 

Alternatively, if the optimum shift is sufficiently large, then major–effect mutations that 56 

fix first can subsequently be replaced by small–effect variants over longer timescales 57 

(on the order of the population size; Hayward and Sella (2019)). Overall, only a small 58 

proportion of loci affected by polygenic selection are expected to fix sufficiently 59 

quickly to leave selection signatures in genomic data (Pavlidis et al., 2012; Thornton, 60 

2019). 61 

 Due to this difficulty, earlier methods for detecting polygenic selection focused 62 

on cases where selection favours distinct phenotypes in different populations, so trait 63 

differentiation amongst populations will be greater than expected under neutral drift. 64 

Tests for this form of selection relied on comparing Qst and Fst statistics, which 65 

respectively measured mean genetic differentiation at the trait itself and a set of 66 

neutral loci (Whitlock, 2008; Le Corre and Kremer, 2012; Savolainen et al., 2013). Yet 67 

these methods do not determine which genomic regions are subject to selection. This 68 

situation has now changed with the increased number of genome–wide association 69 

study (GWAS) data that link genotypes and phenotypes, as exemplified by the 70 

development of large cohort studies (e.g., the UK Biobank; Bycroft et al. [2018]). The 71 

release of these data have spurred a series of studies and new methods designed 72 

specifically to detect polygenic selection. These methods usually involve determining 73 

which SNPs underlying a phenotype show correlated changes in frequency (Berg 74 

and Coop, 2014; Racimo et al., 2018; Sanjak et al., 2018; Josephs et al., 2019; Berg 75 

et al., 2019; Berg et al., 2019a; Uricchio et al., 2019; Edge and Coop, 2019; Wieters 76 

et al., 2020); which sets of alleles are associated with certain environmental or 77 

climatic variations (Coop et al., 2010; Turchin et al., 2012; Robinson et al., 2015; 78 
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Yeaman et al., 2016; Exposito-Alonso et al., 2018; Zan and Carlborg, 2018; Exposito-79 

Alonso et al., 2019; Ehrlich et al., 2020); or determining which SNPs explain a large 80 

fraction of phenotypic variance and trait heritability (Zhou et al., 2013; Yang et al., 81 

2015; Gazal et al., 2017; Zeng et al., 2018; Schoech et al., 2019). Some of these 82 

approaches use overlapping methods. 83 

 Detecting recent polygenic selection is much harder, as long periods of time 84 

(number of generations on the order of the population size; Hayward and Sella, 2019; 85 

Thornton, 2019) may be needed to cause detectable frequency changes in weak–86 

effect alleles. Over shorter timescales, these frequency changes are expected to be 87 

more modest and harder to detect (Stephan, 2016; Jain and Stephan, 2017a). A 88 

recent breakthrough in detecting these subtle changes was the development of the 89 

‘Singleton Density Score’ (SDS), a statistic tailored to detect recent and possibly 90 

small, but coordinated allele frequency changes over many SNPs (Field et al., 2016). 91 

Recent selection at a locus favouring one particular variant will lead to a reduction in 92 

the number of singletons (i.e., variants that are only observed once) around it. The 93 

SDS detects regions that exhibit a reduction in the density of singletons, to determine 94 

candidate regions that have been subject to recent selection. Using this approach, 95 

Field et al. (2016) found correlations between SDS scores at SNPs and their 96 

associated GWAS effect sizes for several polygenic traits in the modern UK human 97 

population, including increased height, infant head circumference and fasting insulin. 98 

Their findings suggested that these traits have been subject to recent selection 99 

during the last 75 or so generations (about 2,000 years). 100 

 The SDS method is ideally suited to organisms where large amount of whole–101 

genome data are available, along with QTL or GWAS information that link genotypes 102 

to phenotypes, and a means to correct for population stratification (as it can generate 103 
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spurious associations between SNPs and trait variation). The last point is important 104 

as several recent studies, including the SDS analyses, reported evidence that 105 

increased height is subject to polygenic selection (Turchin et al., 2012; Berg and 106 

Coop, 2014; Robinson et al., 2015; Field et al., 2016; Racimo et al., 2018). However, 107 

recent attempts to replicate these findings on the UK Biobank dataset have failed to 108 

do so, and previous results may instead reflect unaccounted–for population structure 109 

(Novembre and Barton, 2018; Barton et al., 2019; Sohail et al., 2019; Berg et al., 110 

2019; Uricchio et al., 2019; Edge and Coop, 2019). 111 

 Domesticated species are attractive systems for studying recent selection, as 112 

selected phenotypes are often already known, and these species are subject to 113 

large–scale sequencing studies. Population structure can also be controlled for by 114 

focusing on specific breeds. Investigating the genetic architecture underlying rapid 115 

selection in these species is also important to determine how they respond to 116 

agricultural practices, and uncover selection targets that can be used to improve 117 

breeding programs (Georges et al., 2018). Domestic cattle Bos taurus has been 118 

subject to intensive genomics analyses to improve artificial selection for traits that are 119 

beneficial for human use, including milk protein yield and stature (Hayes et al., 2009; 120 

Meuwissen et al., 2013; Wray et al., 2019). These traits are influenced in part by an 121 

individual’s genome; heritability estimates of milk protein content range between 28 122 

and 70% (Buitenhuis et al., 2016 and references therein), while stature estimates 123 

range between 25 and 85% (Nelsen et al., 1986; Northcutt and Wilson, 1993). 124 

Previous selection scans on B. taurus reported individual regions that were likely to 125 

be subject to recent selection, some of which were close to genetic regions for 126 

stature and milk protein content (Lemay et al., 2009; MacEachern et al., 2009; 127 

Qanbari et al., 2010; Boitard and Rocha, 2013; Qanbari et al., 2014; Zhao et al., 128 
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2015; Boitard et al., 2016a; Bouwman et al., 2018). However, stature and milk protein 129 

content are polygenic traits, with several genetic regions and QTLs associated with 130 

each (Lemay et al., 2009; Boitard et al., 2016a; Bouwman et al., 2018).  131 

Here, we applied a modified version of the SDS method to whole–autosome 132 

sequencing data from 102 B. taurus Holstein individuals. We first determined genetic 133 

regions that have been subject to recent directional selection, and subsequently 134 

tested if evidence exists for recent selection acting on a set of regions underlying 135 

either milk protein content or stature in this breed. 136 

 137 

Results 138 

Methods outline 139 

Figure 1 outlines the filtering steps applied to the 102 whole–autosome 140 

genotypes. We retained bi–allelic SNPs that had a sensible level of coverage and did 141 

not lie in putatively over–assembled regions (i.e., duplicated sections that caused 142 

many reads to assemble at a specific genetic location). Over–assembled regions are 143 

highly heterozygous with elevated coverage, and can exhibit false signatures of 144 

recent selection. We also obtained a set of singletons and filtered them to retain high 145 

quality variants where both alleles were equally well covered, to remove potentially 146 

erroneous calls. 147 

SDS reflects the log–ratio of inferred tip lengths (and hence singleton 148 

densities) around one allele over another at a locus. Field et al. (2016) applied the 149 

statistic to polarised data where the ancestral and derived alleles were determined 150 

with high confidence. In that case, increased SDS values reflected selection 151 

favouring younger, derived SNPs over ancestral variants. However, for many species 152 

there is uncertainty around which SNPs are ancestral or derived (Keightley and 153 
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Jackson, 2018). Hence, we instead focused on the absolute value of standardized 154 

SDS statistics, which we denote asSDS. As the original SDS measurement is a log–155 

ratio, then asSDS values reflect the relative increase of one SNP (either ancestral or 156 

derived), and hence a change in inferred tip lengths, over the other. This statistic is a 157 

broader measure of polygenic selection, as opposed to a specific test for positive 158 

selection acting on younger derived variants. Further details are available in the 159 

Methods section. 160 

 161 

Estimating timescale of selection 162 

We first determined the timescale over which we expect to detect selection in 163 

our sample using the SDS method. SDS measures the changes in singleton numbers 164 

around putatively selected SNPs, relative to background numbers in the absence of 165 

selection. As singletons arise on the tips of the underlying gene trees, the average tip 166 

length in the genealogy of sequenced samples determines the timescale over which 167 

the SDS detects a signal (Field et al., 2016). To calculate the mean tip age, we 168 

simulated gene genealogies under two scenarios. We first simulated the Holstein 169 

population demography inferred by Boitard et al. (2016b), which suggested that this 170 

population experienced a sudden decline in effective population size (Ne) since 171 

domestication, but with a present–day Ne (~793) that is much larger than that inferred 172 

from pedigree data (49; Table 2 of Sørensen et al. (2005), estimate for 1993–2003) 173 

or from temporal variation in SNP frequencies (48; Jiménez–Mena et al. 2016). 174 

Hence, we also simulated genealogies under a second model that used the Boitard 175 

et al. (2016b) demographic model but with the present–day Ne set to 49. These 176 

scenarios will be referred to as the ‘High N0’ and ‘Low N0’ models, respectively. 177 

Figure 2 shows simulation results. Depending on the assumed present–day 178 
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Ne, the tip length in our sample of 204 alleles (i.e., assuming two per diploid 179 

individual) goes back either 65 or 148 generations. Assuming 5 years per generation 180 

(Boitard et al., 2016b), this time scale corresponds to between 325 and 740 years 181 

ago. Since B. taurus domestication started around 10,000 years ago (Zeder, 2008) 182 

the sample size used in this study will only capture selection acting in the very recent 183 

past that is more relevant for breed formation, rather than selection during B. taurus 184 

domestication. 185 

 We will focus on detecting selection signatures assuming the high N0 model. 186 

Results using the low N0 model to calibrate scores were broadly similar. They are 187 

outlined in the Supplementary Text; we will highlight when differences arise. 188 

 189 

Genome–wide asSDS 190 

 Figure 3 plots asSDS values (at SNPs with minor allele frequency greater than 191 

5%) across all autosomes, excluding chromosome 25 (due to an insufficient number 192 

of singletons needed to obtain SDS scores after filtering). Many SNPs have elevated 193 

asSDS scores (1051 SNPs at FDR < 0.05; 2112 for the low N0 model). Several 194 

regions contain SNPs with significantly high asSDS values (Bonferroni–corrected P < 195 

0.05; actual P < ~2.5e–8). To further investigate potential selection targets, we looked 196 

for genes that either overlapped significant SNPs or lay 10kb up– or downstream of 197 

them. Linkage disequilibrium (LD), as measured by r2, decays to around 0.2 over 198 

50kb in Danish Holstein breeds (Buitenhuis et al., 2016), so genes within 10kb 199 

should be in LD with regions harbouring high asSDS scores. Table 1 lists these 200 

genes; there is some overlap between results obtained using either a high or low N0, 201 

but more gene targets are present under the low N0 model. Most of these genes are 202 

of unknown function; the results also include unnamed genes and a snRNA. FBXO4,  203 
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MANBA are involved in protein regulation, while PPM1L is involved with cellular 204 

regulation and the activation of stress–activated protein kinases. TRIM9 and NRXN1 205 

are involved in the synaptic system. GHR is linked to both body growth and milk 206 

yield, and has been reported in previous selection studies (Qanbari et al., 2010; Zhao 207 

et al., 2015). SNPs with significantly elevated scores are also found on chromosome 208 

23 near the MHC region, which may reflect over–dominant selection. All Bonferroni–209 

significant SNPs were removed from subsequent tests of recent polygenic selection. 210 

Figure S1 shows results for the low N0 model. 211 

 212 

Testing for polygenic selection acting on milk protein and stature 213 

We collated asSDS scores of SNPs that either lie in genetic regions 214 

associated with milk proteins (as outlined in Lemay et al. [2009]), or those that lie 215 

close to stature QTLs (Bouwman et al., 2018). The latter were inferred from a meta–216 

analysis of GWAS studies conducted in seven Holstein populations, but not every 217 

QTL had an effect size reported in each population. We hence investigated two 218 

overlapping consensus QTL sets, where an effect size was either reported in at least 219 

6 of 7 populations (yielding 42 QTLs with asSDS scores associated with them), or 220 

where effect sizes were reported in at least 5 of 7 populations (58 QTLs had asSDS 221 

scores). We used a generalized linear model (GLM) to determine whether genome 222 

regions containing either milk protein genes or stature QTLs are associated with 223 

differences in asSDS scores. 224 

Figure 4 shows the distribution of asSDS values for SNPs that lies either in 225 

milk protein genes, or close to stature QTLs, compared to the background genome–226 

wide distribution of asSDS scores. A GLM analysis shows that while several 227 

chromosomes and allele frequency bins are significant predictors of asSDS variation, 228 
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the presence of a SNP in a milk protein gene does not explain any additional 229 

variation (effect size = 0.0212, P = 0.107; see Table S1 for the full results). SNPs 230 

near stature QTLs do not have significantly different asSDS values, irrespective of 231 

whether we use QTLs with reported effect sizes in at least 6 of 7 Holstein populations 232 

(effect = –0.210, P = 0.122; Figure 4(b), Table S2), or with effect sizes reported in at 233 

least 5 of 7 Holstein populations (effect = –0.151, P = 0.208; Figure S2 and Table 234 

S3). 235 

Under the low N0 model, milk protein genes have slightly elevated asSDS 236 

values (effect size = 0.0489, P = 0.000261; Figure S3, Table S4), but stature QTLs do 237 

not (Figure S3; see Tables S5, S6 for effect sizes and P–values). However, each 238 

genetic region contains several SNPs with asSDS scores that are correlated because 239 

of linkage disequilibrium (LD). To account for LD within genes, and thereby obtain a 240 

more reliable P–value associated with elevated asSDS scores, we performed a 241 

permutation test where milk–protein genes were randomly distributed along the 242 

genome. We subsequently measured the additional variance predicted by the 243 

presence or absence of these genes in the permuted datasets (see Methods for 244 

details). The observed amount of variance explained in the original data is then 245 

compared to the set of values observed for permutated data. In all cases the 246 

observed value lies within the permuted values (Figure S4). We therefore conclude 247 

that milk–protein genes as a whole do not harbour SNPs with significantly different 248 

asSDS scores compared to the rest of the genome. Permutation results were also 249 

non–significant when applied to stature QTLs (Figure S4).  250 
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Discussion 251 

Summary of results 252 

 We have analysed an extensive B. taurus genomic dataset to identify 253 

signatures of recent selection, and to determine whether the data contained a signal 254 

of polygenic selection acting on milk proteins and QTLs underlying phenotypic 255 

variation in stature. Given the sample size and the demographic history of the 256 

Holstein breed, our simulations suggested that the SDS method can detect very 257 

recent selection events, arising no more than approximately 740 years ago (Figure 258 

2). A whole–genome scan for asSDS scores identified several targets of recent 259 

directional selection that overlap or lie close to protein–coding genes (Figure 3; Table 260 

1). When the functions of these genes are known, they are involved in protein 261 

regulation, the synaptic system, and body growth. Significant values were also 262 

observed in the MHC region. We subsequently investigated whether either milk 263 

protein genes or SNPs near stature QTLs collectively showed evidence of polygenic 264 

selection. We did so by testing whether SNPs in these two groups are significantly 265 

associated with changes in asSDS values. However, asSDS values are only different 266 

in the presence of milk–protein genes when assuming a small N0, and this difference 267 

is not significant  when performing a permutation test (Figure S4). Hence, while 268 

asSDS could reveal specific instances of recent selection, tests based on collective 269 

scores of variants associated with known selected traits yielded no signal of 270 

polygenic selection. 271 

 272 

Potential reasons for a lack of polygenic selection signal 273 

While the SDS method detected individual candidate genes for very recent 274 

selection, we were unable to find strong evidence for polygenic selection acting on 275 
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two traits that are important for human use, which were subject to artificial selection 276 

since domestication. One potential reason for this lack of signal is that selection on 277 

these traits was mainly driven by major–effect mutations that have already fixed in 278 

the population, with a smaller contribution from minor effect mutations. Theoretical 279 

models have shown that more major–effect QTLs are likely to fix if the population lies 280 

further from a fitness optimum (Lande, 1983; Jain and Stephan, 2017b; Thornton, 281 

2019). Domesticated species, which experience strong directional artificial selection, 282 

could thereby fix more adaptive mutation via sweep–like processes compared to 283 

populations evolving in more stable environments (Lande, 1983; Jain and Stephan, 284 

2017a). Furthermore, once a population has adapted to a new environment (the 285 

domestication phenotype in this case), then any remaining major–effect mutations 286 

are likely to be superseded by variants with weaker effects, which are harder to 287 

detect (Hayward and Sella, 2019). Simulations (Figure 2) suggested that SDS values 288 

obtained from our sample of 102 individuals will principally detect very recent 289 

selection related to breed formation and subsequent within–breed selection, rather 290 

than selection arising from domestication that was more likely to involve the 291 

promotion and fixation of major–effect mutations. Finally, the response to polygenic 292 

selection is weakened in smaller populations (John and Stephan, 2020), which will 293 

further hamper our ability to detect it in B. taurus. 294 

Detecting polygenic selection through singleton densities is also made harder 295 

by potentially reduced tip lengths in B. taurus, which likely reflects successive 296 

bottlenecks due to domestication, breed formation and intense recent selection. The 297 

effective population size of many B. taurus breeds appears to have undergone a 298 

decline since domestication (Sørensen et al., 2005; Boitard et al., 2016b). 299 

Contracting populations produce gene genealogies with very short tip lengths 300 
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(Harpending et al., 1998). Hence it will be harder to detect differences between the 301 

tip lengths of two SNPs if the baseline tip length is already very short. A reduction in 302 

baseline singleton numbers also reduces the power to investigate asSDS values in 303 

telomeric regions. SDS values are calculated using the distance up- and downstream 304 

from a SNP to the nearest singleton, and are undefined if a certain number of 305 

samples do not harbour singletons in either direction (Field et al., 2016). SDS values 306 

are hence less likely to be defined in telomeric regions, as it is generally less feasible 307 

to observe singletons up until the end of the chromosome. This problem is 308 

exacerbated if there are few singletons overall. 309 

The lack of a polygenic selection signal in this study also resonates with recent 310 

discussions surrounding the strength of the evidence for it in humans. Although there 311 

are larger numbers of high–quality genotypes available, recent claims of polygenic 312 

selection are likely to have been confounded by population stratification (Novembre 313 

and Barton, 2018; Barton et al., 2019; Sohail et al., 2019; Berg et al., 2019; Uricchio 314 

et al., 2019; Edge and Coop, 2019), suggesting that it is inherently difficult to detect 315 

polygenic selection from genome sequence data. One potential solution to increase 316 

power is to use recent methods to directly infer trees, and hence singleton branches, 317 

from genome data (Edge and Coop, 2019; Speidel et al., 2019). An alternative 318 

approach would be to look beyond sequence data and focus on gene networks. The 319 

recently–proposed ‘omnigenic’ model (Boyle et al., 2017; Liu et al., 2019) posits that 320 

variation in quantitative traits is principally affected by a plethora of ‘peripheral’ genes 321 

that indirectly affect them, rather than a limited set of ‘core’ genes that directly modify 322 

a trait. These numerous peripheral genes may exert their influence via regulatory 323 

effects (e.g., gene expression changes), but are also expected to be highly 324 

pleiotropic. Although fully testing the omnigenic model will require larger datasets and 325 
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novel experimental designs (Wray et al., 2018), there is nascent evidence that gene 326 

regulation may underlie directional polygenic selection. Boitard et al. (2016a) found 327 

that some adaptive signatures of B. taurus are located in intergenic regions; 328 

regulatory changes were also proposed to guide polygenic selection in Arabidopsis 329 

(He et al., 2016). Analyses of gene–sets associated with infection responses or 330 

immunity also found evidence for polygenic selection in humans and primates (Daub 331 

et al., 2013, 2017; Svardal et al., 2017). Immunity gene–sets might be exceptional 332 

cases, as they are more likely to contain genes subject to very strong selection 333 

(Castellano et al., 2019). Further investigations using regulatory information and a 334 

broader range of gene–sets could be a promising approach to determine the impact 335 

of polygenic selection.  336 
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Materials and Methods 337 

Simulating Holstein demography 338 

Neutral genealogies were simulated using msprime (Kelleher et al., 2016) to 339 

determine the mean tip length, and hence the background distribution of SDS in the 340 

absence of selection. We either simulated the Holstein population demography 341 

inferred by Boitard et al. (2016b), rounding estimated population sizes to the nearest 342 

integer, or with the present–day Ne equal to 49 (Sørensen et al., 2005). We refer to 343 

these outputs as the ‘High N0’ and ‘Low N0’ models. 1,000 simulations were 344 

performed for each number of samples, ranging from 10 to 1,050. The mean tip 345 

length was calculated over all 1,000 simulations; 95% confidence intervals were 346 

calculated from 1,000 bootstraps. We fitted a linear model to the log of mean tip 347 

length against the log number of samples, and used it to predict the average tip age 348 

for 204 alleles, which is the number of diploid haplotypes used in the study. B. taurus 349 

are somewhat inbred (Sørensen et al., 2005), which increases within–individual 350 

relatedness, and could reduce the unique number of alleles (see Nordborg and 351 

Donnelly [1997] for an example with self–fertilisation). Estimates of the inbreeding 352 

coefficient F (Wright, 1951), which measure the reduction in heterozygosity, range 353 

from –0.15 to 0.35, with a mean of 0.059 (Figure S5; methods outlined below). Given 354 

this low mean value, we assumed two unique alleles per individual.  355 

 356 

Genome Data Extraction 357 

Whole genome sequencing for 102 Holstein bulls and cows were done by 358 

Illumina and BGI short read sequencing in various laboratories. Bulls were selected 359 

for sequencing had high genetic representation in the present–day Holstein 360 

population. Sequencing of close relatives was avoided. Individuals were born 361 
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between approximately 1980 and 2010. DNA was extracted from tissue, blood, or 362 

semen samples. DNA was sequenced using either BGI technology or on various 363 

Illumina platforms. Sequencing was performed using paired–end sequencing with 364 

most animals sequenced with read lengths of 100 basepairs. No raw reads were 365 

shorter than 90 basepairs. Read data were processed according to the 1,000 Bull 366 

Genomes Project (Daetwyler et al., 2014). Briefly, data were trimmed and quality 367 

filtered using Trimmomatic version 0.38 (Bolger et al., 2014). Reads were aligned to 368 

the ARS-UCD-1.2 bovine genome assembly (Rosen et al., 2018) 369 

(https://sites.ualberta.ca/~stothard/1000_bull_genomes/ARS-370 

UCD1.2_Btau5.0.1Y.fa.gz) with the B. taurus Y chromosome assembly from BTau-371 

5.0.1 added. Alignment was performed with bwa version 0.17 (Li and Durbin, 2009). 372 

Samtools (Li et al., 2009) was used for sorting and marking of PCR duplicates. Base 373 

qualities were recalibrated using Genome Analysis Toolkit (GATK; McKenna et al. 374 

[2010]) version 3.8 using a set of known variable sites (Schnabel and Chamberlain, 375 

unpubl). GVCF files were formed using GATK’s Haplotype Caller. Genotypes were 376 

called using GATK’s GenotypeGVCFs. 377 

 378 

Initial filtering 379 

Figure 1 outlines a schematic of the data filtering. We first used VCFtools 380 

(Danecek et al., 2011) to obtain a baseline list of biallelic sites containing at least one 381 

minor allele, and removed indels and sites where the genotype was unknown in any 382 

individual. For each autosome, we obtained the mean depth for each remaining site 383 

using VCFtools’ ‘--site-mean-depth’ option. Figure S6 shows the depth distribution for 384 

these sites after initial filtering. We fitted a Poisson distribution to these data that had 385 

the same mean (9.76) as observed in the dataset. We determined the expected 386 
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coverage range based on the 99.5% quantile range of the fitted distributions, which 387 

equalled 2 to 20. We subsequently removed sites that had mean coverage outside 388 

this range. This filtering retained 6,873,371 of 20,010,175 initial variants (all entries in 389 

each autosome VCF file, including indels), which was denoted the ‘filtered’ dataset. 390 

 391 

Finding putatively over–assembled regions 392 

Scaffolds of different genetic segments which each carry highly identical 393 

repeated regions can be ‘over–assembled’, where very similar chromosome regions 394 

were anchored to a single location (Chaisson et al., 2015). These over–assembled 395 

regions (OARs) manifest themselves in the assembled sequence as having high 396 

levels of heterozygosity, sequence similarity, and coverage. If not corrected for, they 397 

can be misclassified as selected sites (e.g., subject to partial sweeps or balancing 398 

selection). We used a sliding window method to identify putative OARs in the 399 

dataset. For each chromosome, in each window we calculated (i) the number of sites 400 

where the reference allele has frequency between 49% – 51%, (ii) the mean 401 

heterozygosity for each SNP (defined as the number of heterozygotes among the 402 

102 individuals), and (iii) the mean summed allele depth. We used overlapping 403 

windows, each of size 500 SNPs with a step size of 10 SNPs. We first analysed all 404 

chromosomes to determine the distribution of values produced per window. We then 405 

re–ran the analyses, classifying windows as OARs if values for all three statistics 406 

belonged to the top 99.5% of their respective distributions, merging overlapping 407 

windows. We subtracted 1 from the start position of each region so that the leftmost 408 

boundary would also be excluded (if using ‘--bed-exclude’ in VCFtools). Figure S7 409 

shows an example where a region at the beginning of chromosome 1 was identified 410 

as an OAR. Overall, 5 OARs comprising 5,880 SNPs were identified (Table S7), 411 
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which were subsequently masked from the rest of the pipeline. 412 

 413 

Calculating inbreeding coefficients 414 

 Inbreeding coefficients were estimated using the ‘--het’ option of VCFtools, 415 

which reports F–statistics for each chromosome per individual. Individual F–values 416 

(Figure S5) were calculated by taking the mean over all chromosomes, weighted by 417 

the chromosome size. 418 

 419 

Obtaining SDS analysis inputs 420 

Test SNPs: Focal SNPs were those with an alternate allele frequency 421 

between 5% and 95%, and where each genotype was observed at least once 422 

amongst all samples. 3,602,500 SNPs were retained for testing. 423 

Singletons: Raw singleton data was extracted from the filtered Holstein 424 

dataset using VCFtools’ ‘--singleton’ option. This option identified both true singletons 425 

and private doubletons (i.e., where an allele is unique to an individual but present as 426 

a homozygote). Only true singletons were retained for analyses. To test whether a 427 

singleton had the same coverage as the non–singleton allele, we extracted the 428 

sequence depth for both alleles and retained sites satisfying the following criteria. 429 

First, the total allele depth was between 2 and 20 inclusive. Second, either (a) if the 430 

summed depth over both alleles exceeded 5, then the binomial probability of the 431 

observed allele depth exceeded 0.1; or (b) a stricter manual cut–off was applied if the 432 

total allele depth equalled 5 or less. Table S8 outlines the cut–off values used; 433 

554,402 of 765,822 singletons were subsequently retained. 434 

Other parameters: The SDS method requires a ‘singleton observability’ 435 

probability, to predict how likely it is that a singleton will be detected by genome 436 
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sequencing. Following Field et al. (2016) we used the mean depth per individual, 437 

obtained using the ‘--depth' option in VCFtools. It was also necessary to state the 438 

genetic boundaries between which analyses were carried out; we used a starting 439 

point of 1 and end points equal to the reported size of each autosome in B. taurus, as 440 

obtained from the ARS–UCD 1.2 genome assembly 441 

(https://www.ncbi.nlm.nih.gov/genome/?term=txid9913[orgn]). 442 

Raw SDS values were calculated by fitting a gamma distribution to observed 443 

singleton distances, and comparing it to the expected distribution for the neutral 444 

case. We used the scripts provided by Field et al. (2016) 445 

(https://github.com/yairf/SDS) to generate the expected shape values for the gamma 446 

distribution for both the high and low N0 models. Finally, we used value of 10-7 to 447 

initiate the search for a maximum value in likelihood space. 448 

 449 

Calculating SDS scores and their significance for individual SNPs 450 

Out of 3,602,500 input SNPs, we retained and assigned scores to 1,983,571 451 

of these. SDS scores were not assigned to a SNP if more than 5% of individuals did 452 

not harbour any singletons upstream or downstream of the SNP. This cut–off tended 453 

to exclude SNPs in telomeric regions. Furthermore, SDS scores were not calculated 454 

for chromosome 25 as an insufficient number of singletons were present across all 455 

individuals after data filtering. 456 

Raw SDS scores were standardized using 18 bins, based on alternate allele 457 

frequencies at the scored SNP (i.e., from 5% to 10%, from 10% to 15%, etc.). SDS 458 

scores were normalised by subtracting the bin mean score from individual measures, 459 

and dividing by the bin standard deviation. We subsequently took the absolute value 460 

of standardized scores, which are referred to asSDS statistics. P–values for each 461 
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asSDS value were obtained from a half–normal distribution. 462 

Statistical analyses were carried out in R (R Core Team, 2019). The false–463 

discovery rate (FDR) of each SNP was calculated using the ‘qvalue’ package (Storey 464 

et al., 2019); we highlighted SNPs with an FDR of less than 0.05. Significance was 465 

determined using a Bonferroni corrected P–value cut–off of 0.05/(1,983,571) ≈ 2.5 x 466 

10–8. 467 

 468 

Data sources 469 

A GTF gene annotation file for the ARS–UCD 1.2 assembly was downloaded 470 

from Ensembl (available from https://www.ensembl.org/Bos_taurus/Info/Index). 471 

Bedtools v2.29.0 (Quinlan and Hall, 2010) was used to obtain genetic annotations 472 

10kb up– and downstream of each Bonferroni–significant SNP (overlapping windows 473 

were merged). 474 

A list of milk protein genes was obtained from Lemay et al. (2009), which was 475 

based on proteins identified in milk in two comprehensive proteomic studies 476 

(Reinhardt and Lippolis, 2006; Smolenski et al., 2007). The position of these genes in 477 

the ARS–UCD 1.0.25 assembly were then determined by either locating the gene 478 

name in the B. taurus database, or using BLAST to locate the human homologue in 479 

the cattle genome. Out of 198 initial genes, new locations were obtained for 191 of 480 

them. 180 were subsequently retained after removing those located on chromosome 481 

25, the X chromosome, and those with unknown chromosome location.  482 

Stature QTLs were obtained from Bouwman et al. (2018), which identified 164 483 

QTLs in several B. taurus breeds, including 7 Holstein populations from different 484 

countries. We initially extracted 114 QTLs for which an effect was inferred from at 485 

least 5 of 7 Holstein populations. Positions were given relative to the UMD 3.1 486 
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assembly; we subsequently extracted sequence 100bp up– and downstream of the 487 

position and remapped to ARS–UCD 1.0.25. 106 QTLs were re–aligned without 488 

gaps; of the remaining 8, 4 were located close to rearrangements and discarded, 489 

while the remaining 4 were kept. After removing those on chromosome 25, 107 QTLs 490 

were retained for downstream analysis. 491 

We analysed this full QTL set and a subset where effect sizes were reported in 492 

6 of 7 Holstein breeds (containing 78 QTLs). Some QTLs lie at the beginning or the 493 

end of chromosomes, where asSDS scores were not available. These QTLs were not 494 

considered further; for the remaining QTLs, we identified the SNP nearest to it and 495 

assigned the asSDS value at that site to the QTL. Overall, asSDS values were 496 

assigned to 58 QTLs with effect sizes in at least 5 of 7 Holstein populations, and 42 497 

QTLs with effect sizes in at least 6 of 7 Holstein populations. 498 

 499 

Statistical analyses 500 

 To determine which factors explain variation in asSDS scores, we applied a 501 

generalized linear model as implemented using the glm() function in R, with a 502 

Gamma link family and inverse link function. We compared models that either 503 

included or excluded the trait of interest, of the following form: 504 

 505 

H0: asSDS ~ Chr + AAF 506 

 H1: asSDS ~ Chr + AAF + Trait 507 

 508 

 ‘Chr’ is the effect of the chromosome where the SNP resided; AAF denotes 509 

the effect of the bin of alternate allele frequency that was used to standardize raw 510 

SDS data (e.g., bin 1 denoted those with frequency between 5 and 10%). For the 511 
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milk protein analysis, a ‘Trait’ value of 1 indicated that the SNP lies within a milk 512 

protein gene; for the stature QTL analyses, 1 indicates a SNP that is closest to a 513 

confirmed stature QTL. Otherwise ‘Trait’ was set to zero. All variables are categorical. 514 

Significance of the ‘Trait’ factor was determined by comparing the deviance of 515 

models H0 and H1 using a likelihood ratio test (LRT). P–values were calculated 516 

assuming that the LRT statistic was  under H0 . 517 

To implement the permutation test for milk–protein genes, a random set of 518 

non–overlapping regions were designated as associated with milk–proteins. The 519 

number of regions defined equalled the actual number of milk–protein genes, and 520 

each region had the same length as one of the milk–protein genes. For stature QTLs, 521 

random positions were defined as being associated with stature; the number of 522 

positions equalled the number of QTLs that were initially analysed, accounting for the 523 

number of breeds in which a QTL effect size was reported in. The LRT was applied to 524 

GLM results applied to the randomised datasets, and the deviance (a measure of 525 

how much additional variation is explained by the ‘Trait’ term in H1) was noted. The 526 

process was repeated 1,000 times. P–values were calculated from the proportion of 527 

deviance values that exceed the observed deviance in the actual dataset. 528 
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 865 

Figure 1: Schematic of data filtering.  866 
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(a) 

 

(b) 

 

Figure 2: Simulated mean tip age for B. taurus, as a function of the number of allele 867 

samples. Simulations assumed either (a) demography as inferred by Boitard et al. 868 

(2016b) (the ‘High N0’ model), or (b) the same but with a smaller present–day Ne of 869 

49 (the ‘Low N0’ model). Points are the mean values; bars show 95% confidence 870 

intervals. The solid line is the best linear fit to the log of both values; dotted lines 871 

show the predicted tip age for 204 alleles.  872 
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 873 
 874 

Figure 3: asSDS scores across B. taurus autosomes, as a function of the 875 

chromosome. Alternating black and grey points show (non–significant) values from 876 

different chromosomes. Blue points are SNPs with FDR < 0.05, with the cutoff 877 

denoted by a horizontal dotted line. Red points are SNPs with Bonferroni–corrected 878 

P–value < 0.05 (actual P–value < ~2.5e–8), with the cutoff denoted by a horizontal 879 

dashed line. Figure S1 shows results for the Low N0 model.  880 
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(a) 

 

(b) 

 

Figure 4: Histograms of asSDS, showing the background distribution over all SNPs 881 

(red), compared to (a) asSDS in milk–protein genes, or (b) asSDS of the nearest 882 

SNPs to stature QTLs. In (b) QTLs were obtained if effect sizes were reported in at 883 

least 6 of 7 Holstein populations (as measured in Bouwman et al. (2018)). Figure S2 884 

shows the distribution if using QTLs obtained with effect sizes reported in at least 5 of 885 

7 Holstein populations; Figure S3 shows results for the low N0 model.   886 
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Chromosome Gene Name Start Position End Position Gene Biotype High, Low N 0

1 PPM1L 106405113 106727070 Protein Coding Low

2 U6 38379710 38379816 SnRNA Low

2 ICA1L 91143446 91177884 Protein Coding Low

2 ADAM23 94711218 94906499 Protein Coding Low

2 PTH2R 96667717 96752328 Protein Coding Low

5 TMCC3 24306913 24595494 Protein Coding High, Low

5 CEP83 24070404 24345243 Protein Coding High, Low

6 MANBA 22062326 22189956 Protein Coding High

7 (Unnamed) 87293323 87297625 Protein Coding Low

8 ROR2 85905346 86141520 Protein Coding Low

8 (Unnamed) 85959505 86086599 Protein Coding Low

10 TRIM9 43826973 43944784 Protein Coding High

11 NRXN1 32278324 32766620 Protein Coding High, Low

14 GRHL2 62721044 62888891 Protein Coding Low

17 GALNT9 44853887 44968139 Protein Coding Low

17 RIMBP2 46406767 46715519 Protein Coding Low

20 GHR 31868624 32178311 Protein Coding Low

20 FBXO4 32589453 32602498 Protein Coding Low

20 C20H5orf51 32612381 32634378 Protein Coding Low

23 (Unnamed) 29291787 29292713 Protein Coding High, Low

23 OR12D2 29305933 29309785 Protein Coding High, Low

24 GAREM1 24694637 24927333 Protein Coding High, Low  887 

Table 1: Genes that overlap or lie close to Bonferroni–significant asSDS regions. The 888 

‘High, Low N0’ column specifies which genes are close to significant SNPs for each 889 

N0 model. 890 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.14.091009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.091009
http://creativecommons.org/licenses/by/4.0/

	Using singleton densities to detect recent selection in Bos taurus
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	The lack of a polygenic selection signal in this study also resonates with recent discussions surrounding the strength of the evidence for it in humans. Although there are larger numbers of high–quality genotypes available, recent claims of polygenic ...
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	Neutral genealogies were simulated using msprime (Kelleher et al., 2016) to determine the mean tip length, and hence the background distribution of SDS in the absence of selection. We either simulated the Holstein population demography inferred by Boi...
	Genome Data Extraction
	Whole genome sequencing for 102 Holstein bulls and cows were done by Illumina and BGI short read sequencing in various laboratories. Bulls were selected for sequencing had high genetic representation in the present–day Holstein population. Sequencing ...
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	Figure 1 outlines a schematic of the data filtering. We first used VCFtools (Danecek et al., 2011) to obtain a baseline list of biallelic sites containing at least one minor allele, and removed indels and sites where the genotype was unknown in any in...
	Finding putatively over–assembled regions
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	Calculating inbreeding coefficients
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	Statistical analyses were carried out in R (R Core Team, 2019). The false–discovery rate (FDR) of each SNP was calculated using the ‘qvalue’ package (Storey et al., 2019); we highlighted SNPs with an FDR of less than 0.05. Significance was determined ...
	Data sources
	A GTF gene annotation file for the ARS–UCD 1.2 assembly was downloaded from Ensembl (available from https://www.ensembl.org/Bos_taurus/Info/Index). Bedtools v2.29.0 (Quinlan and Hall, 2010) was used to obtain genetic annotations 10kb up– and downstrea...
	A list of milk protein genes was obtained from Lemay et al. (2009), which was based on proteins identified in milk in two comprehensive proteomic studies (Reinhardt and Lippolis, 2006; Smolenski et al., 2007). The position of these genes in the ARS–UC...
	Stature QTLs were obtained from Bouwman et al. (2018), which identified 164 QTLs in several B. taurus breeds, including 7 Holstein populations from different countries. We initially extracted 114 QTLs for which an effect was inferred from at least 5 o...
	We analysed this full QTL set and a subset where effect sizes were reported in 6 of 7 Holstein breeds (containing 78 QTLs). Some QTLs lie at the beginning or the end of chromosomes, where asSDS scores were not available. These QTLs were not considered...
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	To determine which factors explain variation in asSDS scores, we applied a generalized linear model as implemented using the glm() function in R, with a Gamma link family and inverse link function. We compared models that either included or excluded ...
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