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Abstract: Many quantitative traits are subject to polygenic selection, where 19 

several genomic regions undergo small, simultaneous changes in allele 20 

frequency that collectively alter a phenotype. The widespread availability of 21 

genome data, along with novel statistical techniques, has made it easier to 22 

detect these changes. We apply one such method, the ‘Singleton Density Score’, 23 

to the Holstein breed of Bos taurus to detect recent selection (arising up to 24 

around 740 years ago). We identify several genes as candidates for targets of 25 

recent selection, including some relating to cell regulation, catabolic processes, 26 

neural-cell adhesion and immunity. We do not find strong evidence that three 27 

traits that are important to humans – milk protein content, milk fat content, and 28 

stature – have been subject to directional selection. Simulations demonstrate 29 

that since B. taurus recently experienced a population bottleneck, singletons are 30 

depleted so the power of SDS methods are reduced. These results inform on 31 

which genes underlie recent genetic change in B. taurus, while providing 32 

information on how polygenic selection can be best investigated in future 33 

studies. 34 

  35 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2020.05.14.091009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.091009
http://creativecommons.org/licenses/by/4.0/


 3 

Impact statement: Many traits of ecological or economic importance (including height, 36 

disease propensity, climatic adaptation) are ‘polygenic’. That is, they are affected by a 37 

large number of genetic variants, with each one only making a small contribution to a 38 

trait, but collectively influence variation. As selection acts on all of these variants 39 

simultaneously, it only changes the frequency of each one by a small amount, making 40 

it hard to detect such selection from genome data. This situation has changed in recent 41 

years, with the proliferation of whole–genome data from many individuals, along with 42 

the development of methods to detect the subtle effects of polygenic selection. Here, 43 

we use data from 102 genomes from domesticated cattle (Bos taurus) that has 44 

experienced intense artificial selection since domestication, and test whether we can 45 

detect signatures of recent selection (arising up to 740 years ago). Domesticated 46 

species are appealing for this kind of study, as they are subject to extensive genome 47 

sequencing studies, and genetic variants can be related to traits under selection. We 48 

carried out our analysis in two parts. We first performed a genome–wide scan to find 49 

individual genetic regions that show signatures of recent selection. We identify some 50 

relating to cell regulation, catabolic processes, neural-cell adhesion and immunity. In 51 

the second part, we then analysed genetic regions associated with three key traits: 52 

milk protein content, milk fat content, and stature. We tested whether these regions 53 

collectively showed a signature of selection, but did not find a significant result in either 54 

case. Simulations suggest that the domestication history of cattle affected the power 55 

of these methods. We end with a discussion on how to best detect polygenic selection 56 

in future studies. 57 
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Introduction 58 

 Determining which genomic regions have been subject to selection is a major 59 

research goal in evolutionary genetics. Traditional methods have focused on 60 

detecting strong selection affecting individual genes (Nielsen, 2005; Vitti et al., 2013; 61 

Stephan, 2019). An alternative process is ‘polygenic selection’, where many loci 62 

contribute to genetic variation in a trait, so selection acting on it is expected to 63 

generate small and simultaneous allele frequency changes at multiple loci (Pritchard 64 

& Di Rienzo, 2010; Pritchard et al., 2010). Many polygenic models have been 65 

formulated to account for both the response to phenotypic selection, and the 66 

maintenance of genetic variance in quantitative traits [reviewed by Sella & Barton 67 

(2019); Barghi et al. (2020)]. Among them is Fisher’s infinitesimal model, which is 68 

important for its historical role in uniting population and quantitative genetics, and its 69 

recent renaissance in the context of genome–wide association studies (Fisher, 1918; 70 

Barton & Keightley, 2002; Barton et al., 2017; Charlesworth & Edwards, 2018; 71 

Visscher & Goddard, 2019). However, whereas it has been possible to identify which 72 

genetic regions contribute to trait variation, it has historically been hard to infer which 73 

alleles have been involved in the polygenic selection response. Extensive theoretical 74 

studies of how alleles at multiple loci act when a population adapts to a new optimum 75 

generally find that ‘large–effect’ alleles, which strongly affect a trait, are the first to 76 

spread and fix while ‘small–effect’ alleles take much longer to reach high frequencies 77 

(de Vladar & Barton, 2014; Wollstein & Stephan, 2014; Jain & Stephan, 2015, 2017a, 78 

2017b; Stetter et al., 2018; Thornton, 2019; Hayward & Sella, 2019). Furthermore, if 79 

epistasis exists between variants, many selected alleles do not reach fixation as they 80 

eventually become deleterious (de Vladar & Barton, 2014; Jain & Stephan, 2017b). 81 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2020.05.14.091009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.091009
http://creativecommons.org/licenses/by/4.0/


 5 

The spread of large–effect alleles may also be impeded if a faster adaptive response 82 

can be otherwise realised through changes at many small–effect alleles (Lande, 83 

1983; Chevin & Hospital, 2008; Pavlidis et al., 2012; Chevin, 2019). Alternatively, if 84 

the optimum shift is sufficiently big, then large-effect mutations that first go to fixation 85 

can subsequently be replaced by small–effect variants over longer timescales (on the 86 

order of the population size; Hayward and Sella (2019)). Overall, only a small 87 

proportion of loci affected by polygenic selection are expected to fix sufficiently 88 

quickly to leave selection signatures in genomic data (Pavlidis et al., 2012; Thornton, 89 

2019). 90 

 Due to this difficulty, earlier methods for detecting polygenic selection focused 91 

on cases where selection favours distinct phenotypes in different populations, so trait 92 

differentiation amongst populations will be greater than expected under neutral drift. 93 

Tests for this form of selection relied on comparing Qst and Fst statistics, which 94 

respectively measured mean genetic differentiation at the trait itself and a set of 95 

neutral loci (Whitlock, 2008; Le Corre & Kremer, 2012; Savolainen et al., 2013). Yet 96 

these methods do not determine which genomic regions are subject to selection. This 97 

situation has now changed with the increased number of genome–wide association 98 

study (GWAS) data that link genotypes and phenotypes, as exemplified by the 99 

development of large cohort studies [e.g., the UK Biobank; Bycroft et al. (2018)]. The 100 

release of these data spurred a series of studies and new methods designed 101 

specifically to detect polygenic selection. These methods usually involve determining, 102 

which SNPs affecting a phenotype show correlated changes in frequency (Berg & 103 

Coop, 2014; Racimo et al., 2018; Sanjak et al., 2018; Josephs et al., 2019; Berg et 104 

al., 2019a, 2019b; Uricchio et al., 2019; Edge & Coop, 2019; Kreiner et al., 2020; 105 
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Wieters et al., 2021; Gramlich et al., 2021); which sets of alleles are associated with 106 

certain environmental or climatic variations (Coop et al., 2010; Turchin et al., 2012; 107 

Robinson et al., 2015; Yeaman et al., 2016; Exposito-Alonso et al., 2018; Zan & 108 

Carlborg, 2018; Exposito-Alonso et al., 2019; MacLachlan et al., 2021; Ehrlich et al., 109 

2021; Fuhrmann et al., 2021; Rowan et al., 2021); or determining which SNPs or 110 

genetic regions explain a large fraction of phenotypic variance and trait heritability 111 

(Zhou et al., 2013; Yang et al., 2015; Gazal et al., 2017; Zeng et al., 2018; Schoech 112 

et al., 2019; Exposito-Alonso et al., 2020; Duntsch et al., 2020; Zeng et al., 2021). 113 

Some of these approaches use overlapping methods. 114 

 Detecting recent polygenic selection is much harder, as long periods of time 115 

(number of generations on the order of the population size; Hayward and Sella, 2019; 116 

Thornton, 2019) may be needed to cause detectable frequency changes in alleles 117 

with small effect sizes. Over shorter timescales, these frequency changes are 118 

expected to be more modest and harder to detect (Stephan, 2016; Jain & Stephan, 119 

2017a). A recent breakthrough in detecting these subtle changes was the 120 

development of the ‘Singleton Density Score’ (SDS), a statistic tailored to detect 121 

recent and coordinated allele frequency changes over many SNPs (Field et al., 122 

2016). Recent selection at a locus favouring one variant will lead to a reduction in the 123 

number of singletons (i.e., variants that are only observed once) around it. The SDS 124 

detects regions that exhibit a reduction in the density of singletons, to determine 125 

candidate regions that have been subject to recent selection. Using this approach, 126 

Field et al. (2016) found correlations between SDS scores at SNPs and their 127 

associated GWAS effect sizes for several polygenic traits in the modern UK human 128 

population, including increased height, infant head circumference and fasting insulin. 129 
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Their findings suggested that these traits have been subject to recent selection 130 

during the most recent 75 or so generations (about 2,000 years). However, these 131 

(and other) results that detect selection for increased height may instead reflect 132 

previously unaccounted–for population structure (Novembre and Barton, 2018; 133 

Barton et al., 2019; Sohail et al., 2019; Berg et al., 2019; Uricchio et al., 2019; Edge 134 

and Coop, 2019). 135 

 The SDS method is ideally suited to organisms where large amount of whole-136 

genome data are available, along with QTL or GWAS information that link genotypes 137 

to phenotypes, Domesticated species are attractive systems for studying recent 138 

selection, as selected phenotypes are often already known and these species are 139 

subject to large–scale sequencing studies. Investigating the genetic architecture 140 

underlying rapid selection in these species is also important to determine how they 141 

respond to agricultural practices, and uncover selection targets that can be used to 142 

improve breeding programs (Georges et al., 2018). Domestic cattle Bos taurus has 143 

been subject to intensive genomics analyses to improve artificial selection for traits  144 

that are important for human use, including milk protein yield, milk fat content, and 145 

stature (Hayes et al., 2009; Meuwissen et al., 2013; Wray et al., 2019). These traits 146 

are influenced in part by an individual’s genome, with significant heritability estimates 147 

being recorded, some as high as 80% (Soyeurt et al., 2007; Haile-Mariam et al., 148 

2013; Buitenhuis et al., 2016). Previous selection scans on B. taurus reported 149 

individual regions that were likely to be subject to recent selection, some of which 150 

were close to genetic regions for stature and milk protein content (Lemay et al., 2009; 151 

MacEachern et al., 2009; Qanbari et al., 2010; Boitard & Rocha, 2013; Qanbari et al., 152 

2014; Zhao et al., 2015; Boitard et al., 2016a; Bouwman et al., 2018). However, 153 
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stature and milk protein content are polygenic traits, with several genetic regions and 154 

QTLs associated with each (Lemay et al., 2009; Boitard et al., 2016a; Bouwman et 155 

al., 2018; van den Berg et al., 2020). While recent methods have been developed to 156 

detect polygenic environmental adaptation (Rowan et al., 2021), there has yet to be a 157 

formal test of whether these intrinsic traits show evidence of polygenic selection. 158 

Here, we applied the SDS method to whole–autosome sequencing data from 159 

102 B. taurus Holstein individuals. We first determined genetic regions that have 160 

been subject to recent directional selection, and subsequently tested whether 161 

evidence exists for recent selection acting on a set of QTLs underlying either milk 162 

protein content, milk fat content, or stature in this breed. 163 

 164 

Results 165 

Methods outline 166 

We filtered the data to retain only bi–allelic SNPs that had a sensible level of 167 

coverage and did not lie in putatively over–assembled regions (i.e., duplicated 168 

sections that caused many reads to assemble at a specific genetic location). Over–169 

assembled regions appear as highly heterozygous with elevated coverage, and can 170 

exhibit false signatures of recent selection. We also obtained a set of singletons and 171 

filtered them to retain high-quality variants where both alleles were equally well 172 

covered to remove potentially erroneous calls. We polarised test SNPs using 173 

outgroup sequences and applied the SDS test of Field et al. (2016) to detect recent 174 

selection, with increased SDS values reflecting selection favouring derived SNPs 175 

over ancestral variants. We standardised SDS scores with those of a similar 176 

frequency, so they are normally distributed [similar normalisation was also carried out 177 
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by Field et al. (2016)]. These values are denoted sSDS for ‘standardised SDS’.  178 

Further details are available in the Methods in the Supplementary Text. 179 

 180 

Estimating timescale of selection 181 

We first determined the timescale over which we expect to detect selection in 182 

B. taurus using the SDS method. SDS measures the changes in singleton numbers 183 

around putatively selected SNPs, relative to background numbers in the absence of 184 

selection. As singletons arise on the tips of the underlying gene trees, the average tip 185 

length in the genealogy of sequenced samples determines the timescale over which 186 

the SDS detects a signal (Field et al., 2016). As more haploid genomes are included 187 

in the study, the time to first coalescence between two samples decreases, reducing 188 

the tip lengths and therefore shortening the timescale over which SDS detects 189 

selection (Field et al., 2016). We hence simulate tip-ages over a range of sample 190 

sizes to investigate how this timescale changes accordingly.  191 

To calculate the mean tip age, we simulated gene genealogies under two 192 

scenarios. We first simulated the Holstein population demography inferred by Boitard 193 

et al. (2016b), which suggested that this population experienced a sudden decline in 194 

effective population size (Ne) since domestication, but with a present–day Ne (~793) 195 

that is much larger than that inferred from pedigree data [~49; Sørensen et al. 196 

(2005)] or from temporal variation in SNP frequencies (~48; Jiménez–Mena et al. 197 

2016). Hence, we also simulated genealogies under a second model that used the 198 

Boitard et al. (2016b) demographic model, but with the present–day Ne set to 49. 199 

These scenarios will be referred to as the ‘High N0’ and ‘Low N0’ models, 200 

respectively. 201 
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Figure 1 shows simulation results. Depending on the assumed present–day 202 

Ne, the tip length in our sample of 204 alleles (i.e., assuming two per diploid 203 

individual) goes back either 65 or 148 generations. Assuming 5 years per generation 204 

(Boitard et al., 2016b), this timescale corresponds to between 325 and 740 years 205 

ago. Since B. taurus domestication started around 10,000 years ago (Zeder, 2008) 206 

the sample size used in this study will only capture selection acting in the very recent 207 

past that is more relevant for breed formation, rather than selection during B. taurus 208 

domestication. Sample sizes and tip-ages are linearly related on a log-log scale, 209 

meaning that an increase in sample size will greatly decrease the timescale over 210 

which SDS detects selection. For example, with 500 haplotypes then SDS will detect 211 

selection acting no more than 50 generations ago, depending on the underlying 212 

demographic model. 213 

 We will focus on detecting selection signatures assuming the high N0 model. 214 

Results using the low N0 model to calibrate scores were broadly similar. They are 215 

outlined in the Supplementary Text; we will highlight when differences arise. 216 

 217 

Genome–wide sSDS 218 

 Figure 2 plots sSDS values (at SNPs with minor allele frequency greater than 219 

5%) across all autosomes, excluding chromosome 25 (due to an insufficient number 220 

of singletons needed to obtain SDS scores after filtering). Many SNPs have elevated 221 

sSDS scores (158 SNPs at FDR < 0.05; 306 for the low N0 model). Several regions 222 

contain SNPs with significantly high sSDS values (Bonferroni–corrected nominal P < 223 

0.05; actual P < ~2.7 x 10 –8). To further investigate potential selection targets, we 224 

looked for genes that either overlapped significant SNPs or lay 10kb up– or 225 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2020.05.14.091009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.091009
http://creativecommons.org/licenses/by/4.0/


 11 

downstream of them. Linkage disequilibrium (LD), as measured by r 2, decays to 226 

around 0.2 over 50kb in Danish Holstein breeds (Buitenhuis et al., 2016), so genes 227 

within 10kb should be in LD with regions harbouring high sSDS scores. Table 1 lists 228 

these genes, with more targets present under the low N0 model. Most of these genes 229 

are of unknown function (as listed on UniProt); the list also includes an snRNA. 230 

PPM1L is involved with cellular regulation and the activation of stress–activated 231 

protein kinases. TDO2 is involved in tryptophan–related catabolic processes, while 232 

NTM is implicated in neural cell adhesion. SNPs with significantly elevated scores 233 

are also found on chromosome 23 near the MHC region, which may reflect over–234 

dominant selection. All Bonferroni–significant SNPs were removed from subsequent 235 

tests of recent polygenic selection to prevent directional selection from skewing the 236 

underlying sSDS distributions. Figure S1 shows results for the low N0 model. 237 

 238 

Testing for polygenic selection acting on milk protein and stature 239 

If polygenic selection were acting on specific traits, we expect a positive 240 

correlation between the effect size of variant underpinning it, and selection acting on 241 

it as measured by sSDS. We collated sSDS scores of SNPs that lie close to QTLs 242 

reported for either milk fat percentage, milk protein percentage (van den Berg et al., 243 

2020), or those that lie close to stature QTLs (Bouwman et al., 2018). The latter were 244 

inferred from a meta–analysis of GWAS studies conducted in seven Holstein 245 

populations, but not every QTL had an effect size reported in each population. We 246 

hence investigated two overlapping consensus QTL sets, where an effect size was 247 

either reported in at least 6 of 7 populations (yielding 42 QTLs with sSDS scores 248 

associated with them), or where effect sizes were reported in at least 5 of 7 249 
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populations (58 QTLs had sSDS scores). We re-polarised SDS scores so that a 250 

positive score reflected a trait-increasing effect; we denote these values ‘tSDS’ 251 

following Field et al. (2016). We then determine if there was a positive correlation 252 

between the absolute log10-value of the QTL P-value (a proxy for the effect size) and 253 

tSDS. 254 

Figure 3 shows the relationship between QTL P-values and tSDS for SNPs 255 

that lie close to QTLs. Although positive trends are observed, they all exhibit non-256 

significant correlations (milk fat percentage Spearman 𝜌 = 0.0990,  P = 0.603; milk 257 

protein percentage Spearman 𝜌 = 0.0354, P = 0.758; stature from 6 breeds 258 

Spearman 𝜌 = -0.0739, P = 0.642; stature from 5 breeds Spearman 𝜌 = -0.00966, P 259 

= 0.943). Relationships remain non-significant after removing an outlier point for the 260 

milk traits whose QTL has an extremely low P-value (Figure S2), and also under the 261 

low N0 model (Figure S3; see figure legends for regression P-values). 262 

sSDS (and tSDS) can become correlated along the genome if focal SNPs are 263 

in LD with one another, which was not accounted for in the preceding analyses. To 264 

determine whether LD could have affected these correlations, we randomly 265 

subsampled sSDS scores from SNPs that shared the same chromosome and bin of 266 

derived-allele frequency as the SNPs used in the above analyses, and re-polarised 267 

them to transform them into tSDS values. We then determined the Spearman’s 𝜌 268 

associated with these permuted values to determine whether that for the true data 269 

was significantly elevated (see Methods for details). In all cases, the observed value 270 

was not significantly higher than for permuted values (see Figure S4 for histograms 271 

and exact P–values, which all exceed 0.05). We therefore conclude that these QTL 272 

datasets do not harbour SNPs with significantly different tSDS scores compared to 273 
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the rest of the genome. 274 

 275 

Discussion 276 

Summary of results 277 

 We analysed an extensive B. taurus genomic dataset to identify signatures of 278 

recent selection in the Holstein breed, and to determine whether the data contained a 279 

signal of polygenic selection acting on milk proteins and QTLs underlying phenotypic 280 

variation in stature. Given the sample size and the demographic history of Holsteins, 281 

the SDS method can detect very recent selection events arising no more than 282 

approximately 740 years ago (Figure 1). A whole–genome scan for sSDS scores 283 

identified several targets of recent directional selection that overlap or lie close to 284 

protein–coding genes (Figure 2; Table 1). The genes whose functions are known are 285 

involved in protein regulation, catabolic processes, and neural-cell adhesion. 286 

Significant values were also observed near the MHC region. We subsequently 287 

investigated whether either milk protein genes or SNPs near stature QTLs 288 

collectively showed evidence of polygenic selection. We did so by testing whether 289 

there is a relationship between the QTL effect size, as measured by its P-value, and 290 

tSDS values to SNPs near them. However, no relationship was observed, even after 291 

performing a permutation test (Figures 3, S2-S4). Hence, while sSDS could reveal 292 

specific instances of recent selection, tests based on collective scores of variants 293 

associated with known selected traits yielded no signal of polygenic selection. 294 

 295 

Potential reasons for a lack of polygenic selection signal 296 
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Impact of Holstein demographic history 297 

While the SDS method detected individual candidate genes for very recent 298 

selection, we were unable to find strong evidence for polygenic selection acting on 299 

three traits that were subject to artificial selection since domestication. This result is a 300 

priori surprising, given that these traits have been subject to recent intense artificial 301 

selection. Recent studies generally find non-zero heritability estimates for them, 302 

indicating that there should be the potential for genetic variants underpinning them to 303 

change in response to artificial selection (Soyeurt et al., 2007; Haile-Mariam et al., 304 

2013; Buitenhuis et al., 2016). In addition, the ratio of the mutation and recombination 305 

rates in cattle is just over three (Boitard et al., 2016b; Harland et al., 2018), indicating 306 

that several informative SNPs exist per haplotypes that should improve the power of 307 

the SDS method [in contrast, this ratio is approximately equal to one in humans 308 

(Field et al., 2016)]. 309 

One potential reason for this lack of signal is due to the population history of 310 

Bos taurus. The effective population size of many B. taurus breeds appears to have 311 

undergone a decline since domestication (Sørensen et al., 2005; Boitard et al., 312 

2016b), which likely reflects successive bottlenecks due to domestication, breed 313 

formation and intense recent selection. Population size reductions are known to 314 

reduce the number of low-frequency variants and increases the prevalence of 315 

intermediate-frequency variants (Harpending et al., 1998), which can affect the power 316 

of the SDS method. To understand if the history of B. taurus affects the detection of 317 

recent selection in Holstein cattle using SDS, we ran coalescent simulations to 318 

determine its ability to detect ongoing selection, given realistic Holstein population 319 

history and genetic parameters (see Methods for details). We simulated a partial 320 
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sweep occurring in the middle of a 10Mb region, either assuming a mutation rate in 321 

line with what has been inferred for Holstein, or one 10-fold higher to replicate 322 

diversity expected in a genetic region with an elevated mutation rate. 323 

For the standard mutation rate, no SDS scores were produced for any 324 

simulations. After inspecting the simulation results, we see that there is a large skew 325 

in the distribution of singleton numbers per individual with a large number of 326 

individuals (over 20 on average) that do not carry singletons at the end of 327 

simulations, preventing the calculation of a local SDS score (Figure 4). This fraction 328 

remained the same irrespective of whether the simulated region was neutral or 329 

subject to selection; the main effect of a sweep was to reduce the mean number of 330 

singletons per individual, which is the signal measured by SDS (Field et al., 2016). 331 

This reduction in overall singleton numbers is consistent with the known effects of 332 

population size contraction on reducing tip lengths (Harpending et al., 1998). 333 

With a 10-fold higher mutation rate, there were fewer cases where no 334 

individual harboured singletons (Figure 4). Accordingly, SDS scores could be 335 

calculated for 65 and 66 out of 100 simulations for the neutral and selective cases 336 

respectively. In these cases, sSDS values were significantly higher in the selected 337 

case than for the neutral case (Figure 5; two-sided Wilcox Test P = 1.1x10-5). 338 

However, note that sSDS values is less than one for the selected case, which does 339 

not exceed the FDR threshold in our study (for the high N0 case, the smallest sSDS 340 

value with FDR < 0.05 is 4.46). 341 

Although singleton numbers differ between the two cases, a reduction in 342 

power could also be caused by a more general reduction in diversity due to the small 343 

recent effective population sizes of cattle. To investigate this effect, we estimated the 344 
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fixed Ne that would yield the same number of segregating sites in simulations using 345 

the standard mutation rate, based on Watterson’s estimator (Watterson, 1975; 346 

Hudson, 1990; see Methods for details). In both cases where selection is present or 347 

absent, Ne estimates lie at around 25,000, which is that inferred at approximately 348 

halfway between the onset of domestication and the present day. (Boitard et al., 349 

2016b; Figure S5). Given that estimates are similar irrespective of whether a sweep 350 

was present or not, the reduced population size caused by domestication could have 351 

also affected power due to limiting genetic variation and thus the potential to detect 352 

subtle sweep signatures associated with polygenic selection. 353 

Overall, these simulations are consistent with population size reductions in B. 354 

taurus both reducing the overall genetic diversity and the number of singletons, which 355 

limits its ability to detect partial sweeps. SDS is more likely to detect signals in 356 

regions of elevated mutation rate, suggesting there will likely be an ascertainment 357 

bias in where signals are detected in the genome. The reduction in singletons also 358 

reduces the power to investigate SDS values in telomeric regions. SDS values are 359 

calculated using the distance up- and downstream from a SNP to the nearest 360 

singleton, and are undefined if a certain number of samples do not harbour 361 

singletons in either direction (Field et al., 2016). SDS values are hence less likely to 362 

be defined in telomeric regions, as it is generally less feasible to observe singletons 363 

up until the end of the chromosome. This problem is exacerbated if there are few 364 

singletons overall. 365 

 366 

Other potential reasons for a lack of signal 367 

Another potential reason for a lack of signal is that the selection response on 368 
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these traits may have been driven by large-effect variants that have already fixed in 369 

the population, with a smaller contribution from small-effect mutations. Theoretical 370 

models have shown that more major–effect QTLs are likely to fix if the population lies 371 

further from a fitness optimum (Lande, 1983; Jain & Stephan, 2017b; Thornton, 372 

2019). Domesticated species, which experience strong and sustained directional 373 

artificial selection, especially in recent generations, could thereby fix more adaptive 374 

mutation via sweep–like processes compared to populations evolving in more stable 375 

environments (Lande, 1983; Jain & Stephan, 2017a). Furthermore, once a population 376 

has adapted to a new environment (the domestication phenotype in this case), then 377 

any remaining major–effect mutations are likely to be superseded by variants with 378 

weaker effects, which are harder to detect (Hayward & Sella, 2019). The response to 379 

polygenic selection will be further weakened in smaller populations (John & Stephan, 380 

2020), which could be a factor given the reduced effective population sizes of B. 381 

taurus (Sørensen et al., 2005; Boitard et al., 2016b). There is some evidence of this 382 

explanation; selective sweeps signatures are associated with stature QTLs 383 

(Bouwman et al., 2018), and the study of van den Berg et al. (2020) was more likely 384 

to identify milk QTLs that had a moderate to high minor allele frequency, suggesting 385 

reduced power to detect low-frequency variants that are potential contributors to 386 

polygenic selection. Conversely, the stature meta-analysis by Bouwman et al. (2018) 387 

found significant SNPs that explained up to 13.8% of the variance in stature, which is 388 

similar to that explained by significant SNPs for human height (16%), which is a 389 

classic trait for polygenic selection studies. Hence, there may be sufficient polygenic 390 

SNPs present to test for polygenic selection, but the power will still be reduced due to 391 

the demographic history of Holstein cattle. 392 
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Potential solutions to increase power include increasing sample sizes; using 393 

alternative methods; or analysing different kinds of genome data to detect polygenic 394 

selection. Applying SDS to a larger sample size would increase the power to detect 395 

selection acting in the recent past [Figure 1; see also Field et al. (2016)], but overall 396 

power will still be limited by the tip-length of neutral genealogies. Recent 397 

developments in methodology involve directly inferring trees from genome data, and 398 

using these to identify subtle sweep signatures associated with trait variants (Edge & 399 

Coop, 2019; Speidel et al., 2019; Stern et al., 2021). These methods have greater 400 

power to detect weakly-selected mutations that may be segregating for longer than 401 

the tip-length of the population. 402 

Another approach would be to look beyond sequence data and focus on gene 403 

networks [reviewed by Fagny & Austerlitz (2021)]. The recently–proposed ‘omnigenic’ 404 

model (Boyle et al., 2017; Liu et al., 2019) posits that variation in quantitative traits is 405 

principally affected by a plethora of ‘peripheral’ genes that indirectly affect them, 406 

rather than a limited set of ‘core’ genes that directly modify a trait. These numerous 407 

peripheral genes may exert their influence via regulatory effects (e.g., gene 408 

expression changes), but are also expected to be highly pleiotropic. Fully testing the 409 

omnigenic model will require larger datasets and novel experimental designs (Wray 410 

et al., 2018). A recent example is from an experiment with Drosophila melanogaster, 411 

where gene knockouts that do not pass a GWAS significance threshold for pupal 412 

length still significantly affect it (Zhang et al., 2021). There is also nascent evidence 413 

that gene regulation may underlie directional polygenic selection. Boitard et al. 414 

(2016a) found that some adaptive signatures of B. taurus are located in intergenic 415 

regions; regulatory changes were also proposed to guide polygenic selection in 416 
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Arabidopsis (He et al., 2016). Analyses of gene–sets associated with infection 417 

responses or immunity also found evidence for polygenic selection in humans and 418 

primates (Daub et al., 2013, 2017; Svardal et al., 2017). Immunity gene–sets might 419 

be exceptional cases, as they are more likely to contain genes subject to very strong 420 

selection (Castellano et al., 2019). Further investigations using regulatory information 421 

and a broader range of gene–sets could be a promising approach to determine the 422 

impact of polygenic selection. 423 

 424 

Materials and Methods 425 

Full methods are available in the Supplementary Text. 426 
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 441 

Data archiving. Raw SDS scores and polarisation information has been 442 

deposited on Dryad (https://doi.org/10.5061/dryad.547d7wm8q). Data analysis and 443 

simulation scripts are available on GitHub 444 

(https://github.com/MattHartfield/CattleSDS).  445 
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(a) 

 

(b) 

 

Figure 1: Simulated mean tip age for B. taurus, as a function of the number of haploid 709 

samples. Simulations assumed either (a) demography as inferred by Boitard et al. 710 

(2016b) (the ‘High N0’ model), or (b) the same but with a smaller present–day Ne of 711 

49 (the ‘Low N0’ model). Points are the mean values; bars show 95% confidence 712 

intervals. The solid line is the best linear fit to the log of both values; dotted lines 713 

show the predicted tip age for 204 alleles.  714 
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 715 
Figure 2: P–values of sSDS scores across B. taurus autosomes, as plotted on a 716 

negative Log10 scale, as a function of the chromosome. Alternating black and grey 717 

points show (non–significant) values from different chromosomes. Blue points are 718 

SNPs with FDR < 0.05, with the cut-off denoted by a horizontal dotted line. Red 719 

points are SNPs with Bonferroni–corrected P–value < 0.05 (actual P–value < ~2.7 x 720 

10 –8), with the cut-off denoted by a horizontal dashed line. Figure S1 shows results 721 

for the Low N0 model.  722 
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 723 

Figure 3: Relationship between tSDS scores near milk or stature QTLs, as noted in 724 

the subheadings, and the absolute log P-value of QTLs. Lines show a linear model 725 

regression fit. Figure S3 shows results assuming a low N0 model. 726 
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 728 

Figure 4: Mean distribution of singleton numbers per individual for each simulation, 729 

wither assuming a standard mutation rate (left) or a 10-fold higher mutation rate 730 

(right). Bars represent 95% confidence intervals. 731 
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 733 

Figure 5: Distribution of simulated sSDS scores assuming a high mutation rate, for 734 

the neutral and selected cases. Numbers above each box plot denotes how many 735 

simulations produced SDS scores and were included in the plot. 736 
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 740 

Table 1: Genes that overlap or lie close to Bonferroni–significant sSDS regions. The 741 

‘High, Low N0’ column specifies which genes are close to significant SNPs for each 742 

N0 model. 743 

Chromosome Gene Name Start Position End Position Gene Biotype High, Low N 0

1 PPM1L 106405113 106727070 Protein Coding High, Low
5 TMCC3 24306913 24595494 Protein Coding High, Low
5 CEP83 24070404 24345243 Protein Coding High, Low

17 U6 43381106 43381209 snRNA Low
17 CTSO 43364999 43381605 Protein Coding Low
17 TDO2 43386894 43403747 Protein Coding High, Low
23 OR12D2H 29291787 29292713 Protein Coding High, Low
23 OR12D2E 29305933 29309785 Protein Coding High, Low
24 GAREM1 24694637 24927333 Protein Coding High, Low
29 NTM 34576918 34994005 Protein Coding High, Low
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