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Abstract 

Keloid is a benign dermal fibrotic disorder with some features similar to malignant tumors 

such as hyper-proliferation, apoptosis resistance and invasion. keloid remains a 

therapeutic challenge in terms of high recurrence rate and lack of satisfactory medical 

therapies, which is partially due to the incomplete understanding of keloid pathogenesis. A 

thorough understanding of the cellular and molecular mechanism of keloid pathogenesis 

would facilitate the development of novel medical therapies for this disease. Here, we 
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performed single-cell RNA-seq of 28,064 cells from keloid skin tissue and adjacent 

relatively normal tissue. Unbiased clustering revealed substantial cellular heterogeneity of 

the keloid tissue, which included 21 cell clusters assigned to 11 cell lineages. Differential 

proportion analysis revealed significant expansion for fibroblasts and vascular endothelial 

cells in keloid compared with control, reflecting their strong association with keloid 

pathogenesis. We then identified five previously unrecognized subpopulations of keloid 

fibroblasts and four subpopulations of vascular endothelial cells. Comparative analyses 

were performed to identify the dysregulated pathways, regulators and ligand-receptor 

interactions for keloid fibroblasts and vascular endothelial cells, the two important cell 

lineages in keloid pathogenesis and for medical interventions. Our results highlight the 

roles of transforming growth factor beta and Eph-ephrin signaling pathways in both the 

aberrant fibrogenesis and angiogenesis of keloid. Critical regulators and signaling 

receptors implicated in the fibrogenesis of other fibrotic disorders, such as TWIST1, 

FOXO3, SMAD3 and EPHB2, ranked at the top in the regulatory network of keloid 

fibroblasts. In addition, tumor-related pathways such as negative regulation of PTEN 

transcription were found to be activated in keloid fibroblasts and vascular endothelial cells, 

which may be responsible for the malignant features of keloid. Our study put novel insights 

into the pathogenesis of keloid, and provided potential targets for medical therapies. Our 

dataset also constitutes a valuable resource for further investigations of the mechanism of 

keloid pathogenesis. 

Introduction 

Keloid is a dermal fibrotic disorder following a aberrant wound healing response (Glass, 

2017). Histologically, keloid scars are characterized by excessive extracellular matrix (ECM) 

deposition and rich vasculature (Ashcroft et al., 2013). Despite that keloid is classified as 

a benign dermal growth, it demonstrates biological features similar to malignant tumors 

such as hyper-proliferation, apoptosis resistance and invasion (Mari et al., 2015). Keloid 

scars grow beyond the boundaries of the original wound, causing pain, pruritus and 

contracture which leads to serious physical and psychological burden for patients (Gauglitz 
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et al., 2011). Keloid is common and has a higher prevalence in Asians and Africans, 

especially for dark-skinned individuals (Zhu et al., 2013). Although a wide range of 

therapies currently being used, keloid remains a therapeutic challenge in terms of high 

recurrence rate and lack of satisfactory medical therapies (Mari et al., 2015). This is 

partially due to the incomplete understanding of keloid pathogenesis, although both 

environmental and genetic factors have been implicated (Nakashima et al., 2010; Shih et 

al., 2010). A thorough understanding of the cellular and molecular mechanism of keloid 

pathogenesis would facilitate the development of novel medical therapies for this disease. 

Recent technical advances in single-cell RNA-seq have enabled the transcriptomes of tens 

of thousands of cells to be assayed at a single-cell resolution (Zheng et al., 2017). 

Compared with the average expression of genes from a mixed cell population obtained in 

bulk RNA-seq, large-scale single-cell RNA-seq allows unbiased cellular heterogeneity 

dissection and regulatory network construction at an unprecedented scale and resolution 

(Kulkarni et al., 2019). Single-cell RNA-seq is therefore emerging as a powerful tool for 

understanding the cellular and molecular mechanism of the pathogenesis in a variety of 

diseases including fibrotic disorders such as pulmonary fibrosis (Reyfman et al., 2019) and 

lupus nephritis (Der et al., 2019). Single-cell RNA-seq have already been applied to dissect 

the cellular heterogeneity of human skin in normal states (Philippeos et al., 2018) and 

diseased conditions, such as atopic dermatitis (He et al., 2020) and inflamed epidermis 

(Cheng et al., 2018). Previous efforts have been made to examine the transcriptomic 

alterations in keloid tissue using bulk RNA-seq or microarray (Liang et al., 2015; 

Onoufriadis et al., 2018; Wang et al., 2019). However, to our knowledge, the cellular 

heterogeneity and regulatory changes in keloid have not yet been systematically 

investigated at single-cell resolution.  

In this study, we performed single-cell RNA-seq of 28,064 cells from keloid skin tissue and 

adjacent relatively normal tissue. Comparative analyses were performed to identify the 

dysregulated pathways, regulators and ligand-receptor interactions for keloid fibroblasts 

and vascular endothelial cells, the two important cell lineages in keloid pathogenesis and 
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for medical interventions. Our study put novel insights into the pathogenesis of keloid, and 

provided potential targets for medical therapies. Our dataset also constitutes a valuable 

resource for further investigations of the mechanism of keloid pathogenesis. 

Results 

Single-cell RNA-seq reveals cellular diversity and heterogeneity of keloid skin tissue 

To dissect the cellular heterogeneity and explore the regulatory changes of keloid skin 

tissue, we sampled keloid lesional skin tissue (CASE) and matched relatively normal tissue 

adjacent to the keloid scar (CTRL) from four patients (female; Chinese; 26-32 years old; 

lesion position: chest; Table S1). The eight samples were dissociated to single cells and 

subjected to single-cell RNA-seq (Figure 1A). After stringent quality control, we obtained 

transcriptomes of 28,064 cells (CASE: 12,425; CTRL:15,639). Unbiased clustering 

revealed 21 cell clusters (Figure 1B). Based on hierarchical clustering (Figure 1C) and 

established lineage-specific marker genes (Figure 1D), we assigned these clusters into 11 

cell lineages. The keratinocyte lineage (marked by KRT5 and KRT14) (Joost et al., 2016), 

including the cluster c0, c1, c8, c10, c11 and c15, accounted for the largest proportion 

(41.7%) of cells. Vascular endothelial cells (marked by PECAM1 and CDH5) (Kalucka et 

al., 2020), including the cluster c2, c4, c5 and c18, accounted for the second largest 

proportion (26.3%) of cells. Lymphatic endothelial cells (c16) differed from vascular 

endothelial cells by expressing lineage-specific markers such as LYVE1 and PROX1 

(Johnson et al., 2008). The fibroblast lineage (marked by PDGFRA and DCN) (Guerrero-

Juarez et al., 2019) had two clusters c3 and c9. In addition, we found other typical skin 

lineages including sweat gland cells (marked by AQP5 and MUCL1) (He et al., 2020), 

smooth muscle cells (marked by MYH11 and CNN1) (Liu et al., 2019), mural cells (marked 

by PDGFRB and RGS5) (Holm et al., 2018), neural cells (marked by NRXN1 and SCN7A) 

(He et al., 2020), melanocyte (marked by MLANA and DCT) (Miller et al., 2004) and 

Schwann cells (marked by GLDN and TJP1) (He et al., 2020). These clusters showed 

distinct molecular signatures (Figure 1E; Table S2), reflecting the cellular diversity and 
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heterogeneity of keloid skin tissues. 

Differential proportion analysis reveals significant expansion for fibroblasts and 

vascular endothelial cells in keloid compared with relatively normal skin tissue. 

We next tried to identify keloid-associated cell lineages or clusters, which significantly 

expanded or contracted in CASE versus CTRL. Visualization for cellular density revealed 

dramatic changes in relative proportion for multiple cell lineages (Figure 2A). For example, 

lineage expansion was observed for vascular endothelial cells and fibroblasts in keloid 

tissue, while contraction was observed for keratinocytes and leukocytes. We further 

performed statistical tests, which took individual patient into account (Figure S1). Only the 

vascular endothelial cells reached statistical significance (one-way paired t-test p-

value=0.01; Figure 2B). Similarly, we performed statistical tests at the cluster level (Figure 

2C). Three vascular endothelial clusters, c4, c5 and c18, significantly expanded in CASE. 

Notably, one fibroblast cluster, c9, also significantly expanded. Taken together, differential 

proportion analysis revealed significant expansion for fibroblasts and vascular endothelial 

cells in keloid compared with relatively normal skin tissue, reflecting their strong 

association with keloid pathogenesis. Our study thus focused on these two cell lineages. 

Gene set enrichment analysis revealed fibroblast-specific dysregulated pathways 

in keloid versus normal skin tissue. 

Single-cell RNA-seq allows to analyze lineage-specific transcriptomic changes without cell 

sorting. We identified fibroblast-specific differentially regulated pathways in keloid versus 

normal skin tissue (Figure 3A; Table S3) through gene set enrichment analysis (GSEA), 

which facilitates biological interpretation by robustly detecting concordant differences at 

the gene set or pathway level (Emmert-Streib and Glazko, 2011). Consistent with the 

excessive ECM deposition in keloid, ECM-related pathways such as extracellular matrix 

organization, collagen formation and elastic fiber formation were significantly up-regulated 

(Figure 3A; GSEA FDR q-value < 0.05). Carbohydrate metabolism pathways such as 

glycosaminoglycan (GAG) metabolism, chondroitin sulfate (CS) biosynthesis and keratan 

sulfate (KS) biosynthesis were significantly up-regulated (Figure 3A), reflecting metabolic 
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reprogramming of fibroblasts to achieve and sustain the functional state in keloid. This 

result is consistent with previous reports that CS and Hyaluronic acid (HA), two forms of 

GAG, were over-accumulated in keloid tissue and related medical treatments would 

improve keloid pathology (Alaish et al., 1995; Ishiko et al., 2013; Katayama et al., 

2020)(Ishiko et al., 2013; Katayama et al., 2020). In agree with the hypoxia, mechanical 

and oxidative stress in the microenvironment of keloid tissue (Nangole and Agak, 2019), 

pathways related to cellular responses to stress were also up-regulated (Figure 3A). 

Notably, several signal transduction pathways were activated in keloid fibroblasts (Figure 

3B). The role of transforming growth factor (TGF) beta and canonical WNT signaling 

pathways have been well established in keloid or other fibrotic disorders with excessive 

fibrosis (Piersma et al., 2015). In line with this, we observed activation of these two master 

pathways (Figure 3B). Platelet derived growth factor (PDGF) signaling pathway was 

significantly activated and genes encoding PDGF receptors such as PDGFRA and 

PDGFRB were up-regulated in keloid fibroblasts, which is concordant with the previous 

observation that fibroblasts from keloid tissue were more responsive to PDGF as compared 

with normal skin fibroblasts (Haisa et al., 1994). We also found aberrant NOTCH1 signaling 

activation, which has been implicated in the development of organ fibrosis (Hong et al., 

2019). PTEN, a known tumor suppressor, is a major growth signaling inhibitor that controls 

cell growth, survival and proliferation (Chalhoub and Baker, 2009). Intriguingly, we found 

that a set of genes involved in negative regulation of PTEN gene transcription were up-

regulated in keloid fibroblasts (Figure 3B), which agrees with the malignant features of 

keloid fibroblasts such as excessive proliferation and resistance to apoptosis (Lim et al., 

2006). Notably, Eph-ephrin signaling pathway, which has recently been recognized to be 

associated with cardiac fibrosis (Su et al., 2017), were significantly activated in keloid 

fibroblasts (Figure 3B). Multiple genes encoding the ligands and receptors of Eph-ephrin 

signaling such as EFNB1, EFNB2, EPHB2, EPHB3 and EPHA3 were up-regulated in 

keloid fibroblasts. 
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Previously unrecognized cellular heterogeneity of keloid fibroblasts revealed by 

single-cell transcriptomic data. 

We next dissected the cellular heterogeneity and characterized the subpopulations of 

fibroblasts. The fibroblast clusters c3 and c9 showed distinct expression profiles (Figure 

4A). Compared with c3, c9 displays more obvious phenotypes of myofibroblasts. For 

example, significantly higher expression of contractile genes (e.g., ACTA2, TAGLN and 

MYL9), collagen and elastin genes (e.g., COL1A2, COL3A1 and ELN) as well as 

myofibroblast markers (e.g., FN1 and CTHRC1) (Figure 4B; adjusted P-value < 0.01). This 

result agrees with the significant expansion of c9 in keloid (Figure 2C), reflecting the 

elevated myofibrogenesis of this fibrotic disorder. To further dissected the cellular 

heterogeneity, we performed secondary clustering and found five subpopulations (Figure 

4C), which had distinct molecular signatures (Figure 4D; Table S4), reflecting their specific 

functional properties. These fibroblast subpopulations could be marked with specific 

markers: s0-PDGFRA+ POSTN high, s1-PDGFRA+ ABCA8 high, s2-PDGFRA+ REL high, s3-

PDGFRA+ RGS2 high and s4-PDGFRA+ WISP2 high (Figure 4E). Correlation analysis was 

performed to infer the relationships between them (Figure 4F). For example, the closest 

subpopulation to s0 is s4. Functional enrichment analysis revealed that the signature 

genes of s0 and s4 were both enriched with ECM-related terms, thus representing two 

myofibroblast subpopulations (Figure 4G). However, they differed in the components of 

ECM: s0 with higher level of collagens and s4 with higher level of elastin (Figure 4D). The 

signature genes of s1 were enriched with terms related with immune response, such as 

regulation of complement activation and lymphocyte chemotaxis. The signature genes of 

s2 were enriched with terms related with leukocyte chemotaxis, carbohydrate metabolism 

and stress response. The signature genes of s3 were enriched with terms related with 

stress response and differentiation. 

Pseudo-temporal ordering of fibroblasts reveals a branched trajectory with a 

significant shift towards myofibroblast phenotype in keloid. 

The major source of myofibroblasts are local fibroblasts in wound healing and remodeling 
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(Darby et al., 2014). To further explore the relationships of the fibroblast subpopulations 

and study the regulatory dynamics during fibroblast-to-myofibroblast phenotypic transition, 

we performed pseudo-temporal ordering of all fibroblasts with Monocle2 (Qiu et al., 2017). 

This analysis revealed a branched trajectory with two major branches, i.e., cell fate 1 and 

cell fate 2 (Figure 5A). The subpopulation s0 and s4 constituted the large majority of cell 

fate1, which thus represents cellular states of myofibroblast phenotype (Figure 5B). The 

subpopulation s1 and s3 constituted the large majority of cell fate 2, which thus represents 

special states of cells associated with immune response, stress response and 

differentiation. The subpopulation s2 accounted for the largest proportion of the “pre-

branch”, which represents the initial states of fibroblasts. Notably, compared with the 

normal control, the trajectory in keloid displayed a significant shift towards the 

myofibroblast phenotype (cell fate 1 cells accounted for 28% in CTRL versus 40% in CASE; 

Figure 5C). Through branched expression analysis modeling (BEAM) tests, we obtained 

the expression dynamics of 1,204 branch-dependent genes during the cellular state 

transition from the “pre-branch” to cell fate 1 and cell fate 2 (Figure 5D; Table S5; q-value 

< 1E-04). Hierarchical clustering of these genes revealed five gene modules, and the 

reprehensive transcription factors for each gene module were shown in Figure 5D. Among 

them, the majority of the genes in module I had high expression levels in the ‘pre-branch’ 

cells. Notably, TWIST1 is a representative transcription factor of module I, which has 

recently been recognized as an important pro-fibrotic regulator in a variety of organ fibrotic 

disorders including skin fibrosis (Ning et al., 2018). In addition, the gene module III and IV 

had high expression levels in fate 2 and fate 1 cells. 

Comparative analysis of the gene regulatory networks of fibroblasts between keloid 

and normal skin tissue reveals dysregulated genes in keloid fibroblasts. 

To further prioritize transcription factors obtained above, we built gene regulatory networks 

from single-cell data using a novel method implemented in bigScale2 (Iacono et al., 2019), 

which allows to quantify biological importance of genes and find key regulators changed in 

diseased conditions. Figure 5E shows the regulatory networks constructed for fibroblasts 
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from normal and keloid skin tissue. Comparative analysis between the networks of CASE 

and CTRL revealed a group of genes greatly altered in degree centrality (the number of 

edges afferent to a given node; Table S6). We focused on the transcription factors and 

signal receptors in the top 100 genes dysregulated in keloid, which were indicated in Figure 

5E and 5F. Notably, among the transcription factor genes, TWIST1 ranked at the top 

according to the degree centrality (degree in CASE: 77, degree in CASE: 10), supporting 

a key role of this regulator in keloid pathogenesis. EPHB2, ranked at the top among the 

signal receptor genes (degree in CASE: 49, degree in CASE: 9), consolidating our view 

that Eph-ephrin signaling pathway may play critical roles in keloid pathogenesis. We next 

tried to find transcription factors that were both branch-dependent (Figure 5D) and 

dysregulated in the keloid network (Figure 5E), which would be more important and reliable 

given independent analysis approaches. We ultimately found nine transcription factors 

including TWIST1, YBX3, NFIL3, JARID2, NCOA7, FOXO3, NFKBIA, ETS2 and SMAD3 

(Figure 5F). Among them, SMAD3 is a known regulator of keloid through which the TGF 

beta signaling exerts its pro-fibrotic effects (Darby et al., 2014). TWIST1 and FOXO3 have 

been implicated in fibrogenesis and organ fibrosis (Al‐Tamari et al., 2018; Ning et al., 2018). 

Intriguingly, we found that all the nine candidate regulators were from the gene module I, 

most of which were highly expressed in the “pre-branch” (Figure 5F). We next examined 

the expression of these regulators in fibroblasts from keloid and normal tissues (Figure 5G). 

We found the expression modes of these genes agreed well with that reported in other 

fibrotic disorders. For example, TWIST1 and SMAD3 were up-regulated, and FOXO3 was 

down-regulated in keloid versus normal fibroblasts. Taken together, we found previously 

unrecognized key regulators and signaling receptors that may play critical roles in keloid 

pathogenesis.  

Cell-cell communication analysis reveals ligand-receptor interaction changes 

specific to fibroblasts in keloid. 

The single-cell dataset provided us a unique chance to analyze cell-cell communication 

mediated by receptor-ligand interactions. To define the cell-cell communication landscape 
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and find its alterations in keloid, we performed analysis using CellPhoneDB 2.0 (Efremova 

et al., 2019), which contains a curated repository of ligand-receptor interactions and a 

statistical framework for predicting enriched interactions between two cell types from 

single-cell transcriptomics data. We found a dense communication network among 

fibroblasts, vascular endothelial cells, neural cells and keratinocytes in both normal (Figure 

6A left panel) and diseased conditions (Figure 6A right panel), which constituted a core 

signaling module in skin. Notably, the communication network in the normal condition was 

dominated by vascular endothelial cells, whereas the network in keloid was dominated by 

fibroblasts, reflecting the role of fibroblasts in keloid pathogenesis. In both conditions, the 

most abundant interactions occurred between fibroblasts and vascular endothelial cells 

(Figure 6B), the two most important lineages in keloid pathogenesis. Furthermore, we 

identified the ligand-receptor pairs shown significant changes in specificity between any 

one of the non-fibroblast lineages and fibroblasts in keloid versus normal conditions 

(fibroblasts express receptors and received ligand signals from other lineages; Table S7). 

As shown in Figure 6C, the significantly altered signals included a wealth of fibrosis-related 

signals such as TGFB1 signaling, NOTCH1 signaling and fibroblast growth factor (FGF) 

signaling. Notably, TGFB1, a key ligand of TGF beta signaling pathway implicated in keloid 

formation (Peltonen et al., 1991), was found to be secreted by lymphatic endothelial cells, 

leukocytes, mural cells, neural cells, smooth muscle cells and vascular endothelial cells in 

keloid. The TGFB1-TGF beta receptor 2 interactions between these cell lineages and 

fibroblasts become significantly more specific in keloid compared with normal conditions 

(permutation test p-value < 0.05). In addition, we also explored the alterations of ligand 

signals broadcast by fibroblasts (Figure 6D). Notably, fibroblasts may affect other cells in 

keloid through alterations in ligand-receptor interactions of the NOTCH signaling, including 

NVO-NOTCH1, JAG1-NOTCH1, JAG1-NOTCH2 and JAG1-NOTCH4 interactions.  

The heterogeneity and regulatory changes of vascular endothelial cells in keloid 

skin tissue. 

Keloid tissue is characterized by excessive capillary formation, and the dysregulation of 
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vascular endothelial cells have been proposed to be associated with keloid progression 

(Tanaka et al., 2019). Therefore, we also examined the heterogeneity and regulatory 

changes of vascular endothelial cells in keloid skin tissue. Unbiased clustering revealed 

four clusters with distinct expression profiles (Figure 7A; Table S8), which could be marked 

with specific marker combinations: c2-PECAM1+ HMOX1high CXCL3-, c4-PECAM1+ 

ACKR1high HMOX1-, c5-PECAM1+ CXCL12high CXCL3- and c18-PECAM1+ CXCL3+ 

(Figure 7B). Correlation analysis revealed that c4 appears to be distant from the other 

clusters (Figure 7C). Functional enrichment analysis revealed that c4 represents antigen-

presenting endothelial cells expressing the MHC class II markers such as HLA-DRA 

(Figure 7D), which has recently been reported (Han et al., 2020). Then, we identified the 

lineage-specific differentially regulated pathways of vascular endothelial cells in keloid 

versus normal skin tissue (Figure 7E; Figure S2; Table S9). As expected, vascular 

endothelial growth factor receptor (VEGFR) signaling pathway, which is important in 

pathological angiogenesis (Shibuya, 2011), was significantly activated. Intriguingly, tumor-

related signaling pathways were activated for vascular endothelial cells in keloid, such as 

“oncogenic MAPK signaling”, “signaling by WNT in cancer” and “regulation of PTEN gene 

transcription”. In addition, we observed activated signaling pathways implicated in tumor 

angiogenesis, such as NOTCH signaling (NOTCH1/NOTCH4) (Dufraine et al., 2008), TGF 

beta receptor signaling (Pardali and Ten Dijke, 2009) and Eph-ephrin signaling (Cheng et 

al., 2002). Furthermore, we identified the ligand-receptor pairs altered in keloid between 

vascular endothelial cells and the other cell lineages (Figure 7F and 7G). Notably, EFNB2-

EPHA4, a ligand-receptor pair in Eph-ephrin signaling, was significantly altered in keloid, 

which was well known for promoting sprouting angiogenesis (Kania and Klein, 2016). In 

keloid, the mean expression levels of EFNB2-EPHA4 between leukocytes, Schwann cells 

and vascular endothelial cells increased (Figure 7F), suggesting vascular endothelial cells 

were positively regulated via EFNB2-EPHA4 signaling. Meanwhile, vascular endothelial 

cells may also regulate the transcriptional states of fibroblasts and smooth muscle cells 

through EFNB2-EPHA4 signaling in keloid (Figure 7G). In addition, the VEGFB-

FLT1(VEGFR1) interaction between leukocytes and vascular endothelial cells specifically 
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occurred in keloid, reflecting the contribution of leukocytes to the activation of VEGFR 

signaling pathway in vascular endothelial cells (Figure 7F). 

Discussion 

Understanding the cellular heterogeneity and regulatory changes of tissues in diseased 

conditions is fundamental to successful medical therapy development. In this study, we 

performed single-cell RNA-seq of 28,064 cells from keloid skin tissue and adjacent 

relatively normal tissue. Unbiased clustering revealed substantial cellular heterogeneity of 

the keloid tissue, which included 21 cell clusters assigned to 11 cell lineages. Differential 

proportion analysis revealed significant expansion for fibroblasts and vascular endothelial 

cells in keloid compared with control, reflecting their strong association with keloid 

pathogenesis. Gene set enrichment analysis revealed fibroblast-specific dysregulated 

pathways in keloid versus normal tissue. Among them, signaling pathways implicated in 

keloid or other fibrotic disorders were found to be activated in keloid fibroblasts such as 

TGF beta, canonical WNT, PDGF, NOTCH1 and Eph-ephrin signaling pathways. 

Intriguingly, a set of genes involved in negative regulation of PTEN gene, a known tumor 

suppressor, were up-regulated in keloid fibroblasts. Previously unrecognized cellular 

heterogeneity of keloid fibroblasts was observed, which consists of five distinct 

subpopulations. Pseudo-temporal ordering of the fibroblasts reveals a branched trajectory 

with a significant shift towards myofibroblast phenotype in keloid. Branch-dependent genes 

that were putatively associated with fibroblast-to-myofibroblast phenotypic transition were 

identified. Comparative analysis of the gene regulatory networks of fibroblasts between 

keloid and normal tissue revealed dysregulated transcription factors and signaling 

receptors in keloid fibroblasts, which could serve as targets for medical interventions. 

Among them, TWIST1, SMAD3 and FOXO3, regulators implicated in fibrogenesis, were 

both branch-dependent and dysregulated in the network of keloid fibroblasts. Notably, 

EPHB2, a receptor in Eph-ephrin signaling ranked at the top of the keloid network. Cell-

cell communication analysis revealed a dense communication network among fibroblasts, 

vascular endothelial cells, neural cells and keratinocytes. Furthermore, ligand-receptor 
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interaction changes specific to fibroblasts in keloid were identified. For example, the 

TGFB1-TGF beta receptor 2 interactions between non-fibroblast lineages and fibroblasts 

became significantly more specific in keloid. At last, we also examined the heterogeneity 

and regulatory changes of vascular endothelial cells in keloid tissue, which could be 

another targeted cell lineage for medical interventions besides of the fibroblasts. Four 

distinct subpopulations were identified. Intriguingly, tumor-related signaling pathways were 

activated for vascular endothelial cells in keloid, such as “oncogenic MAPK signaling”, 

“signaling by WNT in cancer” and “regulation of PTEN gene transcription”. Moreover, we 

identified the ligand-receptor pairs altered in keloid between vascular endothelial cells and 

the other cell lineages. Notably, EFNB2-EPHA4 and VEGFB-FLT1 interactions were 

significantly altered in keloid, which were known for promoting angiogenesis. 

Single-cell analysis provided us a wealth of candidate molecules for developing targeted 

approaches to combatting the excessive ECM deposition caused by fibroblasts with 

aberrant proliferation and differentiation, or to suppressing active angiogenesis mediated 

by dysregulated vascular endothelial cells in keloid. Substantial evidence supports that 

TGF beta signaling pathway is central in keloid or other fibrotic disorders (Piersma et al., 

2015). The ligand TGFB1 could reprogram fibroblasts to myofibroblasts, which synthesize 

large volumes of collagen fibers, a hallmark of keloid (Ashcroft et al., 2013; Nangole and 

Agak, 2019). TWIST1 functions as a pro-fibrotic factor in a TGF beta/SMAD3/p38-

dependent manner (Ning et al., 2018). In addition, TGF beta signaling has been implicated 

in tumor angiogenesis (Pardali and Ten Dijke, 2009). In this study, we found the activation 

of TGF beta receptor signaling in both fibroblasts (Figure 3B) and vascular endothelial cells 

(Figure 7E) from keloid tissue. SMAD3, the key downstream regulator of TGF beta 

signaling, was found to be critical for the dysregulated states of keloid fibroblasts through 

independent analyses (Figure 5D; Figure 5F). TGFB1-TGF beta receptor 2 interactions 

between non-fibroblast lineages and fibroblasts was found to become significantly more 

specific in keloid (Figure 6C). Together, these results consolidated our view that TGF beta 

signaling could serve as a medical target for simultaneously suppressing myofibrogenesis 

and angiogenesis in keloid. Similarly, Eph-ephrin signaling represents another promising 
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target pathway to regulate the states of keloid fibroblasts and vascular endothelial cells. 

We found the activation of Eph-ephrin signaling in both fibroblasts (Figure 3B) and vascular 

endothelial cells (Figure 7E) from keloid tissue. We found EPHB2, a receptor in Eph-ephrin 

signaling, ranked at the top in the network of keloid fibroblasts (Figure 5E). The 

angiogenesis-promoting EFNB2-EPHA4 interactions (Kania and Klein, 2016) between 

vascular endothelial cells and others were significantly altered in keloid (Figure 7F and 7G). 

Besides of these two pathways, NOTCH, PDGF and VEGF signaling were also found to 

be probably important in keloid pathogenesis. Past research often focused on the isolated 

signaling cascades, whereas recent developments showed that parts of the signaling 

pathways may be organized into an intricate network (Piersma et al., 2015). So, it is 

possible that targeting anyone of these dysregulated pathways in keloid would be 

ultimately effective for preventing keloid formation or recurrence, although manageable 

side effects should be well considered in clinical trials. 

Although keloid is generally regarded as a benign dermal tumor, keloid cells display some 

malignant features such as resistance to apoptosis, atypical differentiation and excessive 

proliferation (Lim et al., 2006). The mechanism underlying these features have not been 

fully elucidated. The PTEN gene encodes a negative regulator of PI3K/ACT/mTOR 

pathway that controls cell proliferation and survival (Chalhoub and Baker, 2009). The 

dysfunction of PTEN have been observed frequently in malignant tumors (a known tumor 

suppressor) and some fibrotic disorders such as lung fibrosis (Tian et al., 2019). Genetic 

studies revealed that polymorphisms in PTEN were associated with the increase keloid 

risk in Chinese Han population (Li et al., 2014). Reduced expression of PTEN has been 

observed in keloid tissue (Sang et al., 2015). We found the pathway of negatively regulation 

of PTEN transcription was activated in both keloid fibroblasts (Figure 3B) and vascular 

endothelial cells (Figure 7E). The genes implicated in epigenetic repression of PTEN were 

up-regulated in keloid, involving either the recruitment of the nucleosome remodeling and 

deacetylation (NuRD) protein complex (e.g., HDAC1, HDAC3, HDAC7, CHD3 and CHD4), 

or the recruitment of the polycomb repressor complex (e.g., CBX4, CBX8, EZH2, BMI1, 

MBD3 and MECOM). Together, these results reflect that the dysregulation of PTEN-
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mediated pathway may be responsible for the malignant features of keloid. In addition, 

other tumor-related signaling pathways such as “oncogenic MAPK signaling”, and 

“signaling by WNT in cancer” were activated for vascular endothelial cells in keloid (Figure 

7E), which supports the view that overlap exists in the dysregulated pathways between 

keloid and malignant tumors. Our findings have implications for clinical treatment of keloid: 

medical therapies in tumor: for example, drugs targeting MAPK signaling in cancer (Lee et 

al., 2020), may also be effective in keloid treatment. 

In conclusion, we provided the first systematic analysis of cellular heterogeneity and 

regulatory changes of keloid skin tissue at single-cell resolution. Our study put novel 

insights into the pathogenesis of keloid, and revealed dysregulated pathways in keloid 

fibroblasts and vascular endothelial cells, which could serve as potential targets for medical 

therapies. Our dataset constitutes a valuable resource for further investigations of the 

mechanism of keloid pathogenesis. 
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Figure 1. Single-cell RNA-seq reveals cellular diversity and heterogeneity of keloid 

skin tissue. (A)Schematic representation of the experimental procedure. Keloid lesional 

(CASE) and adjacent normal (CTRL) skin tissues were harvested separately at the time of 

surgery (n=4). (B) Unbiased clustering of 28,064 cells reveals 21 cellular clusters. Clusters 

are distinguished by different colors. The number in the parenthesis means the count of 

cells. (C) Hierarchical clustering of the clusters based on the average expression of 2,000 

most variable genes. (D) Expression of the established marker genes for each lineage in 

each cluster. (E) Representative molecular signatures for each cell cluster. The area of the 

circles indicates the proportion of cells expressing the gene, and the color intensity reflects 

the expression intensity. FB: fibroblast; KTR: Keratinocyte; LEU: Leukocyte; lEndo: 

lymphatic endothelial cell; MLA: Melanocyte; SGC: sweat gland cell; SMC: smooth muscle 

cell; vEndo: vascular endothelial cell 
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Figure 2. Differential proportion analysis reveals significant lineage expansion for 

fibroblasts and vascular endothelial cells in keloid compared with relatively normal 

skin tissue. (A) Visualization for cellular density reveals dramatic changes in proportion 

for multiple cell lineages in CASE versus CTRL. Cells are randomly sampled for equal 

number of cells in CASE (n=12,425) and CTRL (n=12,425) in this analysis. (B) Significant 

expansion of the vascular endothelial lineage in CASE versus CTRL for each of the 

patients. (C) Only the vascular endothelial clusters c4, c5 and c18 as well as the fibroblast 

cluster c9 are significantly expanded in CASE versus CTRL for each of the patients. A 

significant threshold of p-value < 0.05 for one-way paired t-tests was used in B and C. 
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Figure 3. Gene set enrichment analysis reveals fibroblast-specific dysregulated 

pathways in keloid versus normal skin tissue. (A) Network view of differentially 

regulated REACTOME pathways in keloid fibroblasts. The size of the circle reflects the 

size of the gene set. The circles in red denote up-regulated pathways, and circles in blue 

represent down-regulated pathways. A significant threshold of FDR q-value of 0.05 was 

used. (B) Enrichment plots (upper panel) and leading-edge gene expression heatmaps 

(the top 20 genes; lower panel) for representative signaling pathways up-regulated in 

keloid fibroblasts. NES: Normalized enrichment score, used to compare analysis results 

across gene sets. The vertical lines in the enrichment plot show where the members of the 

gene set appear in the ranked list of genes. Leading-edge genes: a subset of genes in the 

gene set that contribute most to the enrichment. Average expressions across cells in each 

group are shown in the heatmap. 
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Figure 4. Cellular heterogeneity of keloid fibroblasts revealed by single-cell 

transcriptomic data. (A) Heatmap showing distinct expression profiles between the 

fibroblast clusters c3 and c9. (B) Compared with c3, c9 displays more obvious phenotypes 

of myofibroblasts. **: adjusted P-value < 0.01. (C) Secondary clustering of fibroblasts 

further identifies five subpopulations. (D) The five fibroblast subpopulations display distinct 

expression profiles. (E) Molecular signatures for the five fibroblast subpopulations. (F) 

Correlations among the five subpopulations. (G) Functional enrichment for each of the five 

subpopulations. Adjusted P-value < 0.05. 
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Figure 5. Pseudo-temporal ordering and gene regulatory network analysis of keloid 

fibroblasts. (A) Pseudo-temporal ordering of keloid fibroblasts reveals a branched 

trajectory. (B) Distribution of the five subpopulations in each of the three branches. (C) 

Significant shift towards myofibroblast phenotype (cell fate 1) in CASE (right panel) versus 

CTRL (left panel). (D) Hierarchical clustering of the branch-dependent genes reveals five 

gene modules. A significant threshold was set to be a q-value of branched expression 

analysis modeling (BEAM) test < 1E-04. Representative transcription factors are shown. 

(E) Comparative analysis of the gene regulatory networks of fibroblasts between CASE 

(right panel) and CTRL (left panel) reveals dysregulated genes in keloid fibroblasts. The 

node size reflects the degree centrality. The transcription factors (in black) and receptors 

(in orange) in the top 100 genes dysregulated in CASE ranked by delta degree are shown. 

(F) The nine transcription factors that are both branch-dependent and dysregulated in 

keloid network are all from gene module I, most of which are highly expressed in the “pre-

branch”. (G) Split violin plot showing the expression of the nine transcription factors in 

CASE and CTRL. 
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Figure 6. Cell-cell communications among the cell lineages in keloid and relatively 

normal skin tissues. (A) Inter-lineage communication networks in keloid (CASE; right 

panel) and relatively normal skin tissues (CTRL; left panel). The total number of 

communications is shown for each cell lineage. The line color indicates that the ligands are 

broadcast by the cell lineage in the same color. The line thickness is proportional to the 

number of broadcast ligands. (B) Heatmap shows the number of communications between 

any two of lineages in CASE (right panel) and CTRL (left panel). (C) The ligand-receptor 

pairs shown significant changes in specificity between any one of the non-fibroblast 

lineages and fibroblasts in CASE versus CTRL. Fibroblasts express receptors and receive 

ligand signals from other lineages. The dot size reflects the P-value of the permutation 

tests for lineage-specificity. The dot color denotes the mean of the average ligand-receptor 

expression in the interacting lineages. (D) The ligand-receptor pairs shown significant 

changes in specificity between fibroblasts and any one of the non-fibroblast lineages in 

CASE versus CTRL. Fibroblasts express ligands and broadcast ligand signals for other 

lineages. FB: fibroblast; KTR: Keratinocyte; LEU: Leukocyte; lEndo: lymphatic endothelial 

cell; MLA: Melanocyte; SGC: sweat gland cell; SMC: smooth muscle cell; vEndo: vascular 

endothelial cell 
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Figure 7. The heterogeneity and regulatory changes of vascular endothelial cells in 

keloid skin tissues. (A) Heatmap showing distinct expression profiles among the four 

vascular endothelial cell clusters. (B) Representative molecular signatures of the four cell 

clusters. (C) Correlations among the four cell clusters. (D) Functional enrichment for each 

of the four clusters. (E) Enrichment plots (upper panel) and leading-edge gene expression 

heatmaps (the top 20 genes; lower panel) for representative signaling pathways up-

regulated in vascular endothelial cells in keloid tissues. NES: Normalized enrichment score, 

used to compare analysis results across gene sets. The vertical lines in the enrichment 

plot show where the members of the gene set appear in the ranked list of genes. Leading-

edge genes: a subset of genes in the gene set that contribute most to the enrichment. 

Average expressions across cells in each group are shown in the heatmap. (F) The ligand-

receptor pairs shown significant changes in specificity between any one of the non-

vascular endothelial lineages and vascular endothelial cells in CASE versus CTRL. 

vascular endothelial cells express receptors and receive ligand signals from other lineages. 

The dot size reflects the P-value of the permutation tests for lineage-specificity. The dot 

color denotes the mean of the average ligand-receptor expression in the interacting 

lineages. (G) The ligand-receptor pairs shown significant changes in specificity between 

vascular endothelial cells and any one of the non-vascular endothelial lineages in CASE 

versus CTRL. Vascular endothelial express ligands and broadcast ligand signals for other 

lineages. FB: fibroblast; KTR: Keratinocyte; LEU: Leukocyte; lEndo: lymphatic endothelial 

cell; MLA: Melanocyte; SGC: sweat gland cell; SMC: smooth muscle cell; vEndo: vascular 

endothelial cell 

Supplemental Materials 

Figure S1. Differential proportional analysis of each cell lineages in CASE versus CTRL. 

A significant threshold of p-value < 0.05 for one-way paired t-tests was used. 

Figure S2. Gene set enrichment analysis reveals lineage-specific dysregulated pathways 

for vascular endothelial cells in keloid versus normal skin tissue. 

Table S1. Clinical information of the patients and sequencing quality metrics of the samples. 

Table S2. Molecular signature for each of the 21 cellular clusters. 

Table S3. Results of gene set enrichment analysis for the fibroblast lineage between CASE 

and CTRL (Sheet1: REACTOME; Sheet2: GENE ONTOLOGY). 

Table S4. Molecular signature for each of the five subpopulations of the fibroblast lineage. 

Table S5. Genes which expression changed as a function of the pseudotime inferred by 
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Monocle2. 

Table S6. Results of the node centrality comparisons between the gene regulatory 

networks of the fibroblasts in CASE and CTRL. 

Table S7. Statistical inference of receptor-ligand specificity between all cell lineages with 

CellPhoneDB2. 

Table S8. Molecular signature for each of the four subpopulations of the vascular 

endothelial cells. 

Table S9. Results of gene set enrichment analysis for the vascular endothelial cells 

between CASE and CTRL (Sheet1: REACTOME; Sheet2: GENE ONTOLOGY). 

Methods 

Ethical approval. 

All human patient recruitments and tissue sampling procedure complied with the ethical 

regulations approved by Peking Union Medical College Hospital. Each subject received 

written informed consent. 

Sample preparation and tissue dissociation. 

Keloid lesional tissues were harvested during plastic surgery from four patients confirmed 

to have clinical evidence of keloid. No patient had received chemotherapy or radiotherapy 

prior to surgery. As a control, matched relatively normal skin tissues adjacent to the keloid 

scar were also sampled. Excised skin was immersed in the pre-cold Dulbecco's Modified 

Eagle Medium (DMEM, CAT: 11965-084, Gibco™) culture medium with 10% FBS (CAT: 

10270-106, Gibco™) and then transferred to the lab immediately. Enzymatic digestion and 

mechanical cutting were performed to dissociate the skin tissue to single-cell suspension. 

In brief, the skin tissue was washed twice with DMEM. After removal of the adipose tissue 

under the reticular dermis, the samples were minced into small pieces. Multiplex enzyme 

was used to digest the samples overnight according to the manufactory’s protocol. Next, 
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mechanical cutting was performed on gentleMACS™ Octo Dissociator using ‘h_skin_01’ 

program. After that, fragments and large clumps were removed by filtering through a 100-

μm filter (BD Falcon) and then a 40-μm filter. Dead Cell Removal Kit (Miltenyi Biotec) was 

used to remove the cells with low viability. The live cells were subsequently centrifuged at 

300  relative centrifugal force (rcf) for 5  minutes at 4  °C to obtain a cell pellet, which was 

then diluted to 1×10E6 cells per millimeter. 

Single-cell RNA-seq library preparation and sequencing. 

Single-cell Gel Beads-in-Emulsion (GEM) generation, barcoding, post GEM-RT cleanup, 

cDNA amplification and cDNA library construction were performed using Chromium Single 

Cell 3’ Reagent Kit v3 chemistry (10X Genomics, USA) following the manufacturer’s 

protocol. The resulting libraries were sequenced on a NovaSeq 6000 System (Illumina, 

USA). 

Sample demultiplexing, barcode processing and UMI counting. 

The official software Cell Ranger v3.0.2 (https://support.10xgenomics.com) was applied for 

sample demultiplexing, barcode processing and unique molecular identifier (UMI) counting. 

Briefly, the raw base call files generated by the sequencers were demultiplexed into reads 

in FASTQ format using the ‘‘cellranger mkfastq’’ pipeline. Then, the reads were processed 

using the ‘‘cellranger count’’ pipeline to generate a gene-barcode matrix for each library. 

During this step, the reads were aligned to the mouse human reference genome (version: 

GRCh38). The resulting gene-cell UMI count matrices of all samples were ultimately 

concatenated into one matrix using the ‘‘cellranger aggr’’ pipeline. 

Data cleaning, normalization, feature selection, integration and scaling. 

The concatenated gene-cell barcode matrix was imported into Seurat v3.1.0 (Butler et al., 

2018; Stuart et al., 2019) for data preprocessing. To exclude genes likely detected from 

random noise, we filtered out genes with counts in fewer than 3 cells. To exclude poor-

quality cells that might have resulted from doublets or other technical noise, we filtered cell 
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outliers (> third quartile + 1.5 × interquartile range or < first quartile - 1.5 × interquartile 

range) based on the number of expressed genes, the sum of UMI counts and the proportion 

of mitochondrial genes. To further remove doublets, we filtered out cells based on the 

predictions by Scrublet (Wolock et al., 2019). In addition, cells enriched in hemoglobin gene 

expression were considered red blood cells and were excluded from further analyses. The 

sum of the UMI counts for each cell was normalized to 10,000 and log-transformed. For 

each sample, 2,000 features (genes) were selected using the “FindVariableFeatures” 

function of Seurat under the default settings. To correct for potential batch effects and 

identify shared cell states across datasets, we integrated all the datasets via canonical 

correlation analysis (CCA) implemented in Seurat. To mitigate the effects of uninteresting 

sources of variation (e.g., cell cycle), we regressed out the mitochondrial gene proportion, 

UMI count, S phase score and G2M phase score (calculated by the “CellCycleScoring” 

function) with linear models using the “ScaleData” function. Then, the data were centered 

for each gene by subtracting the average expression of that gene across all cells, and were 

scaled by dividing the centered expression by the standard deviation. 

Dimensional reduction and clustering. 

The expression of the selected genes was subjected to linear dimensional reduction 

through principal component analysis (PCA). Then, the first 30 principal components of the 

PCA were used to compute a neighborhood graph of the cells. The neighborhood graph 

was ultimately embedded in two-dimensional space using the non-linear dimensional 

reduction method of uniform manifold approximation and projection (UMAP) (Becht et al., 

2019). The neighborhood graph of cells was clustered using Louvain clustering 

(resolution=0.6) (Blondel et al., 2008). 

Differential expression and function enrichment analysis. 

Differentially expressed genes between two groups of cells were detected with the 

likelihood-ratio test (test.use: ‘‘bimod’’) implemented in the ‘‘FindMarkers’’ function of 

Seurat. The significance threshold was set to an adjusted P-value < 0.05 and a log2-fold 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.14.095323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.095323
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 31 / 37 

 

change > 0.25. Functional enrichment analyses of a list of genes were performed using 

ClueGO (Bindea et al., 2009) with an adjusted P-value threshold of 0.05. 

Gene set enrichment analysis. 

All the expressed genes were pre-ranked by Signal2Noise (the difference of means 

between CASE and CTRL scaled by the standard deviation). Then, the ranked gene list 

was imported into the software GSEA (version: 4.0.1) (Subramanian et al., 2005). An FDR 

q-value < 0.05 was considered to be statistically significant. Pre-compiled gene sets 

including REACTOME pathways and GENE ONTOLOGY biological processes in MSigDB 

(version: 7.0) (Liberzon et al., 2015) were used in this analysis. The results were visualized 

using the EnrichmentMap plugin of Cytoscape. 

Pseudo-temporal ordering of single cells. 

Pseudo-temporal ordering of the cells along the differentiation trajectory was performed 

using Monocle2 (Qiu et al., 2017). Briefly, the ordering was based on 1,000 genes that 

differed in expression between clusters selected via an unsupervised procedure: 

“dpFeature”. Then, the data space was reduced to two dimensions with the method 

“DDRTree”. The cells were ultimately ordered in pseudotime, and cells exhibiting high 

expression of myofibroblast markers were considered to represent the end of the trajectory. 

To find significantly branch-dependent genes in their expression, we used the test named 

branched expression analysis modeling (BEAM), and the statistically significant threshold 

was set to a q-value < 1E-04. 

Gene regulatory network analysis based on single-cell transcriptomes. 

Gene regulatory networks were constructed from single-cell datasets and compared using 

the method implemented in bigScale2 (Iacono et al., 2019). Briefly, gene regulatory 

networks for CASE and CTRL were inferred with the ‘compute.network’ function 

(clustering='direct', quantile.p = 0.90) separately. Genes encoding ribosomal proteins or 

mitochondrial proteins were excluded from this analysis. Then, the number of edges were 
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homogenized throughout the obtained networks using the ‘homogenize.networks’ function. 

Finally, changes in node centralities (the relative importance of genes in the network) in 

CASE compared to CTRL were identified using the the ‘compare.centrality’ function. Four 

measures of centrality, namely degree, betweenness, closeness and pagerank, were 

considered. The networks were ultimately visualized with Cytoscape (version: 3.7.0). 

Cell-cell communication analysis based on single-cell transcriptomes. 

To analyze cell-cell communication based on single-cell transcriptomic datasets, we used 

CellPhoneDB 2.0 (Efremova et al., 2019), which contains a curated repository of ligand- 

receptor interactions and a statistical framework for inferring lineage-specific interactions. 

Briefly, potential ligand-receptor interactions were established based on expression of a 

receptor by one lineage and a ligand by another. Only ligands and receptors expressed in 

greater than 10% of the cells in any given lineage were considered. The labels of all cells 

were randomly permuted 1000 times and the means of the average ligand-receptor 

expression in the interacting lineages were calculated, thus generating a null distribution 

for each ligand-receptor pair in each pairwise comparison between lineages. Ultimately, a 

p-value for the likelihood of lineage specificity for a given ligand-receptor pair was obtained. 
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