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ABSTRACT

Naturalistic behavior is highly complex and dynamic. Approaches aiming at understanding how
neuronal ensembles generate behavior require robust behavioral quantification in order to correlate
the neural activity patterns with behavioral motifs. Here, we present Variational Animal Motion
Embedding (VAME), a probabilistic machine learning framework for discovery of the latent structure
of animal behavior given an input time series obtained from markerless pose estimation tools.
To demonstrate our framework we perform unsupervised behavior phenotyping of APP/PS1 mice, an
animal model of Alzheimer disease. Using markerless pose estimates from open-field exploration as
input VAME uncovers the distribution of detailed and clearly segmented behavioral motifs. Moreover,
we show that the recovered distribution of phenotype-specific motifs can be used to reliably distinguish
between APP/PS1 and wildtype mice, while human experts fail to classify the phenotype based on
the same video observations. We propose VAME as a versatile and robust tool for unsupervised
quantification of behavior across organisms and experimental settings

Keywords Neuroscience · Behavior Quantification ·Machine Learning · Variational Bayes ·Manifold

1 Introduction

Behavior is defined as the way in which an animal responses to a particular situation or stimulus, shaped by experience
and knowledge (Carew, 2005). As of today, most studies investigating behavioral changes in model organisms rely
on ethological classification performed by humans, which are mostly based on standardized protocols (Crawley,
2008). While standardization is important and ensures generalizability, the variability introduced by human annotators
remains a potential confounding factor in the interpretation of behavioral phenotyping results from different laboratories
(McIlwain, Merriweather, Yuva-Paylor, & Paylor, 2001). Moreover, in most currently used tests the behavioral repertoire
of animals is reduced to easily quantifiable behavioral choices by task extensive pre-test training.

Thus, the need for robust unsupervised behavioral quantification methods has been widely recognized and innovative
approaches in this direction are currently introduced (Gomez-Marin, Paton, Kampff, Costa, & Mainen, 2014; Brown &
de Bivort, 2018). Unsupervised behavior quantification may not only provide a more unbiased description of naturalistic
behavior, it may also be sensitive enough to detect subtle differences that would potentially remain undectedable or
unquantifiable by a human experimenter (Anderson & Perona, 2014; Datta, Anderson, Branson, Perona, & Leifer,
2019). Furthermore, behavioral quantification based on high temporal resolution time series data may permit the
computing-intensive analysis of correlations between behavior and neuronal activity. It may thus serve as an important
tool that facilitates the discovery of causal relationships between brain activity and behavior (Markowitz et al., 2018;
Musall, Kaufman, Juavinett, Gluf, & Churchland, 2019).
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Several computational approaches for unsupervised behavior quantification have been introduced (Berman, Choi, Bialek,
& Shaevitz, 2014; Wiltschko et al., 2015; Batty et al., 2019). These methods advanced the field of unsupervised behavior
quantification and established an increasing awareness of the necessity to improve objectivity. Most approaches operate
on a dimensionality-reduced signal extracted directly from the tracking video. The signal is then learned by a machine
learning model in the time-domain (Wiltschko et al., 2015; Batty et al., 2019) or frequency-time domain (Berman,
2018) and segmented into discrete blocks containing similar chunks of input data.

Recently, pose estimation tools such as DeepLabCut (Mathis et al., 2018) and LEAP (T. D. Pereira et al., 2019) enabled
efficient tracking of animal body-parts via supervised deep learning. The robustness of deep neural networks allows the
application of these tools for pose estimation in many model systems, such as mice, zebrafish and flies, and allows
for a high generalization betweeen datasets (Mathis et al., 2018). However, while such tools provide a continuous
representation of the animal body motion, the extraction of underlying discrete states as a basis for classification
(Tinbergen, 1951) remains a challenge.

Here we introduce Variational Animal Motion Embedding (VAME), a probabilistic machine learning framework for
clustering of behavioral signals obtained from pose estimation tools in both the spatial and the temporal domain. We
propose that these continuous spatiotemporal signals can be grouped into discrete states via clustering of the latent
vector obtained from a recurrent neural network autoencoder. Our approach is inspired by recent advances in the field
of temporal action segmentation (Kuehne, Richard, & Gall, 2020), representation learning (Chung et al., 2015; Chen et
al., 2016; Higgins et al., 2017; Jiang, Zheng, Tan, Tang, & Zhou, 2017) and unsupervised learning of multivariate time
series (J. Pereira & Silveira, 2019; Ma, Zheng, Li, & Cottrell, 2019).

Our machine learning model is built within the framework of variational autoencoders (VAE) (Kingma & Welling,
2014; Rezende, Mohamed, & Wierstra, 2014) that has been previously applied to the field of neuroscience (Speiser et
al., 2017; Pandarinath et al., 2018). Based on this work, it has been suggested that learning a disentangled representation
of the data generative factors can be helpful for a large variety of tasks (Bengio, Courville, & Vincent, 2013). Using
the recurrent autoencoder in a variational setting allows a model to learn a complex distribution of the data and to
generalize well to previously unseen data. Moreover, VAEs enable the generation of synthetic samples from the learned
distribution, that can be used to validate the learning process.

In this manuscript we first demonstrate the model and how it can be applied to behavioral data obtained during
open-field exploration. We then demonstrate the sensitivity of our approach in a use case, in which we apply VAME
to investigate behavioral differences in a mouse model of beta-amyloidosis (APP/PS1dE9) (Jankowsky et al., 2004).
This mouse model and comparable humanized models are commonly used for preclinical studies. Detecting body
pose signatures as functional “biomarkers” of underlying pathophysiology would enable early non-invasive detection
and potentially facilitate preclinical research on early therapeutic intervention. We show that our method robustly
identifies differences in distribution of behavioral motifs in transgenic versus wildtype animals. Furthermore, we used
the learned representation to predict the phenotype of inidividual mice based exclusively on their behavioral motif
distribution.We show that this classification performance is better than the classification based by human experts that
have been presented the video data. Finally, we validate our model with human annotator generated labels and inspect
the variability in clustering depending on the model parameters. Furthermore we evaluate and quantify the added value
of adding temporal information in comparison to relying exclusively on spatial representations of the egocentric body
pose of mice.

2 Results

2.1 VAME: Variational Animal Motion Embedding

There is a broad agreement in recent work on computational behavioral quantification that observable behavior can be
encoded in a low-dimensional subspace or manifold (Wiltschko et al., 2015; Brown & de Bivort, 2018; Berman, 2018).
Within this latent structure the identification of different behavioral motifs ranging from stereotyped behavior to rare or
spontaneous events is a realistic goal.

To investigate behavioral structure we let animals move freely inside an open-field arena (Figure 1 B, top). During the
experiment the animal movement was recorded from a camera that was mounted below the arena. Another behavior
setup that can be straight-forwardly equipped with tracking cameras is the restrained setup where head-fixed animals
behave on a linear treadmill. The quantification of such data using a related quantification method has been discussed in
a conference proceeding previously (Luxem, Fuhrmann, Remy, & Bauer, 2019).

In order to identify the postural dynamics of the animal from the video recordings we used a markerless pose estimation
tool (Mathis et al., 2018). From pose estimation we obtained a time-dependent series of marker positions X which
captures the movement of relevant body parts. Our goal was to extract useful information from the time series data,
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Figure 1: VAME: a machine learning model for unsupervised spatiotemporal behavior quantification. (A)
Architecture of the machine learning model. The input sequence is fed into a bidirectional recurrent neural network
(encoder) which learns a probabilistic representation z of the underlying hidden states. Another recurrent neural network
(decoder) learns to reconstruct the original sequence from z. An additional prediction decoder can be used to anticipate
the evolution of the time series. (B) Upper: Markerless pose estimation of animals performing in open-field setup,
where marker positions are aligned to egocentric coordinates. Lower: Exemplary input time series reconstructed from
the recurrent neuronal network decoder. (C-E) Unifold Manifold Approximation (UMAP) embeddings of the marker
position input series (C) and the latent representation encoded from the RNN color-coded for 5 manually labeled
behavioral classes (D). (E) Same as (D) but color-coded according to assignment into 30 VAME motifs.
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that allowed for an effective behavioral quantification given spatial and temporal information of body movement. We
aligned the marker positions egocentrically to the mouse body. Then, the aligned data was used as input to our machine
learning model (Figure 1 B).

Within the framework of variational autoencoders (VAEs) (Kingma & Welling, 2014) we built a bidirectional recurrent
neural network (RNN) encoder which was trained in an unsupervised fashion (Figure 1 A). Gated recurrent units
(GRUs) (Cho et al., 2014) were used as the basic building block of the RNNs. The encoder receives a sample xi of
the time series and learns to embed the relevant information into a lower dimensional representation zi. Learning
is achieved by passing zi to another RNN which decodes the lower dimensional vector into an approximation x̃i of
the input chunk (Figure 1 B, bottom). Additionally, a second RNN decoder learns to anticipate the structure of the
subsequent time series chunk x̃i+1 from zi (Srivastava, Mansimov, & Salakhudinov, 2015), thereby regularizing zi and
forcing the encoder to learn a richer representation of the behavior. The prior of the VAE followed the standard normal
distribution. However, inspired by Ma and colleagues (Ma et al., 2019), we introduced an additional prior on zi with the
aim to improve the clusterability of the latent space (see Methods 4.3 for details).

In order to investigate if our model learned a meaningful representation of the input time series, we visualized z using
Unifold Manifold Approximation (UMAP) (Figure 1 D, E). Compared to the UMAP embedding of the egocentrically
aligned spatial time series (Figure 1 C) the visualization of z suggested that the information from x is mapped into a
dense manifold representing the spatiotemporal dynamics of the animal’s behavior. We then assigned points of z to
clusters while minimizing their within-cluster variance (k-Means algorithm). In this way we grouped input chunks by
spatiotemporal similarity, i.e. created behavioral motifs (Figure S.1).

As the VAE is a generative model, it is furthermore possible to generate unseen data from the latent space learned by the
model. We demonstrate this capability in Figure S.5, where we perform latent interpolation between two time windows
randomly chosen from the input data. Given the start and end point, the model is capable to interpolate between the
data by generating the most likely output time series based on the learned data representation.

2.2 Unsupervised detection of behavioral differences between phenotypes

To demonstrate how VAME can be applied for the detection of individual animal specific as well as cohort specific
behavioral differences we performed behavioral tracking on a mouse model of beta-amyloidosis harboring human
mutations in the APP and presenelin 1 gene (Jankowsky et al., 2004). Mice heterozygous for the transgenic allele
were compared to wildtype littermate control. For this mouse line, several age-dependent behavioral differences have
been reported (Huang et al., 2016). For example, age/disease related motor and coordination deficits (Onos et al.,
2019), changes in anxiety levels (Lalonde, Kim, & Fukuchi, 2004) and spatial reference memory deficits (Janus, Flores,
Xu, & Borchelt, 2015) were observed. This dataset forms an ideal use-case for the purpose of unsupervised behavior
quantification as both phenotypes show considerably similar observable behavior, although the execution of specific
motifs is expected to be altered by the underlying pathomechanism.

We placed N=8 mice into a novel open-field environment with transparent bottom, in which mice were allowed to freely
explore the arena for a duration of 25 minutes after an initial habituation period of 10 minutes (Figure 2 A). During
the experiment, the nose, tailroot, hind and front paw movement was captured by a camera mounted below the arena
(Figure 1 B, top).

The average speed during the trial was 2.29 ± 1.57 cm/s for control animals and 2.49 ± 2.45 cm/s for test animals,
while the average distance travelled was 9187.44± 1266.4 cm and 9937.07± 1367.08 cm, respectively (Figure 2 C).
No statistically significant differences were computed between the groups for both measures. Observing the total
occupancy for control and test animals, we found that both groups preferred the boundary of the arena over the middle,
while the test animals had an additional bias towards the southern border over the northern (Figure 2 B).

We extracted marker coordinates from pose tracking, trained the machine learning model on the full dataset (1.3× 106

time points) and clustered the multivariate signal into 30 VAME motifs. From the transition probabilities between
individual motifs we created a hierarchical representation of mouse behavior (Figure 2 D). We iteratively grouped
two motifs that had the largest transition probability between each other as well as the smallest joint probability of
occurrence (see Methods 4.4 for details). Doing so, we made sure that the motifs having the largest spatiotemporal
similarity have been grouped at the lowest levels of the hierarchy. We then cut the tree-like hierarchical structure
on the second and third hierarchical level in order to obtain communities of motifs. Figure 2 D shows the obtained
representation for a single wildtype animal. Note that the structure of the obtained representation was similar for all
animals.

Moreover, the hierarchical representation offers a practical solution for the problem of overclustering. As the number
of cluster k is not known, it is likely that we choose k to be larger as in the real data distribution, thus effectively

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.05.14.095430doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.095430
http://creativecommons.org/licenses/by-nc-nd/4.0/


Identifying Behavioral Structure from Deep Variational Embeddings of Animal Motion

Figure 2: Unsupervised detection of behavioral differences between two phenotypes. (A) Wildtype (wt, N=4)
and APP-PS1 mice (tg, N=4) performing an open-field exploration task for 25 minutes. (B) Spatial occupancy for
the whole duration of the experiment. (C) Average speed and distance travelled. (D) Hierarchical representation
of VAME motifs obtained from k = 30 clusters with post-hoc annotation. (E) Percentage of usage of each VAME
motif for the control and test group. Motifs marked with ∆ are discussed in text and visualized in Figure 3. (F)
Stationary distribution probability obtained from the Markovian transitions between motifs for the control and test
group. Significant differences were found in 3 motifs (Asterisks, p (Bonferroni-adjusted) < 0.05).
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partitioning the space into roughly equally large chunks. However, we can recover the macroscopic structure of behavior
from the hierarhical representation, as suggested in the UMAP visualization in Figure 3 A. After clustering the data of
one animal into 30 VAME motifs and obtaining their respective communities we observe that the latent space contains
now more self-contained patches of the communities.

We post-hoc labeled the communities into coarse labels that have been used for manual annotation of behavior before,
with the addition of a Turn community that emerged in the hierarchical representation. In both motifs included in the
Turn community we could detect bending and turning behavior of the animal that occurred in a stationary position
or slow movement speed. Moreover, we have identified two communities containing motifs related to exploratory
behavior. In both communities, the animal exhibited head movement strongly resembling undirected sniffing. However,
in one community, the animal was mostly in an otherwise stationary position while in the other the animal was moving,
typically at a slow pace. Note that the Groom community also contained motifs exhibiting consummatory behavior, as
we have randomly placed three chocolate flakes in the center of the arena prior to the experiment in order to motivate
full coverage of the open field.

Inspecting the difference in motif usage between control and test animals, we detected 3 VAME motifs that significantly
within the stationary distribution differed between the groups. Of those, one was post-hoc categorized into the Groom
community (motif 22, p (Bonferroni-adjusted) = 0.03, two-sample T-test with Bonferroni-correction), one in the Turn
community (motif 21, p (Bonferroni-adjusted) = 0.04) and one as walk behavior (motif 28, p (Bonferroni-adjusted)
= 0.04) (Figure 2 F). Grooming motifs 4 and 22 are characterized by no movement of hind paws, upper body and
head movements, and slightly lifted front paws, as well as consumatory behavior (Figure 3 A, Supplementary Video
1). Sequences within motifs 8 and 21 display slow body transitions with hind paw movement, upper body and head
turns, as well as low rears (Figure 3 A, Supplementary Video 2). Motif 28 shows moderate walking with the snout
approaching the floor (Figure 3 A, Supplementary Video 3). The dependency of the discovered number of significantly
changed motifs within the stationary distribution on the cluster size k is further visualized in Figure S.6.

Furthermore, motifs within the Moving exploration community show walking with a slightly bend upper body and
active sniff behavior with head movement (Figure 3, Supplementary Video 4) while in motifs within the Stationary
exploration community mice perform intense sniff behavior while sitting on the hind paws (Figure 3 A, Supplementary
Video 5). Interestingly, although not statistically significant, the pronounced appearance of exploratory motifs together
with the significantly more frequent motif from the Turn commuity could be related to deficits of spatial orientation that
have been previously reported for comparable mouse models (Lalonde et al., 2004; Janus et al., 2015).

To further visualize motion patterns of individual motifs we have carried out a Fourier analysis of virtual marker
movements (Figure 3 B). In this visualization, we show how movements occur in different frequency ranges between 1
and 10 Hz. Here we observe that higher frequencies typically dominate the power spectrum for hind paw movements
within the Walk community, while motifs in the Rear community typically show activity of 5 Hz or higher for the front
paws. Moreover, in Figure 3 C, we see how motifs develop over time, and that the average usage in 2.5 minute long
bins is approximately stable over the duration of the experiment.

2.3 Phenotype classification

Finally, we investigated if the wildtype and APP/PS1 transgenic mice could be distinguished based on the motif usage
and stationary distribution obtained from VAME. When measuring the Kullblack-Leibler divergence between the
motif usage distributions as well as the stationary distribution per animal we found a block-diagonal structure in the
pairwise dissimilarity matrix (Figure 4 A, B). This suggests that two separable clusters exist. Interestingly, when
applying k-Means clustering with the cluster size k = 2 to the underlying distributions indeed a decision boundary
could be found that seperated each animal into a cluster corresponding to the correct genotype. The robustness of the
classification was underpinned by Leave-p-out validation. When leaving p = 1 datasets out of the clustering procedure
the mean accuracy was 0.96± 0.06, while it has been found to be 0.91± 0.12 and 0.88± 0.14 for p = 2 and p = 3,
respectively.This finding could be furthermore confirmed with statistical testing, when KL-distances within a genotype
were compared to between-genotype KL-distances (Figure 4 C: Ks-test p = 0, 02, t-test wt to tg p = 0.52, t-test wt to
between group KL-distance p = 0, 0002, t-test tg to between group KL-distance p = 0.000002, Figure 4 D: Ks-test
p = 0, 002, t-test wt to tg p = 0.49, t-test wt to between group KL-distance p = 0, 0004, t-test tg to between group
KL-distance p = 0.00002). Note that the Kullblack-Leibler divergence is a measure of distances between probability
distributions. Thus, the within-group statistics appearing in Figure 4 C, D is smaller than the between-group statistics
given the separation of phenotypes into distinct clusters is feasible in this case.

In order to investigate how the cluster size affects the separability of both phenotypes, we performed an ablation study
where we computed the cluster distance for each group to their k-Means centroid. Figure 4 G, H shows the mean and
standard deviation from this centroid for each group. We observe that the seperation of both phenotypes can be reliably
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Figure 3: Representation of VAME motifs detected during the open-field exploration task. (A) Top Left: Hier-
archical representation assignment visualized on the UMAP embedding. Others: Exemplary VAME motifs detected
during the open-field exploration task. Motif images are ordered as follow - Upper: Density of the motif occurrence for
wildtype and transgenic mice. Lower: Animal body pose at the beginning of the motif (blue) and at the end of the motif
(red). White dots represent the movement of marker positions obtained from pose estimation during the motif. (B)
Mean power spectrum of virtual marker movement detected on different body parts during the occurrence of VAME
motifs for both wildtype (Upper) and control (Lower) animals. (C) Mean motif usage for bins of 2.5 minute duration
for both phenotypes.
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done with more than 10 cluster. We moreover inspected how the variance of cluster distances changes given different
recording times. More specifically, we have segmented our recordings into 5, 10, 15 and 20 minutes (see Figure S.3)
and carried out the same analysis as in Figure 4 G, H. In this ablation study we found that a minimum recording time of
15 minutes is necessary to reliably separate both groups.

Figure 4: Classification of phenotypes using VAME (A,B) Kullback-Leibler distance of motif usages (A) and the
stationary distribution (B) between animals. (C,D) Group statistics of Kullback-Leibler distances of motif usage (C) and
the stationary distribution (D) within and between phenotypes. (E) Leave-p-out accuracy for unsupervised classification
given p held-out datasets (Total N=8). (F) Accuracy of the human classification task (Asterisks, p < 0.01). (G,H)
Distances to between-phenotype cluster centroids given each datapoint consists of k motifs, for the wildtype (G) and
transgenic group (H). Shaded area corresponds to the standard deviation of distances from the k-Means centroid.

In order to demonstrate the strength of our approach in separation of behavioral phenotypes into genotypes we asked 11
human experts to classify the behavior based on the video recordings that were used as an input to the machine learning
model. We constructed an online questionnaire for blinded classification where each participant was allowed to watch
all videos for an unlimited time before making her decision. All experts had previous experience with behavioral video
recordings in an open field and/or treadmill setting. In addition, six of the participants also had previous experience
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doing behavioral experiments with APP/PS1 mice. We found that the later group showed slightly higher classification
accuracy than experts inexperienced with the mouse model (50.98%± 11.04% for experts, 42.5%± 15.61% for non-
experts). However the overall human classification accuracy was at chance level for all participants (46.61%± 8.41%,
Figure 4 E). Note, however, that the comparison to human performance is not fair, as humans made their judgment
based on observations of the raw video material and did not have the possibility to assess the distribution of motifs,
provided by, for example, an ethogram. Thus, we believe that community-based labeling of the complete video material
would be a relevant follow-up to this comparison. Nonetheless, we believe that these result demonstrate the usefulness
of VAME for constructing a motif distribution that captured even the subtle differences of behavior specific to the
phenotype, that were not detectable by human experts given the same input data.

2.4 Validation of VAME

In order to validate how motifs obtained by the proposed unsupervised approach coincide with ethograms created
by humans, we created a manually labeled dataset that was annotated by three experts with training in behavioral
neuroscience. The experts annotated a video of a freely moving wildtype animal consisting of 20.000 frames (≈ 6
minutes length) with 5 coarse behavioral labels (Walk, Pause, Groom, Rear, Exploratory behavior) (Figure 5 A, see
Methods 4.5). When quantifying agreement between individual experts, we observed that 71.93% of the video frames
were labeled equally by all three experts. The remaining 13.61% of frames were labeled unequally by two experts and
14.47% were labeled unequally by all three experts (Figure 5 C). This implicated that behavior showed a considerably
high observer variability and is not trivially assignable to discrete labels (Anderson & Perona, 2014; Datta et al., 2019).

Next, we obtained VAME motifs for the tracking data used in Figure 5 A,B and validated how they overlapped with the
manual annotation (Figure 5 B, bottom). We found that although most VAME motifs predominantly overlapped with a
single manually assigned label, a portion of the VAME motifs overlapped with two or more manually assigned labels.
Interestingly, we found more disagreement between human experts for motifs that overlapped with several human
assigned labels, indicating uncertainty of the annotators. This suggests that the clustering accuracy of VAME is high,
but the achieved score is low as the underlying behavior can not be uniquely identified by experts.

We further used two different metrics for clustering validation to quantify the model accuracy compared to the manual
annotation. Note that the goal of this benchmark is not to create a one-to-one mapping of VAME motifs to manually
assigned labels akin to a supervised approach but to create a one-to-many assignment that may serve as validation of
the proposed method as well as for the purpose of model comparison. Purity was used as a measure of the extent to
which clusters contain a single manually assigned label (Manning, Raghavan, & Schütze, 2008). Normalized Mutual
Information (NMI) was introduced as information-theoretic metric, that scales the amount of mutual information
between VAME clusters and the manually assigned labels (see Methods 4.5 for details).

Compared to the clustering of the egocentrically aligned spatial input signal using the k-Means algorithm we found
a relative increase of the Purity score for our best model (Spatio-temporal + Prediction) by 7.03%, 8.56%, 8.61%
relative to our model (absolute values: 75.11, 77.2, 77.77) for each choice of the numbers of cluster k = {15, 30, 45},
respectively. Likewise we found a relative increase of the NMI score by 40.14%, 47.23%, 43.23% (absolute values:
27.44, 27.93, 27) for each choice of k, obtained by our best model (Spatio-temporal + Prediction). Absolute values for
each setting and metric employed in the comparison are found in Table S.1. Furthermore, we have compared the scores
obtained for VAME with scores obtained for clustering of singular values of the spatiotemporal signal (Table S.1). In
comparison, we found that for all settings of k the Purity and NMI score is lesser then the scores obtained with our
model. This finding is also confirmed for bootstrapped statistics of the Purity and NMI score where the measures have
been computed for 1-minute long bins of the human labeled data and the corresponding VAME motifs, as shown in
Figure S.2.

We moreover compared our approach to an autoregressive Hidden-Markov model (AR-HMM) which was introduced
for the purpose of behavior quantification by Wiltschko and colleagues (Wiltschko et al., 2015). As shown in Table
S.1, the AR-HMM model obtained a relative increase of the Purity measure by 4.18%, 3.49%, 3% (absolute val-
ues: 73.07, 73.58, 73.75) and a relative increase of the NMI measure by 16.8%, 23.56%, 25.62% (absolute values:
22.87, 23.44, 23.68) for each choice k = {15, 30, 45}, respectively. We also compared our approach to the Motion-
Mapper framework proposed by Berman and colleagues(Berman et al., 2014). The framework suggested a clustering
using a cluster size of k = 17 for the given dataset. As shown in Table S.2, the model obtained a relative increase of
Purity by 4, 18% (absolute value: 72.96) and relative increase of NMI by 28.29% (absolute value: 25.78).

Finally, we visualized the trajectories of three randomly chosen behavioral sequences with a length of 1.5 seconds
within a lower-dimensional space that was projected by UMAP based either on the spatial input signal (Figure 5 F) or
the spatiotemporal representation learned by our model (Figure 5 G). We observed that the course of trajectories within
the embedding of the spatiotemporal representation followed a smooth path through the projected manifold while the
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Figure 5: Model validation via manually assigned labels on an open field dataset. (A) Overlap of manually assigned
labels by three experts. (B) Lower: Confusion matrix showing the agreement between 30 VAME motifs and 5 manually
assigned labels. Upper: Agreement in manual annotation of behavior shown for the duration of each VAME motifs. (C)
Disagreement in manual annotation. (D) Purity score obtained for three different choices of the number of clusters k
for the spatiotemporal representation obtained with or without the prediction decoder relative to naïve clustering of
the spatial input signal (baseline). (E) Same as (D) but showing the Normalized Mutual Information score increase
compared to the baseline. (F, G) Three exemplary paths of consecutive video frames through the UMAP embedding
space of the spatial input series (F) and through the embedding space visualizing the spatiotemporal representation (G).
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course of trajectories through the embedding of the spatial input signal consisted of several scattered jumps through the
projected space. Although a similar effect can be achieved considering, for example, points obtained from a wavelet
transform, this suggests that our machine learning model captures the spatiotemporal dependencies of the input data
and thereby unravels the development of observable behavior on a low-dimensional manifold.

3 Discussion

Animal movements occur in a broad range of spatial and temporal scales. The detection of stereotypical patterns is a
classical ethological approach. However, within these patterns subpatterns exist which may continuously change in
response to behavioral and environmental challenges and usually remain undetected. As manual scoring can not capture
the full complexity of the behavioral dynamics that is required for detecting causal relationship of neural activity and
behavior there is a pressing need for unsupervised behavior quantification in neuroscience.

To address this issues, we presented a probabilistic machine learning framework for clustering of spatiotemporal motion
dynamics embedded in lower dimensional space (Variational Animal Motion Embedding, VAME). VAME allows for
detection of behavioral motifs in time series data obtained with recently established deep-learning based pose estimation
tools. Moreover, our approach offers the opportunity for embedding of other complementary modalities acquired at
a similar temporal scale, for example the body temperature, blood oxygen levels, or other physiological parameters.
Since the framework can be useful for the wider community of behavioral neuroscientists we provide open-source
access to all required code and documentation. Moreover, we designed and used a rodent observation setup that is easily
transferable to other laboratories. We demonstrated that a single camera observation from below the animal provides
sufficient information for behavior quantification.

VAME requires only the setting of a few key parameters which is advantageous compared to previously introduced
unsupervised quantification methods based on segmentation via autoregressive Hidden Markov models (Wiltschko et
al., 2015; Batty et al., 2019). One important problem of Hidden Markov Models (HMMs) when applied to behavioral
data is the short switching times between modules, following an exponential distribution. To circumvent this problem
“sticky” autoregressive parameters have been introduced (Fox, Sudderth, Jordan, & Willsky, 2011). This step however
requires the introduction of multiple additional potentially confounding parameters that are not trivial to set by users
not familiar with advanced machine learning techniques. Moreover, RNNs have more expressive power than HMMs as
their activation functions enable to capture non-linearities of the input data.

Our model of observable behavioral dynamics is a deep-learning based model that is trained in a fully unsupervised
fashion. With the capability of deep neuronal networks to extract higher order features they can identify complex
patterns within and across raw data points, thereby considerably reducing human effort needed to parametrize the
model (Salinas, Flunkert, Gasthaus, & Januschowski, 2019). In order to achieve a high performance level they typically
require larger amounts of training data in order to learn accurate models, as fewer structural assumptions are made than
in parametric models including state space models. However, today the availability of extended data sets is not a major
limiting factor as with the advent of markerless pose estimation tools continuous long-term monitoring of behavior is
developing into a state-of-the-art approach in behavioral neuroscience.

Moreover we have decided to build our model within the class on Variational Autoencoders (VAEs) (Kingma & Welling,
2014). VAEs are generative models that combine probabilistic modeling and deep learning into one framework that
enables the learning of the latent variable distribution underlying the input data. Moreover, we have adapted the classical
VAE model with the addition of a prediction decoder, that anticipates the development of the learned time series and
thereby regularizes the learning problem (Srivastava et al., 2015). Furthermore, we introduced an additional prior on the
latent space in form of a k-means objective (Ma et al., 2019). We found that although the prior did not significantly
improve the Purity and NMI scores in reference to the manual labeling, it increased the quality of the obtained clusters
that were validated via generated video sequences (Supplementary Videos 1–5).

We have chosen the VAE as our underlying framework due to the capability of the model to create mapping between
the data distribution and a latent space whose distribution follows the prior distribution. This is an advantage in
comparison to a regular autoencoder (Kingma & Welling, 2019). In comparison to standard autoencoders, VAEs learn
the parameters of the probability distribution, instead of just learning the “compressed representation” of the input data.
On one hand this property ensures that the latent space where input vectors are embedded is continuous, thus allowing
for smooth interpolation and clustering. On the other hand, this property allows to sample the latent space to generate
new input data samples (Figure S.5). This can be useful to validate if the model learned a meaningful data distribution
and furthermore can be used to generate synthetic behavioral data that may serve as input to other computational models
or simulations.
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Our method was inspired by the approach proposed by Berman and colleagues (Berman et al., 2014), that has been
previously applied for unsupervised behavior quantification from marker time series (Günel et al., 2019). In the original
paper (Berman et al., 2014), the authors applied signal processing techniques to extract relevant features describing
animal movement, such as the leg segments of a fruit fly. Comparably, our approach relies on the pre-selection of
features that either captures the full range of observed animal behavior or that are of specific interest for a given study,
e.g. pupil dynamics or facial muscle movements. The previously published approach (Berman et al., 2014) then
transformed the behavioral time series into a spectrogram, embedded it into a two-dimensional space via t-distributed
stochastic neighborhood embedding (t-SNE) and obtains discrete modules using watershed transform of the continuous
density map. Differently, our approach now uses a variational recurrent autoencoder, which is an alternative technique
for non-linear dimensionality reduction. Both approaches aim at finding a lower dimensional embedding of the input
data, but optimize a different term in order to achieve this goal. While variational autoencoders learn the parameters of
the probability distribution that underlies the input data, t-SNE applies different transformations in different regions of
the data in order to find a low-dimensional map that roughly preserves the distances in the high-dimensional space.
For t-SNE applications a set of hyperparameters has to be tuned beforehand, otherwise the algorithm likely produces
low-dimensional distributions that may misrepresent the global geometry of the input data (Kobak & Berens, 2019).
Due to this, t-SNE is usually preferred for visualization purposes while variational autoencoders are preferentially
applied for learning deterministic and reversible mapping from data to the embedding space. Moreoever, the quadratic
computational complexity of t-SNE (van der Maaten and Hinton 2008) may be precluding for the creation of joint
embeddings from large datasets, while the complexity of recurrent neuronal networks is asymptotically linear in the
length of the input (Goodfellow, Bengio, and Courville, 2016) although novel approaches have been shown to generate
t-SNE embeddings at linear time complexity via sub-sampling of datapoints (Cande et al., 2018).

In our approach we avoided the transformation of the input signal into the time-frequency domain. This allowed us to
treat the signal in its raw form instead of finding a convenient balance of time and frequency resolution, that is necessary
for an effective Fourier decomposition. However, it is also possible to extend our framework by incorporating, for
example, a multimodal time series consisting of signals representing the wavelet power at a given frequency band
(Berman et al., 2014) or traces obtained from filtering for other specific features of the input signal. Note also that
an orthogonal approach to the proposed framework is behavior quantification based on automatically extracted deep
features, as proposed by Batty and colleagues (Batty et al., 2019). We believe that the application of VAME to learning
of dependencies in deep features could indeed yield a more expanded discovery of behavioral motifs.

A relevant parameter in our model is the size of the temporal window that slides over the input data during training
and prediction. Shorter settings of the time window lead to learning of finer nuances within the signal, while larger
time windows are required to capture long term dependencies. In our analysis, we have used temporal windows of 500
ms as input to our model, a setting which was proposed based on changepoint analysis of mouse behavior in previous
work (Wiltschko et al., 2015). Furthermore the prediction decoder predicts the evolution of the next 250 ms of the
input signal, serving as a regularization term. Depending on the time scale of movements across model organism this
parameter has to be specifically set to capture relevant features. Note, that the RNN is capable to learn significantly
longer temporal dependencies than given by a 500 ms window and this advantage could be potentially further utilized
by future approaches of behavior quantification. Our approach can be potentially further improved by using the recently
proposed dilated RNNs (Chang et al., 2017) as an encoder model which could lead to an improved treatment of the
signal on multiple temporal scales. However, as the approach may require precise tuning of hyperparameters, the
comparison to VAEs was not a feasible strategy for this study.

Another relevant parameter requiring optimization is the size of the latent vector, which is used to set the amount of
information compression between the encoder and decoder networks. A too large size of the latent vector leads to poor
performance of the encoder as it can surpass the inference step and leads to storage of the complete input information
directly in the latent vector. A too small size of the latent vector on the other hand may not offer sufficient capacity
for encoding relevant information, even after extensive training of the model. This parameter was set empirically
to z ∈ R30 while comparing the difference between input and reconstructed signals. For the appropriate setting the
high-frequency noise was removed while the reconstructed signal captured the main characteristics of the input signal
(see Figure 1B, Lower). Clearly, this setting requires adjustment for specific use cases and needs to be evaluated when
the dimensionality of the input signal changes. For the given data, an ablation study of the latent vector size with respect
to the reconstruction error can be found in Figure S.4. This data suggests that the reconstruction error lies within the
same order of magnitude for the range of 10 to 35 latent variables, but is generally lower when the prediction term is
employed in the loss function.

Given that mouse behavior takes place in three dimensions it could be beneficial to enhance the tracking setup
with additional cameras enabling 3D-keypoint detection via triangulation (Günel et al., 2019). The resulting three-
dimensional time series can then be fed into the proposed machine learning model akin to the datasets presented
herein. This could lead to a better resolution of behavioral motifs, allowing for more detailed detection of behavior
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patterns during rearing or grooming episodes. We summarize the most important choices of recording methods and
hyperparameter settings in Table S.3.

We have demonstrated how our approach can be applied in practice for robust identification of the detection of
differences between two mice of different genotypes. Classification of behavioral phenotypes based on defined features
has been demonstrated previously, as for example in Caenorhabditis Elegans (Baek, Cosman, Feng, Silver, & Schafer,
2002). We would like to point out, however, that our classification is based on unsupervised discovery of behavioral
motifs, with the only manual selection of features being the keypoints defined for pose estimation. Our model thus
outperformed human clustering performance, demonstrating the practicability of our approach and, in general, machine
learning based behavior quantification approaches in neuroscience.

Finally, we have validated VAME based on manual labeling and addressed the issue of behavior identifiability, that has
been raised previously (Anderson & Perona, 2014; Datta et al., 2019). Here, we labeled behavioral data based on a
composition of stereotypical movements, such as walking, pausing and sniffing, that may also appear in combination
with each other. However, we found considerable disagreement in labeling between individual human experts, even if
the basic set of motifs was grouped into five coarse behavioral classes, for example a motif jointly representing walking
and exploratory behavior. While undirected sniffing in a rigid body pose is typically interpreted as exploratory behavior,
sniffing during walking may be identified as regular walking behavior. At this point our approach reached a limit.
Possibly, this limit may only be overcome by an identification of the neuronal correlates of the true behavioral states
(Krakauer, Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017).

We are thus convinced that our framework will be useful to robustly detect behavior representations across organisms
and experimental settings. Moreover, we anticipate that VAME will stimulate the development of further machine
learning models that may be benchmarked provided the data and methodology presented in this paper. Finally, with
the introduction of VAME we aim at facilitating the initiation of studies investigating causal relationships between
naturalistic behavior and neuronal activity.

4 Methods

4.1 Animals

For all experiments we used 12 month old male transgenic and non-transgenic APPSwe/PS1dE9 (APP/PS1) mice
(Jankowsky et al., 2001) on a C57BL/6J background (Jackson Laboratory). Mice were group housed under standard
laboratory conditions with a 12-h light-dark cycle with food and water ad libitum. All experimental procedures were
performed in accordance with institutional animal welfare guidelines and were approved by the state government of
North Rhine-Westphalia, Germany.

4.2 Experimental setup, data acquisition and preprocessing

For the open field exploration experiment mice were placed in the center of an circular area (transparent Plexiglas floor
with diameter of 50 cm surrounded by a transparent Plexiglas wall with height of 50 cm) and have been left to habituate
for a duration of 10 minutes. Afterwards, sessions of 25 minutes were recorded where the mice were left to freely
behave in the arena. To encourage a better coverage, three chocolate flakes were placed uniformly distributed in the
central part of the arena prior to the experiment.

Mouse behavior was recorded by a CMOS camera (Basler acA2000-165umNIR) equipped with wide angle lens (CVO
GM24514MCN, Stemmer Imaging) that was placed centrally 35 cm below the arena. Three infrared light sources
(LIU780A, Thorlabs) were placed 70 cm away from the center, providing homogeneous illumination of the recording
arena from below. All recordings were performed at dim room light conditions.

For behavioral pose extraction, m virtual markers were placed on relevant bodyparts in 650 uniformly picked video
frames from 14 videos in the freely behaving setup. A residual neural network (ResNet-50) was trained to assign the
virtual markers to every video frame (Mathis et al., 2018). The resulting training error was 2.14 pixels and the test error
2.51 pixels, respectively.

To obtain the egocentric time series of (x, y) marker coordinates aligned every animal egocentrically. The alignment is
done by taking the nose and tail coordinates and cropping the frame to these coordinates. In order to get a tail to nose
orientation from left to right we compute a rotation matrix and rotate the the resulting frame around the centre between
nose and tail. This results into egocentrically aligned frames and marker coordinates X ∈ R2m×N , where N represents
the sequence length. To fit our machine learning model we subdivide this sequence into smaller subsequences xi by
applying a sliding window of length T . Furthermore, we created x̃i+1 that stores the subsequent T̃ time points of xi.
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For low-dimensional visualization of spatial as well as spatiotemporal data we employed Uniform Manifold Approx-
imation and Projection for Dimension Reduction (UMAP) from the umap-learn Python package. All embeddings
were created with the parameters min_dist set to 0.2 and neighbors set to 20.

4.3 Variational Animal Motion Embedding

Given a set of n multivariate time series X = {x1, x2, . . . , xn}, where each time series xi = (x1i , x
2
i , . . . , x

T
i ) contains

2m× T ordered real values. The objective of our model is to learn a d−dimensional vector zi ∈ Rd which contains
the latent representation of the input sequence xi. zi is learned via the non-linear mappings fenc : xi → zi and
fdec : zi → x̃i, where fenc, fdec denotes the encoding and decoding process, respectively and is defined by,

zi = fenc(xi) . (1)

In order to learn the spatiotemporal latent representation our model encoder is parameterized by a two layer bi-directional
RNN with parameters φ. Furthermore, our model uses two decoder, a one-directional RNN with parameters θ and a
bi-directional RNN with parameter η.

As our input data is temporally dependent, RNNs are a natural choice in order to capture temporal dynamics by
recursively processing each input and updating their internal state ht at each timestep via,

ht = fθ(xt,ht−1), (2)

where f is a deterministic non-linear transition function, and θ is the parameter set of f . The transition function f is
usually modelled as long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) or gated recurrent unit (GRU)
(Cho et al., 2014). Here, we use GRUs as transition function in the encoder and decoder.

The joint probability of a time series xi is factorized by a RNN as product of conditionals,

pθ(xi) =
T∏
t=1

pθ(xt|x1:t−1). (3)

In order to learn a joint distribution over all variables, or more precise, the underlying generative process of the data, we
apply the framework of variational autoencoders (VAE) introduced by (Kingma & Welling, 2014; Rezende et al., 2014).
VAEs have been shown to effectively model complex multivariate distirbutions and can generalize much better to new
situations, e.g. spontaneous events, than their counterparts, discriminative models.

4.3.1 Variational Autoencoder

In brief, by introducing a set of latent random variable Z the VAE model is able to learn variations in the observed data
and can generate X through conditioning on Z. Hence, the joint probability distribution is defined as,

pθ(X,Z) = pθ(X|Z)pθ(Z), (4)

and parameterized by θ.

Obtaining the data distribution p(X) by marginalization is intractable due to the non-linear mappings between X and Z
and the integration of Z. In order to overcome the problem of intractable posteriors the VAE framework introduces an
approximation of the posterior qφ(Z|X) and optimizes a lower-bound on the marginal likelihood,

log pθ(X) ≥ Eqφ(Z|X)[log pθ(X|Z)]−KL(qφ(Z|X)||pθ(Z)), (5)

where KL(Q||P ) denotes the Kullback-Leibler divergence between two probability distributions Q and P . The prior
pθ(Z) and the approximate posterior qφ(Z|X) are typically chosen to be in a simple parametric form, such as a Gaussian
distribution with diagonal covariance. The generative model pθ(X|Z) and the inference model qφ(Z|X) are trained
jointly by optimzing Eq. 5 w.r.t their parameters. Using the reparameterization trick (Eq. 6), introduced by (Kingma &
Welling, 2014) the whole model can be trained through standard backpropagation techniques for stochastic gradient
descent.
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4.3.2 Variational lower bound of VAME

In our case, the inference model (or encoder) qφ(zi|xi) is parameterized by a RNN. By concatenating the last hidden
states ht of each layer of the encoder we obtain a global hidden state hi which is a fixed-length vector representation of
the entire sequence xi. To obtain the probabilistic latent representation zi we define a prior distribution over the latent
variables pθ(zi) as an isotropic multivariate Normal distributionN (zi; 0, I). Its parameter µz and Σz of the approximate
posterior distribution qφ(zi|xi) are generated from the final encoder hidden state by using two fully connected layers
with a Linear and a SoftPlus activation, respectively, as proposed in (?, ?). The latent representation zi is then sampled
from the approximate posterior and computed via the reparameterization trick,

zi = µz + σz � ε , (6)

where ε is an auxiliary noise variable and � denotes the Hadamard product.

The generative model pθ(xi|zi) (or decoder) receives zi as input at each timestep t and aims to reconstruct xi. We use
Mean Squared Error (MSE) as reconstruction loss, defined by,

LMSE =
1

n

n∑
i=1

||xi − x̃i||22 . (7)

The log-likelihood of xi can be expressed as in Eq. 5. Since the KL divergence is non-negative the log-likelihhood can
be written as

L(θ, φ; xi) = Eqφ(zi|xi)[log pθ(xi|zi)]−KL(qφ(zi|xi)||pθ(zi)) . (8)

Here, L(θ, φ; xi) is a lower bound on the log-likelihood and therefore called the evidence lower bound (ELBO) as
formulated by (Kingma & Welling, 2014).

We extend the ELBO in our model by an additional prediction decoder pη(x̃i|zi) to predict the evolution x̃i of xi,
parameterized by η. The motivation for this additional model is based on (Srivastava et al., 2015) where the authors
propose a composite RNN model which aims to jointly learn important features for reconstruction and predicting
subsequent video frames. Here, pη(x̃i|zi) serves as a regularization for learning zi so that the latent representation not
only memorizes an input time series but also estimates its future dynamics. Thus, we extend Eq. 8 by an additonal term
and parameter,

L(θ, φ, η; xi) = Eqφ(zi|xi)[log pθ(xi|zi)] + Eqφ(zi|xi)[log pη(x̃i|zi)]−KL(qφ(zi|xi)||pθ(zi)) . (9)

In order to improve the performance of the post-hoc clustering we incorporate a k-means objective based on spectral
relaxation into the model as proposed by (Ma et al., 2019) to guide the learning of the network. Briefly, given a data
matrix zi ∈ Rd×N , (Zha, He, Ding, Gu, & Simon, 2002) transformed the k-means objective into a trace maximization
problem associated with the Gram matrix zTi zi. Thus, the k-means objective has the form,

Lk−means = Tr(zTi zi)− Tr(AT zTi ziA) , (10)

where Tr denotes the matrix trace. A ∈ RN×k is called the cluster indicator matrix and can be set to an arbitrary
orthogonal matrix which further relaxes the minimization in Eq. 10 to the trace maximizaton problem

max
A

Tr(AT zTi ziA), s.t. ATA = I . (11)

Eq. 11 has a closed-form solution based on the Ky Fan theorem (Fan & Hoffman, 1955) which states that we need to
compute the largest k eigenvectors of the Gram matrix, which gives a lower bound for the minimum of the k-means
objective. In practice, we update A by computing the sum of the k-first singular values of

√
zTi zi.

We are motivating this trace term as a prior on the latent vector zi by assuming a joint probability of the form

pθ(xi, zi, k) = pθ(xi|zi, k)pθ(zi|k)pθ(k), (12)

where pθ(zi|k) is the trace optimisation prior. Along with this joint probability we can write

pθ(xi|zi, k) = pθ(xi|zi) (13)

so that xi and k are independent conditioned on zi. Using Bayes theorem we find that

pθ(zi|xi, k) =
pθ(xi|zi, k)pθ(zi|k)pθ(k)

pθ(xi)
, (14)
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where pθ(zi|xi, k) is approximated by the encoder qφ(zi|xi, k).

Using Jensen’s inequality, the log-likelihood of VAME can be written as:

log p(xi) = log

∫
zi

∑
k

pθ(xi, zi, k)dzi ≥ Eq(zi|xi,k)[log
pθ(xi, zi, k)

q(zi|xi, k)
] = LELBO(xi). (15)

We can now express the lower bound on the log-likelihood with an additional prior on the latent vector in the form of
L(θ, φ, η; xi) = Eqφ(zi|xi)[log pθ(xi|zi) + log pη(x̃i|zi)]−KL(qφ(zi|xi, k)||pθ(zi|k)) . (16)

As stated by (Ma et al., 2019), zi is learned by the model and therefore not static. Therefore, Eq. 10 can be regarded as
a regularization term for learning zi. Note that the balance between Eq. 10 and Eq. 9 forces the encoder to learn a more
defined cluster boundary. Finally, the training objective to minimize is

min
θ,φ,η
L(θ, φ, η; xi) (17)

and the overall loss function can be written as
Ltotal = Lreconstruction + Lprediction + LKL + Lk−means , (18)

where Lprediction is the MSE loss of the prediction decoder.

The full model was trained on the combined dataset (1.3e6 time points) using the Adam optimizer (Kingma & Ba, 2015)
with a fixed learning rate of 0.0005 on a single Nvidia 1080ti GPU. All computing was done with PyTorch (Paszke et
al., 2017). The training error for all loss-terms employed in (18) for the data presented in the Results section is plotted
in Figure S.7. The ergodic mean of the reconstruction error Lreconstruction for all virtual marker time series was found
to be 1.82 pixels.

4.4 Clustering into behavioral motifs

To determine the set of behavioral motifs B = {b1, . . . , bK} we first obtained the latent vector z from a given dataset
using the machine learning framework described in Methods 4.3. Given the pose tracking yields d time series extracted
from a video containing N frames and the size of the spatiotemporal time window is T , the resulting feature matrix F
is of dimensionality d× (N − T ). We then performed k-means clustering on F to identify K behavioral motifs. Figure
1 (C, Middle) and Figure S.1 show exemplary state sequences obtained from the clustering.

We can then determine the motif usage as the percentage of video frames that are assigned to the occurrence of a specific
motif. Furthermore we may model the transitions between behavioral motifs as a discrete-time Markov chain where the
transition probability into a future motif is only dependent on the present motif. This results in a K ×K transition
probability matrix T , with the elements

Tlk = P (bk|bl), (19)
being the transition probabilities from one motif bl ∈ B to another motif bk ∈ B, that are empirically estimated from
clustering of F .

Next we can compute the stationary distribution of the Markov chain T , which is a probability distribution to which the
chain converges when time progresses. By definition, the stationary distribution π satisfies

π = πT . (20)
In other words, π is invariant by the matrix T .

In order to obtain a hierarchical representation of behavioral motifs we can represent the Markov chain (19) as a directed
graph G consisting of nodes v1 . . . vK connected by edges with an assigned transition probability Tlk. Additionally, the
size of each node corresponds to the total occurrence of the behavior motif throughout all N video frames. We can the
transform G into a binary tree T by iteratively merging two nodes (vi, vj) until only the root node vR is left. To select i
and j in each reduction step, we compute the cost function

CR = min
i,j

(∑
i,j

Ui + Uj
Tij + Tji

)
, (21)

where Ui is the probability of occurrence for the ith motif. Note that after each reduction step the matrix T is recomputed
in order to account for the merging of nodes.

Lastly, we may obtain communities of behavioral motifs by cutting T at given depth of the tree, analogous to the
hierarchical clustering approach used for dendrograms.
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4.5 Manually assigned labels and scoring

In order to obtain manually assigned labels of behavioral motifs we asked three experts to annotate one recording of
freely moving behavior with a duration of 6 minutes. All three experts had a strong experience with in-vivo experiments
as well as ethogram-based behavior quantification. The experts could scroll trough the video in slow-motion forward
and backward in time and annotated the behavior into several atomic motifs as well as a composition of those. As
an example, the experts were allowed to annotate a behavioral sequence as walk or exploration, but also walk and
exploration. We then summarized the annotation into atomic motifs into 5 coarse behavioral labels, as shown in Table 1.

Coarse label Assigned atomic motif
Walk Walk, walk and bend, walk and sniff
Pause No locomotion, Bending, looking up or down while standing still
Groom Groom
Rear Rear, low-rear, wall-rear
Exploratory Undirected sniffing while standing still, bending, looking up or down

Table 1: Assignment of atomic motifs into coarse behavior labels.

The coarse labels were created with respect to the behavior descriptions taken from the Mouse Ethogram database
(www.mousebehavior.org), which provides a consensus of several previously published ethograms. The assignment
of coarse labels to the Mouse Ethogram database taxonomy is shown in Table 2.

Coarse label Mouse Ethogram database
Walk Active behavior - General activity - Exploratory behavior - Search - General locomotion
Pause Inactive behavior- Still and alert
Groom Active behavior - Maintenance behaviors - Grooming
Rear Active behavior - General activity - Exploratory behavior - Search - Rearing
Exploratory Active behavior - General activity - Exploratory behavior - Investigate - Undirected sniffing

Table 2: Mouse Ethology database taxonomy corresponding for each manually assigned coarse label.

For scoring of human assigned labels to the behavioral to VAME motifs we used the clustering evaluation measure
Purity and NMI. Purity is defined as

Purity(U, V ) =
1

N

∑
u∈U

max
v∈V
|u ∩ v|, (22)

where U it the set of manually assigned labels u, V is the set of labels generated by VAME v and N is the number of
frames in the behavioral video. The Normalized Mutual Information score is written as

NMI(U, V ) =
MI(U, V )

E(H(U), H(V ))
, (23)

where MI(U, V ) is the mutual information between set U and V defined as

MI(U, V ) =
∑
u∈U

∑
v∈V

|u ∩ v|
N

log

(
N |u ∩ v|
|u||v|

)
, (24)

and H(U) is the entropy of set U defined as

H(U) = −
|U |∑
i=1

Pi log(Pi), (25)

where Pi now denotes the probability for the ith entry of U .

Note that the Purity score (22) is larger when the set V is larger than U and the NMI score (23) is generally larger when
both sets U and V are of similar size, i.e. the number of possible labels is roughly the same in the human assigned set
as well as the set generated using VAME.

4.6 Human phenotype classification task

For the classification of phenotypes using human experts we have created an online form, where experts could watch all
behavior videos and make their choice about which phenotype is shown for each video. The average time to complete
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the questionnaire for N=8 animals was 30 minutes. The participants have not been told how many animals of each
group are in the set. For every video, the following five decision could be made: APP/PS1 (Very sure), APP/PS1
(Likely), Unsure, Wildtype (Likely), Wildtype (Very Sure). However, we have counted each of right answers (Very sure
and Likely) as a correct classification (1 point), and both wrong answers as well as the choice for the Unsure option
as wrong classification (0 points). Note that we did not give a time limit but asked for the time they spend on the
task. In average, every participant spent around 30 min to complete the task. We had eleven experts participating in
this classification task. All of them had previous experience with behavioral video recordings in an open field and/or
treadmill setting. In addition, six of the participants also had previous experience with the APP/PS1 phenotype. In
the end of the task we asked how they tried to identify the APP/PS1 phenotype to uncover if there is a certain strategy
human experts are sharing.

4.7 Code availability

The VAME toolbox is available at https://github.com/LINCellularNeuroscience/VAME.
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Supplemental Materials

5.1 Absolute numbers and model comparison

k = 15 Abs. Purity Abs. NMI Rel. Purity % Rel. NMI %
Baseline (Spatial signal) 70.18 19.58 - -
Spatio-temporal signal (SVD) 69.53 19.87 - 1.48
Spatio-temporal signal (AR-HMM) 73.07 22.87 4.18 16.8
Spatio-temporal signal (VAME) 74.83 26.85 6.63 37.13
Spatio-temporal + prediction (VAME) 75.11 27.44 7.03 40.14

k = 30 Abs. Purity Abs. NMI Rel. Purity % Rel. NMI %
Baseline (Spatial signal) 71.1 18.97 - -
Spatio-temporal signal (SVD) 71.1 20.04 - 5.64
Spatio-temporal signal (AR-HMM) 73.58 23.44 3.49 23.56
Spatio-temporal signal (VAME) 77.19 26.86 8.57 41.59
Spatio-temporal + prediction (VAME) 77.2 27.93 8.58 47.23

k = 45 Abs. Purity Abs. NMI Rel. Purity % Rel. NMI %
Baseline (Spatial signal) 71.6 18.85 - -
Spatio-temporal signal (SVD) 71.3 19.62 - 4.09
Spatio-temporal signal (AR-HMM) 73.75 23.68 3 25.62
Spatio-temporal signal (VAME) 77.63 27.15 8.42 44.03
Spatio-temporal + prediction (VAME) 77.77 27 8.62 43.24

Table S.1: Absolute values and model comparison

k = 17 Abs. Purity Abs. NMI Rel. Purity % Rel. NMI %
Baseline (Spatial signal) 70.03 18.1 - -
MotionMapper 72.96 23.22 4.18 28.29
Spatio-temporal + prediction (VAME) 75.12 25.78 7.27 42.43

Table S.2: Comparison to the MotionMapper framework

Absolute values for the scoring with manually annotated as shown in Figure 5 are shown in Table S.1. Furthermore, we
have compared the performance of VAME against Singular Value Decomposition (SVD), a linear dimension reduction
method that is closely related to Principal Component Analysis (PCA). For this purpose we have obtained the first
12 singular values computed for the identical time window T , that was otherwise fed to VAME. The singular values
explained more than 95% of the original input data. We have then clustered the singular values for each time window
using k-Means and computed the Purity and NMI score, shown in Table S.1.

For comparison of our model to the AR-HMM we employed the original codebase supplied by the authors (Wiltschko et
al., 2015). We used default parameter settings for all values (γ = 999, Nlags = 3, ν = 4) while the maximum number
of states was set to the corresponding cluster size k. The sticky parameter setting was employed and the value of κ has
been set to the number of datapoints, as suggested by the authors 2.

To compare our model to the MotionMapper framework (Berman et al., 2014), we used the original codebase provided
by the authors. The comparison has been carried out on the validation dataset discussed in Figure 5, that consists of
20.000 datapoints sampled at 60 Hz. We have first converted the 12-dimensional input signal to the time-frequency
domain using the Wavelet transform (15 frequency bins in the range between 0 and 30 Hz). For the stacked spectrogram
we then obtained a two dimensional t-SNE embedding (perplexity=32, learning rate=200, 3000 iterations). The
watershed segmentation of the embedding space then yielded 17 separate regions, that were compared as discrete labels
to the human annotated dataset. The obtained Purity and NMI measures are shown in Table S.2.

2According to the usage documentation available within the MoSeq repository.
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5.2 Parameters and biases

Although the proposed behavior quantification method is unsupervised, the choice of many parameters as well as
processing steps integrate biases into the quantification result. In Table S.3 we summarize the biases of our approach
and state the parameter setting that have been used for our data.

Choice Our setting
What is the pixel resolution of the animal body in the
camera image

In our case, the animal body was covered with approxi-
mately 100× 300 pixels.

What is the temporal resolution of the camera? The employed camera operates at 60 Hz.
How many virtual markers are used and how are they
placed on the animal body parts?

We placed 6 virtual markers on paws, the nose and the tail
root (see Figure 1).

Which software is used for keypoint detection? We used DeepLabCut 1.1 (Mathis et al., 2018).
How many frames are manually labeled? We labeled the keypoints in 600 uniformly chosen frames.
How long is the keypoint detection CNN trained? We trained the keypoint detection for 350.000 iterations,

the resulting training errors was 2.14 pixels and the test
error was 2.51 pixels.

How is the obtained keypoint time series aligned to ego-
centric coordinates?

We use the procedure defined in the Methods section.

How is missing data handled? Missing data points for periods where pose estimation
could not reliably detect the position of the corresponding
virtual marker shorter then 200 ms were linearly interpo-
lated while the values for longer periods were set to an
arbitrary negative value.

Which size of the time window was used for the recon-
struction and prediction decoder?

We used 30 frames (500 ms) for the reconstruction and 10
frames (166 ms) for the prediction decoder.

Which other hyperarameters have been used to train
VAME?

All other hyperparameter settings can be found in the
default configuration file available at the project website.

How many datapoints are used to train VAME? We trained our model with 1.3 million data points.
How is the clustering carried out? We used k-Means clustering as described in the Methods

section.
Table S.3: Table of choices for our approach and settings for our model.
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5.3 Supplementary Figures

Figure S.1: Marker x-y-position traces with VAME Segmentation. (A, B) (Top) x-y-position of virtual markers in
the open field setup. (Bottom) VAME segmentation of the given sequence snippet into discrete motifs. Note that values
of the input time series were set to an arbitrary negative value if the used pose estimation tools could not reliably detect
the position of the corresponding virtual marker.

Figure S.2: Bootstrapped Purity an NMI values for 1 minute long behavior observations. (A) Mean Purity increase
over baseline for clustering into 15, 30 and 45 motifs for 1 minute long behavioral measurements (Nshuffle=1000). Error
bars denote the bootstrap estimate of the standard deivation over the number of shuffles. (B) Same as in (A), but for the
relative NMI increase.
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Figure S.3: Cluster distances over different number of motifs and recording durations. (A, B) Cluster distances
for the first 5 min of recording. (C, D) Cluster distances for the first 10 minutes of recording. (E, F) Cluster distances
for the first 15 minutes of recording. (G, H) Cluster distances for the first 20 minutes of recording.
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Figure S.4: Reconstruction error after 100 epochs of training over an increasing number of latent variables.

Figure S.5: Generated time series between to latent vectors. (A-D) Synthetic behavioral time series (colored lines)
generated via latent interpolation between a given start vector zs and end vector ze (black lines).
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Figure S.6: Number and proportion of motifs which are significantly changed within the stationary distribution
given the cluster size k.

Figure S.7: Training error for all loss-terms employed in the model.
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