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Abstract 
Microbial taxa that are differentially abundant between cell types are likely to be intracellular. 
Here we describe a new computational pipeline called CSI-Microbes (computational 
identification of Cell type Specific Intracellular Microbes) that aims to identify such putative 
intracellular species from single cell RNA-seq data in a given tumor sample. CSI-microbes also 
includes additional steps that can be applied to filter out microbial contaminants from the bona 
fide microbial residents of cells in the patients. We first test and validate CSI-microbes on a 
dataset of immune cells deliberately infected with Salmonella. We then apply CSI-microbes to 
identify intracellular microbes in breast cancer and melanoma. We identify Streptomyces as 
differentially abundant in the tumor cells of one breast cancer sample. We further identify three 
bacterial genera and four fungal genera that are differentially abundant and hence likely to be 
intracellular in the tumor cells in melanoma samples. No cell type specific bacteria were 
identified in our analysis of brain tumor samples. In sum, CSI-Microbes offers a new way to 
identify likely intracellular microbes living within specific cell populations in malignant tumors, 
markedly extending upon previous studies aimed at inferring microbial abundance from bulk 
tumor expression data.   
 
 
Introduction 
Several recent papers have examined the tumor microbiome, pointing to its functional 
importance. For example, bacteria of the genus Fusobacterium are enriched in colorectal 
carcinoma compared to matched normal tissue, drive tumorigenesis, influence response to 
chemotherapy and bind to multiple human immune inhibitory receptors (Bullman et al., 2017; 
Castellarin et al. 2012; Gur et al., 2015, 2019; Kostic et al., 2012;  Yu et al., 2017). pks+ E. coli 
have been shown to induce a mutation signature frequently found in colorectal carcinoma 
(Pleguezuelos-Manzano et al., 2020). In pancreatic cancer, a subset of Gammaproteobacteria 
were shown to mediate tumor resistance to chemotherapy (Geller et al., 2017). Recently, an 
analysis of the Cancer Genome Atlas (TCGA) cohort  identified a variety of bacterial genera that 
reside in different tumor types, demonstrating that after filtering out potentially contaminant 
species, one can successfully build a predictor of cancer type based on tumors’ microbial 
composition (Poore et al., 2020).  
 

Despite these recent advances, many unresolved questions concerning the tumor 
microbiome remain. One major concern is the potential that microbial sequences identified 
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through next-generation sequencing may result from contamination accompanying the 
acquisition of the tumor samples and their sequencing, instead of being truly present in the 
tumor. A second unresolved question is whether the microbes identified in these bulk RNA and 
DNA sequencing studies exist extracellularly or intracellularly. Thirdly, even if the microbes 
identified are intracellular, the question remains whether they specifically reside in tumor cells, 
or in different types of immune or stromal cells. 
 

Here, we present a computational approach named CSI-Microbes (computational 
identification of Cell type Specific Intracellular Microbes) that addresses these three research 
questions by identifying intracellular microbes that are cell type-specific while filtering out 
contaminating microbes. It is based on identifying microbial sequences from single-cell RNA-
seq (scRNA-seq) datasets, such that the taxa containing those sequences are differentially 
abundant between distinct cell types. To the best of our knowledge, this is the first approach to 
identify microbial sequences from large-scale scRNA-seq cancer experiments. CSI-Microbes 
capitalizes on several aspects of scRNA-seq, including the use of spike-in RNAs, analyzing the 
contents of empty wells and examining the content of multiple cells from a given tumor.  We 
first test and validate our approach on non-cancer data by demonstrating that CSI-Microbes 
identifies Salmonella as the only differentially abundant genus between monocyte-derived 
dendritic cells (moDCs) infected with Salmonella and moDCs infected with a mock control in a 
scRNA-seq experiment. Next, we apply our approach to five scRNA-seq datasets spanning 47 
cancer patients across three cancer types. We find bioinformatic evidence for multiple instances 
of cell type-specific intracellular microbes in three patients spanning two cancer types. 
 
 
Results 
The inputs to CSI-Microbes are FASTQ files from scRNA-seq experiments and cell metadata, 
including cell type annotations and known sources of contamination such as the sequencing 
plate. The output is a ranked list of likely cell type-specific intracellular microbes and their 
differential cell type specific abundance. The algorithm proceeds in the following steps (Figure 
1A and see Methods for a detailed description): (1) The first step of CSI-Microbes extracts 
scRNA-seq reads that map to microbial genomes after filtering the host reads. (2) Next, CSI-
Microbes normalizes and log-transforms the microbial reads so they can be compared across 
cells. (3) Thirdly, the normalized microbial read counts are compared across the cell types while 
controlling for known sources of contamination. (4) Finally, when present in the dataset 
analyzed, CSI-Microbes employs two further testing and validation approaches that mirror gold-
standard bulk microbiome approaches for filtering contaminants: those include, (4a) determining 
whether microbes appear more abundant in low-concentration samples using spike-in RNAs and 
(4b) filtering out microbes that appear in higher frequency in empty wells, which effectively 
function as negative controls (Davis et al., 2018). 
 

To test the feasibility of identifying microbial reads from scRNA-seq datasets, we applied 
CSI-Microbes to two “gold-standard” datasets where immune cells were infected ex vivo with 
the intracellular bacteria Salmonella enterica and subsequently sequenced using scRNA-seq 
(Aulicino et al., 2018; Ben-Moshe et al., 2019). In the first dataset, where ~7,000 peripheral 
blood mononuclear cells (PBMCs) were infected with Salmonella enterica serovar Typhimurium 
and sequenced using 10x 3’ sequencing, we identified very few reads that mapped to the 
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Salmonella genus. In the second dataset, however, which consists of 373 monocyte-derived 
dendritic cells (moDCs) infected with either the D23580 or the LT2 strain of Salmonella 
enterica and sequenced using Smart-seq2 platform, we could successfully identify a large 
number of reads that mapped to the Salmonella genus. Although there are multiple differences 
between the experiments, we hypothesized that much of this difference can be attributed to the 
sequencing protocol because the plate-based Smart-seq2 has been shown to capture many more 
transcripts per cell than the droplet-based 3’ 10x protocol (See et al., 2018). For this reason, we 
chose to focus on scRNA-seq datasets generated by protocols based on SMART sequencing such 
as Smart-seq2, Fluidigm C1 and SMARTer moving forward in our analysis.   
 

Analyzing the moDCs dataset, we used annotations provided by the authors and 
categorized the cells into two groups: cells that were infected with Salmonella and cells that were 
mock-infected and sequenced as controls. Reassuringly, CSI-Microbes identifies that the 
abundance of Salmonella was substantially higher in the infected cells compared to the mock-
infected controls (Figure 1B). We found multiple Salmonella reads in every confirmed infected 
cell. In addition to the reads assigned to the Salmonella genus, we identified a large number of 
reads uniquely assigned to other microbes at the genera level, which are likely contaminates. 
However, importantly, CSI-Microbes identified Salmonella as the only differentially abundant 
microbe between the infected and mock-infected cells, demonstrating its ability to identify the 
true intracellular organism and filter out likely contaminating species (Figure 1C). As expected, 
there is no correlation between the abundance of the true intracellular bacteria Salmonella and 
the RNA spike-in transcripts (Spearman rank-correlation rho=.08, FDR=.54). 
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Figure 1. (A) Overview of the CSI-Microbes analysis pipeline. (B) Comparison of the 
normalized number of reads belonging to the Salmonella genus between infected and the mock-
infected cells. (C) The 25 most differentially abundant genera (FDR) in this dataset according to 
CSI-Microbes ranked by their discriminatory power (AUC) between the infected and mock-
infected cell types. 
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To study the landscape of intracellular bacteria in different tumor types, we analyzed five 
scRNA-seq datasets across three cancer types – breast cancer, brain cancer and melanoma – 
comprising ~14,000 single cells from 47 tumors sequenced using SMART-based protocols with 
full-length transcript capture. The two breast cancer datasets include 515 cells from 11 patients 
and ~1500 cells from six patients (Chung et al., 2017; Karaayvaz et al., 2018). The two brain 
cancer datasets consist of ~3500 cells from four glioma patients and ~6100 cells from 10 
astrocytoma patients (Darmanis et al., 2017; Venteicher et al., 2017). The melanoma dataset 
contains ~2500 cells from 16 patients (Jerby-Arnon et al., 2018).  
 

We then applied CSI-Microbes to analyze each dataset separately. First, we analyzed the 
breast cancer samples. Five of the 11 patients from (Chung et al. 2017) and four of the six 
patients from (Karaayvaz et al. 2018) contained a sufficient number (≥ 5) of tumor and non-
tumor cells to analyze using CSI-Microbes. From these nine samples, CSI-Microbes identified 
the genus Streptomyces as differentially abundant between the tumor and non-tumor cells in one 
sample, BC06 (FDR corrected p-value =.008) (Figure 2A). The non-tumor cells in BC06 consist 
of stromal and B cells, and the differential abundance of Streptomyces is driven by the difference 
between the tumor cells and the B cells. At the species level, CSI-Microbes identified two 
Streptomyces species to be higher in the tumor cells compared to the B cells (Streptomyces 
novaecaesareae, FDR=.023 and Streptomyces specialis, FDR=.035) (Figure 2A). To validate 
this result, we leveraged the capability of CSI-Microbes to use the RNA spike-in data provided 
in the (Chung et al. 2017) dataset. Across all samples in this cohort, the abundance of the 
Streptomyces genus is positively correlated with the abundance of RNA spike-in transcripts, 
indicating that in these samples this genus is a contaminant (Spearman-rank correlation, rho=.17, 
FDR=.007) (Methods). However, there is no correlation between Streptomyces abundance and 
RNA spike-in transcript levels across cells from patient BC06 (rho=-.63, FDR=.22). A recent 
survey of the tumor microbiome across TCGA found reads belonging to the Streptomyces genus 
in all but one of the breast cancer samples and high abundance of Streptomyces in ~10% 
(116/1086) of all breast cancer samples (Poore et al., 2020). Together with its cell type 
specificity in that patient, these findings testify that the presence of Streptomyces is not a result 
of sample contamination and that it is located intracellularly within the tumor cells.  
 

In the previous datasets, the cells were usually unsorted so individual plates generally 
contained both tumor and non-tumor cells, which CSI-Microbes uses to account for plate-
specific contaminants. In the melanoma cohort we analyzed, the cells were sorted prior to 
sequencing, which resulted in cancerous and non-cancerous cells being sequenced separately. To 
minimize the effects of potential contamination, we analyzed only the eight melanoma patients 
whose tumor cells were sequenced in a minimum of two plates, which was sufficient to control 
for contamination in the validation dataset (see Methods). In these eight melanoma patients, CSI-
Microbes detected eight differentially abundant microbes at the genus level in two of the 
patients. In sample Mel129pa, the bacterial genus Propionibacterium was more abundant in 
tumor cells than in non-tumor cells (FDR=.04) (Figure 2B). Propionibacterium is a human skin 
commensal that has been reported to be an intracellular pathogen in multiple diseases, including 
prostate cancer (McDowell et al., 2013). 103 of the 469 melanoma samples in TCGA have reads 
belonging to the Propionibacterium genus, which is highly abundant in four of these samples 
(Poore et al., 2020). In patient Mel106, CSI-Microbes identified six differentially abundant 
microbes at the genus level: four fungi (Coprinopsis, Heterobasidion, Phanerochaete and 
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Laccaria) and two bacteria (Chryseobacterium and Brevundimonas). In each of the four fungi 
genera, CSI-Microbes identified one differentially abundant fungus species (Coprinopsis 
cinereal, Heterobasidion irregulare, Phanerochaete carnosa, Laccaria bicolor). Interestingly, it 
has been reported that most pathogenic fungi have an intracellular phase (Gladieux et al., 2017). 
Coprinopsis cinereal, the species with the strongest enrichment (FDR < 3e-8), has been reported 
as an uncommon human pathogen (Correa-Martinez et al., 2018) (Figure 2B).  

 
Finally, we analyzed the 12 patients with sufficient tumor and non-tumor cells from the 

two brain cancer datasets. Notably, CSI-Microbes did not find any differentially abundant 
microbes across these 12 patients.  

 

 
 
Figure 2. (A) Comparison of the abundance of the Streptomyces genus and the Streptomyces 
novacaesareae and specialis species between immune, stromal and tumor cells in breast cancer 
patient BC06 (B) Comparison of the abundance of the Propionibacterium genus between cell 
types in sample Mel129pa and the abundance of Coprinopsis cinereal in patient Mel106 in the 
melanoma dataset. 
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Discussion 
To the best of our knowledge, this paper introduces the first approach for identifying cell type-
specific intracellular bacteria from scRNA-seq data. We first demonstrate that our approach can 
distinguish cells infected with intracellular bacteria from uninfected cells. Next, we apply our 
approach to scRNA-seq datasets from multiple cancer types, which yields several novel 
bioinformatic based discoveries of putative intracellular pathogens whose abundance is 
associated with specific cell types in different tumor types, varying between different samples 
within a cohort of a similar cancer type. We find that species belonging to the Streptomyces 
genus are specifically associated with tumor cells in a breast cancer tumor. Finally, we find 
bioinformatic evidence suggesting the existence of several intracellular bacteria and fungi in 
melanoma tumor cells. Our analysis of brain tumors did not identify any differentially abundant 
microbial genera.  
 

This paper represents a proof-of-concept for a new computational pipeline for identifying 
cell type-specific intracellular bacteria. To establish this approach, we analyzed previously 
generated datasets that did not explicitly control for contamination. Although CSI-Microbes was 
carefully designed to control for contamination and provides multiple validation approaches, 
many of the previously published datasets regrettably lack some of these validation measures, at 
least in some of the samples. In addition, the sequencing protocols used to generate the datasets 
are using polyA mRNA selection, which enriches for eukaryotic mRNA. As only some 
prokaryotic mRNA transcripts are polyadenylated, the microbial transcripts identified by CSI-
Microbes thus may represent an under-sampling of the likely intracellular microbial diversity of 
human tumors.   
 

The computational findings presented here call for further experimental testing and 
validation, e.g., using RNAscope (Wang et al. 2012) to actually visualize the presence of the 
microbes in the tumor cells. If some of our computational predictions are indeed successfully 
validated, then an important and open question would follow, concerning the putative functional 
roles of these intracellular microbes:  are they simply “innocent bystanders” and opportunistic 
pathogens or do they play important functional roles in tumorigenesis and response to treatment? 
The identification of genera or species that are highly specific inhabitants of tumor cells is of 
particular interest in this respect.  
 
 
Methods 
The inputs to CSI-Microbes are FASTQ files from scRNA sequencing and sample metadata 
including cell type annotations and any known sources of contamination such as the sequencing 
plate. CSI-Microbes outputs a ranked list of differentially abundant microbes and their 
discriminatory power between cell types using the following steps: (1a) The input FASTQ file (if 
using unpaired reads) or files (if using paired reads) are converted to a BAM file. If the empty 
wells or spike-in validations are used, the FASTQ files are converted to a BAM file aligned to 
the human genome (hg38) and any relevant spike-in sequences using STAR two-pass mode 
(v2.7.3.a) (Dobin et al., 2013). Otherwise, the FASTQ files are converted to BAM files using the 
FastqToSam command from picard (v2.22.2). (1b) The BAM file is filtered for human reads, 
aligned to a large number of bacteria, viral, archaea, fungi and protozoan genomes and scored 
using GATK PathSeq (v4.1.6.0) and the GATK PathSeq resource bundle (retrieved 1/21/2019) 
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(Walker et al., 2018). (2) The unambiguous read counts at the specified taxonomic level are 
extracted to form an OTU-by-cell integer matrix. Cell types with fewer than five cells are 
removed and operational taxonomic units (OTUs) with fewer than three reads in the minimum 
number of cells are removed. The minimum number of cells is 70% of the number of cells in the 
least frequent cell type. The reads are normalized for sequencing depth by pooling cells 
belonging to the same cell type using the computeSumFactors function from the R package scran 
(v1.14.1) (Lun et al., 2016). (3) OTUs without log count greater than 2 in the minimum number 
of cells are removed to minimize FDR penalty. Differentially abundant microbes are identified 
using the two-sided Wilcoxon rank sum test with a log-fold-change greater than one while 
controlling for the plate as implemented in the findMarkers function in the R package scran (Lun 
et al., 2016). (4a) If RNA spike-in transcripts were used in the experiment, CSI-Microbes uses 
their abundance level to validate differentially abundant microbes using the principle that the 
abundance levels of a contaminant genus or species should correlate with the RNA spike-in 
levels across wells in a given plate (Davis et al., 2018). Following this principle, we check 
whether there is a statistically significant correlation between the abundance of the RNA spike-in 
transcripts and any identified differentially abundant OTU using Spearman rank-correlation and 
FDR < .05. Analogously, we repeat the differential abundance test using the RNA spike-in 
transcript normalization using the computeSpikeFactors function from scran. (4b) If empty wells 
were sequenced as part of the experiment, CSI-Microbes will check whether differentially 
abundant OTUs are present in the empty wells at high frequency.  
 

CSI-Microbes controls for known sources of contamination, such as the sequencing plate, 
by computing the Wilcoxon rank-sum test between cell types within a sequencing plate and 
combining the p-values using Stouffer’s weighted z-score method. However, several large 
scRNA-seq cancer studies first sort cells using cell-surface markers and FACS before sequencing 
cells, which results in cell types being sequenced in different plates, as occurring in the 
melanoma dataset analyzed in this paper. In such a situation, it is not possible compute the 
Wilcoxon rank-sum test between cell types within a sequencing plate. In these situations, CSI-
Microbes can still be used if the cell type of interest has been sequenced across at least two 
plates; we assume that the same contamination is unlikely to affect both plates without affecting 
all plates in the study. In this situation, CSI-Microbes using the one-sided Wilcoxon rank sum 
test is run once for each pair of tumor-non-tumor plates, and the resulting FDR-corrected p-
values are combined by taking the maximum value. We simulated such a situation using the 
gold-standard Salmonella dataset, which was sequenced across four plates, and found that this 
approach identified Salmonella as the only differentially abundant microbe between the cell 
types. We employed this correction procedure only in the melanoma analysis.  

 
Archaea, bacterial and viral read counts from TCGA were downloaded from (Poore et al., 

2020). A genus is defined to be highly abundant in a sample if the normalized abundance in the 
sample is greater than the median abundance across all tumor types plus three median absolute 
deviations (MADs). If x equals the number of reads belonging to the genus g, then g is highly 
abundant if log2(x+1) > median + 3 * MADs. 
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