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Abstract 19 
A fundamental set of cognitive abilities enable humans to efficiently process goal-relevant 20 

information, suppress irrelevant distractions, maintain information in working memory, and act flexibly 21 
in different behavioral contexts. Yet, studies of human cognition and their underlying neural mechanisms 22 
usually evaluate these cognitive constructs in silos, instead of comprehensively in-tandem within the 23 
same individual. Here, we developed a scalable, mobile platform, “BrainE” (short for Brain 24 
Engagement), to rapidly assay several essential aspects of cognition simultaneous with wireless 25 
electroencephalography (EEG) recordings. Using BrainE, we rapidly assessed five aspects of cognition 26 
including (1) selective attention, (2) response inhibition, (3) working memory, (4) flanker interference 27 
and (5) emotion interference processing, in 102 healthy young adults. We evaluated stimulus encoding 28 
in all tasks using the EEG neural recordings, and isolated the cortical sources of the spectrotemporal EEG 29 
dynamics. Additionally, we used BrainE in a two-visit study in 24 young adults to investigate the 30 
reliability of the neuro-cognitive data as well as its plasticity to transcranial magnetic stimulation (TMS). 31 
We found that stimulus encoding on multiple cognitive tasks could be rapidly assessed, identifying 32 
common as well as distinct task processes in both sensory and cognitive control brain regions. Event 33 
related synchronization (ERS) in the theta (3-7 Hz) and alpha (8-12 Hz) frequencies as well as event 34 
related desynchronization (ERD) in the beta frequencies (13-30 Hz) were distinctly observed in each 35 
task. The observed ERS/ERD effects were overall anticorrelated. The two-visit study confirmed high 36 
test-retest reliability for both cognitive and neural data, and neural responses showed specific TMS 37 
protocol driven modulation. We also show that the global cognitive neural responses are sensitive to 38 
mental health symptom self-reports. This first study with the BrainE platform showcases its utility in 39 
studying neuro-cognitive dynamics in a rapid and scalable fashion.  40 
 41 

Highlights 42 
• Rapid and scalable EEG recordings reveal common and distinct cortical activations across five core 43 

cognitive tasks. 44 
• Data acquired across visits one-week-apart show high test-retest reliability for both cognitive and 45 

neural measurements. 46 
• Evoked neural responses during emotion interference processing demonstrate specific short-term 47 

plasticity driven by type of neurostimulation. 48 
• Cognitively evoked neural responses are sensitive to variations in mental health symptoms.  49 

 50 
Introduction 51 
 Healthy brains are wired to effectively and efficiently process information. These complex systems 52 
simultaneously ensure stability as well as flexibility, and reflect an essential capacity to adapt to 53 
constantly changing environmental and motivational contexts. This dynamic ability of human brains 54 
requiring multiple interacting mental operations is referred to as cognitive control  (Badre, 2011; 55 
Lenartowicz et al., 2010; Luna et al., 2015). Cognitive control operations fundamentally include abilities 56 
for stimulus encoding as well as online maintenance of goal-relevant information (Gazzaley and Nobre, 57 
2012), suppression of competing goal-irrelevant distractions and behaviors (Mishra et al., 2013), and a 58 
continuous evaluation of the accuracy of selected actions based on feedback (Posner and Rothbart, 2009; 59 
van Noordt and Segalowitz, 2012). Much research to-date has focused on studying these individual 60 
component processes of cognitive control in isolation in select human population cohort studies. Yet, 61 
studies rarely evaluate these multiple essential cognitive operations within the same individual, 62 
particularly investigating their common and distinct underlying neural features. Thus, there is a gap in 63 
the comprehensive understanding of the neural circuit dynamics that underlie diverse cognitive states 64 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.05.14.097014doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.097014


 3 

within the same individual. This lack of knowledge has translational implications. Multiple aspects of 65 
cognition are significantly altered in a range of neuropsychiatric disorders (Millan et al., 2012), but the 66 
degree to which these abnormalities are specific to a particular cognitive/neural circuit; or occur across 67 
many cognitive operations and states remains unknown.  68 
Here, we developed a scalable, mobile platform, BrainE (short for Brain Engagement), which aims at 69 
assessing cognitive control within and across humans, rapidly evaluating several integral cognitive 70 
processes simultaneously with electroencephalography (EEG) based neural recordings. In BrainE, we 71 
adopt standard cognitive assessments of attention, response inhibition, working memory, and distractor 72 
suppression in both non-emotional and emotional contexts, that are designed to be engaging and equally 73 
interpretable for individuals from diverse cultural backgrounds and across the lifespan. With the objective 74 
to make cognitive brain mapping scalable and accessible, we integrated non-invasive, mobile and semi-75 
dry electrode EEG within BrainE for simultaneously acquiring cognitive behavioral data and neural 76 
signals. In this first BrainE study, we conduct cognitive brain mapping in healthy adult human subjects, 77 
investigating neural processes underlying stimulus encoding in multiple cognitive contexts. We also 78 
derive the cortical sources of the observed spectrotemporal neural dynamics. Additionally, in a second 79 
study, we present data from a two-visit experiment to assess the reliability of BrainE recordings, as well 80 
as the sensitivity of the cognitive neural markers to neuromodulation using transcranial magnetic 81 
stimulation (TMS).  82 

 83 

Methods 84 
Experimental Design 85 
Mental Health Ratings. All participants completed subjective mental health self-reports using standard 86 
instruments: inattention and hyperactivity ratings were obtained on the ADHD Rating Scale (New York 87 
University and Massachusetts General Hospital. Adult ADHD-RS-IV* with Adult Prompts. 2003; : 9–88 
10), anxiety was measured using the Generalized Anxiety Disorder 7-item scale GAD-7 (Spitzer et al., 89 
2006)), and depression was reported on the 9-item Patient Health Questionnaire (PHQ-9 (Kroenke, 90 
Spitzer and Williams, 2001). We also obtained demographic variables by self-report including, age, 91 
gender, race and ethnicity, socio-economic status measured on the Family Affluence Scale (Boudreau 92 
and Poulin, 2008), and any current/past history of clinical diagnoses and medications.  93 
 94 
BrainE Neuro-Cognitive Assessments. Assessments were developed and deployed by NEAT Labs 95 
(Misra et al., 2018) on the Unity game engine. The Lab Streaming Layer (LSL, Kothe et al., 2019) 96 
protocol was used to time-stamp each stimulus/response event in each cognitive task. Study participants 97 
engaged with BrainE assessments on a Windows-10 laptop sitting at a comfortable viewing distance. 98 
Participants underwent the following cognitive assessment modules that were completed within a 35 min 99 
session. Figure 1 shows the stimulus sequence in each task. 100 
 101 
1. Selective Attention & Response Inhibition. Participants accessed a game named Go Green modeled 102 
after the standard test of variables of attention (Greenberg and Waldman, 1993). In this simple two-block 103 
task, colored rockets were presented either in the upper/lower central visual field. Participants were 104 
instructed to respond to green colored rocket targets and ignore, i.e. withhold their response to distracting 105 
rockets of five other isoluminant colors (shades of cyan, blue, purple, pink, orange). The task sequence 106 
consisted of a central fixation ‘+’ cue for 500 msec followed by a target/non-target stimulus of 100 msec 107 
duration, and up to a 1 sec duration blank response window. When the participant made a response choice, 108 
or at the end of 1 sec in case of no response, a happy or sad face emoticon was presented for 200 msec 109 
to signal response accuracy, followed by a 500 msec inter-trial interval (ITI). To reinforce positive 110 
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feedback for fast and accurate responding, within 100-400 msec, two happy face emoticons were 111 
simultaneously presented during the feedback period (Wodka et al., 2007). Both task blocks had 90 trials 112 
lasting 5 min each, with target/non-target trials shuffled in each block. A brief practice period of 4 trials 113 
preceded the main task blocks. Summary total block accuracy was provided to participants at the end of 114 
each block as a series of happy face emoticons (up to 10 emoticons) in this and in all assessments 115 
described below. 116 
In the first task block, green rocket targets were sparse (33% of trials), hence, selective attention was 117 
engaged as in a typical continuous performance attention task. In the second block, green rocket targets 118 
were frequent (67% of trials), hence, participants developed a prepotent impulse to respond. As 119 
individuals must intermittently suppress a motor response to sparse non-targets (33% of trials), this block 120 
provided a metric of response inhibition (Aron, 2007; Aron and Poldrack, 2005; Chambers et al., 2009).  121 
 122 

  123 
 124 
Figure 1. Cognitive studies delivered on the BrainE platform. (A) BrainE assessment dashboard with 125 
the wireless EEG recording setup. (B) The selective attention and response inhibition task differ only in 126 
the frequency of targets; sparse 33% targets appear in the Selective Attention block and frequent 67% 127 
targets appear in the Response Inhibition block. (C) Working memory task with perceptually thresholded 128 
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stimuli. (D) Flanker interference processing task; flanking fish may either face the same direction as the 129 
middle fish on congruent trials, or the opposite direction on incongruent trials. (E) Emotion interference 130 
task presents neutral, happy, sad or angry faces superimposed on the arrow. (F) The TMS study involved 131 
two visits with two types of TMS stimulation A (cTBS) or B (iTBS) delivered in each week 132 
counterbalanced across subjects, and with immediate pre- and post- neurocognitive assessments. 133 
 134 
2. Working Memory. Participants accessed a game named Lost Star that is based on the standard visuo-135 
spatial Sternberg task (Sternberg, 1966). Participants were presented a set of test objects (stars); they 136 
were instructed to maintain the visuo-spatial locations of the test objects in working memory for a 3 sec 137 
delay period, and then responded whether a probe object (star) was or was not located in the same place 138 
as one of objects in the original test set. We implemented this task at the threshold perceptual span for 139 
each individual, i.e. the number of star stimuli that the individual could correctly encode without any 140 
working memory delay. For this, a brief perceptual thresholding period preceded the main working 141 
memory task, allowing for equivalent perceptual load to be investigated across participants (Lavie et al., 142 
2004). During thresholding, the set size of the test stars was progressively increased from 1-8 stars based 143 
on accurate performance; 4 trials were presented at each set size and 100% performance accuracy led to 144 
an increment in set size; <100% performance led to one 4-trial repeat of the same set size and any further 145 
inaccurate performance aborted the thresholding phase. The final set size at which 100% accuracy was 146 
obtained was designated as the individual’s perceptual threshold. 147 
Post-thresholding, the working memory task consisted of 48 trials presented over 2 blocks (Lenartowicz 148 
et al. 2014). Each trial initiated with a central fixation ‘+’ for 500 msec followed by a 1 sec presentation 149 
of the test set of star objects located at various positions on the screen, then a 3 sec working memory 150 
delay period, followed by a single probe star object for 1 sec, and finally a response time window of up 151 
to 1 sec in which participants made a yes/no choice whether the probe star had a matching location to the 152 
previously presented test set. A happy/sad face emoticon was used to provide accuracy feedback for 200 153 
msec followed by a 500 msec ITI. Summary accuracy was also shown between blocks. The total task 154 
duration was 6 min.  155 
 156 
3. Interference Processing. Participants accessed a game named Middle Fish, an adaptation of the 157 
Flanker task (Eriksen and Eriksen, 1974), which has been extensively used to study interfering distractor 158 
processing (Lavie, Hirst and Fockert, 2004; Shipstead, Harrison and Engle, 2012). Participants were 159 
instructed to respond to the direction of a centrally located target (middle fish) while ignoring all flanking 160 
distractor fish. On congruent trials the flanker fish faced the same direction as the central fish, while on 161 
incongruent trials they faced the opposite direction. A brief practice of 4-trials preceded the main task of 162 
96 trials presented over two blocks for a total task time of 8 min. 50% of trials had congruent distractors 163 
and 50% were incongruent. To retain attention, the array of fish was randomly presented in the upper or 164 
lower visual field on equivalent number of trials. On each trial, a central fixation ‘+’ appeared for 500 165 
msec followed by a 100 msec stimulus array of fish and up to a 1 sec response window in which 166 
participants responded left/right as per the direction of the middle fish. Subsequently a happy/sad face 167 
emoticon was presented for 200 msec for accuracy feedback followed by a 500 msec ITI. Summary 168 
accuracy was shown between blocks and the total task duration was 8 min. 169 
 170 
4. Emotional Interference Processing. We embedded this task in BrainE given ample evidence that 171 
emotions impact cognitive control processes (Gray, 2004; Pessoa, 2009; Inzlicht, Bartholow and Hirsh, 172 
2015). Participants accessed a game named Face Off, adapted from prior studies of attention bias in 173 
emotional contexts (López-Martín et al., 2013, 2015; Thai, Taber-Thomas and Pérez-Edgar, 2016). We 174 
used a standardized set of culturally diverse faces from the Nim-Stim database for this assessment 175 
(Tottenham et al., 2009). We used an equivalent number of males and female faces, each face with four 176 
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sets of emotions, either neutral, happy, sad or angry, presented on equivalent number of trials. An arrow 177 
was superimposed on the face on each trial, occurring either in the upper or lower central visual field on 178 
equal number of trials, and participants responded to the direction of the arrow (left/right). Participants 179 
completed 144 trials presented over three equipartitioned blocks with shuffled, but equivalent number of 180 
emotion trials in each block; a practice set of 4-trials preceded the main task. Each trial initiated with a 181 
central fixation ‘+’ for 500 msec followed by a face stimulus with a superimposed arrow of 300 msec 182 
duration. As in other tasks, participants responded within an ensuing 1 sec response window, followed 183 
by a happy/sad emoticon feedback for accuracy (200 msec) and a 500 msec ITI. Summary block accuracy 184 
feedback was provided, and the total task duration was 10 min. 185 
 186 
Electroencephalography (EEG). EEG data was collected simultaneous to all cognitive tasks using a 187 
24-channel SMARTING device with a semi-dry and wireless electrode layout (Next EEG — new human 188 
interface, MBT). Data were acquired at 500 Hz sampling frequency at 24-bit resolution. Cognitive event 189 
markers were integrated using LSL and data files were stored in xdf format.  190 
 191 
Repetitive Transcranial Magnetic Stimulation (rTMS). In the second study, we used the FDA-192 
approved Magventure stimulator (MagPro R30) for rTMS delivery. Each participant made two visits for 193 
this study, separated by a one-week interval, and each visit lasted up to 2 hours. Participants were 194 
provided either the continuous theta burst stimulation (cTBS) or intermittent TBS (iTBS) TMS protocol 195 
at each visit. Participants were blinded to the stimulation type, and stimulation order in week 1 or 2 was 196 
counterbalanced across subjects. The research staff who performed stimulation were blind to the effects 197 
of the cTBS or iTBS protocol, and the data analytics lead and study principal investigator were blind to 198 
the identity of the protocol i.e. all data were analyzed with cTBS blinded as stim A and iTBS as stim B. 199 
TBS stimulation was delivered to the midline at FCz target location, consistent with the pre-200 
supplementary motor area site for rTMS in superior frontal cortex, which was active in most of our 201 
cognitive tasks (Verbruggen et al., 2010). A train of 3 pulses, spaced 20 msec apart (50 Hz stimulation), 202 
followed by an inter-train interval of at least 200 msec (5 Hz) was applied either continuously (cTBS), 203 
or intermittently (iTBS) with a jitter between trains as has been tested in prior research (Rossi, Hallett, 204 
Rossini, Pascual-Leone, et al., 2009; Oberman et al., 2011). In cTBS, bursts of 3 pulses at 50 Hz were 205 
applied at a frequency of 5 Hz for 20 sec, total 100 bursts. In iTBS, ten 2 sec periods (10 bursts) of TBS 206 
were applied at a rate of 0.1 Hz for a total 100 bursts. Stimulation amplitude was set at 80% of motor 207 
threshold individually determined in each participant.  208 

At each rTMS study visit, participants first performed BrainE assessments (pre-stim), then 209 
immediately received either cTBS or iTBS TMS stimulation, then performed BrainE again (post-stim). 210 
This within subject test-retest method allowed us to test for reliability of BrainE  assessment data, 211 
comparing pre-stim week 1 versus pre-stim week 2 results. Additionally, we investigated the sensitivity 212 
of BrainE assessments to measure brain plasticity in pre-stim versus post-stim comparisons, as a function 213 
of different cognitive operations and rTMS protocols. Figure 1F shows the rTMS study design.  214 

 215 
Data acquisition 216 
Participants. 102 adult human subjects (mean age 24.8 ± 6.7 years, range 18-50 years, 57 females) 217 
participated in the BrainE neuro-cognitive assessment study. Participants were recruited using IRB-218 
approved on-campus flyers at UC San Diego as well as via the online recruitment forum, 219 
ResearchMatch.org, which hosts a registry of research volunteer participants; the ad on the Research 220 
Match registry was customized for participants in the general San Diego area (within 50 miles of our 221 
research location). Overall, ~50% of participants were university affiliates (lab members and students), 222 
while the rest were from the general population (i.e., Research Match registry). All participants provided 223 
written informed consent for the study protocol (#180140) approved by the University of California San 224 
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Diego institutional review board (UCSD IRB). Participant selection criteria included healthy adult status, 225 
i.e.  without any current diagnosis for a neuropsychiatric disorder and/or current/recent history of 226 
psychotropic medications and/or hospitalization within the past 8 weeks. Five participants were excluded 227 
from the study as they had a current diagnosis for a psychiatric disorder and/or current/recent history of 228 
psychotropic medications. All participants reported normal/corrected-to-normal vision and hearing and 229 
no participant reported color blindness, majority of participants (95 of 102) were right handed. All 230 
participants had at least a high-school education (16 years). Unfortunately, we did not collect information 231 
on highest qualification.  232 

For the two-visit TMS study, we enrolled 24 human subjects (mean age 24.3 ± 7.4 years, 17 females). 233 
13 of these individuals had previously participated in the main BrainE assessment above, with a 234 
minimum one-month gap between participation in the two studies. Participants provided written 235 
informed consent for the TMS study protocol (#190059) approved by the UCSD IRB. The TMS study 236 
was pre-registered on Clinicaltrials.gov (NCT03946059). Participants were screened for this study prior 237 
to enrollment. Any individuals with a history of seizure disorder; vascular, traumatic, tumoral, infectious 238 
or metabolic lesion of the brain; administration of drugs that lower the seizure threshold; implanted or 239 
non-removable metallic objects above the neck; implanted devices with electrical circuits (pace-makers, 240 
cochlear implants) were excluded from enrollment. In addition, subjects were excluded if they had 241 
chronic sleep deprivation or confirmed heavy alcohol use (defined as greater than 5 episodes of binge 242 
drinking in the past month with >5 alcohol drink-equivalents per sitting for men (or >4 drink-equivalents 243 
per sitting for women). Subjects were also excluded if they reported the use of stimulant drugs in the past 244 
month (cocaine, methamphetamines), or if they were pregnant, or had any history of severe 245 
cardiovascular disease (i.e. history of transient ischemic attack, heart attack or stroke).  246 
 247 
Behavioral and Neural Processing Methods 248 
Behavioral analyses. Behavioral data for all cognitive tasks were analyzed for signal detection 249 
sensitivity, d’, computed as z(Hits)-z(False Alarms) (Heeger and Landy, 2009). Task speeds were 250 
calculated as log(1/RT), where RT is response time in milliseconds.  Task efficiency was calculated as a 251 
product of d’ and speed (Barlow et al., 1980; Vandierendonck, 2017). d’, speed, and efficiency metrics 252 
were checked for normal distributions prior to statistical analyses.  253 
 254 
Neural Analyses. We applied a uniform processing pipeline to all EEG data acquired simultaneous to 255 
the cognitive tasks. This included: 1) data pre-processing, 2) computing event related spectral 256 
perturbations (ERSP) for all channels, and 3) cortical source localization of the EEG data filtered within 257 
relevant theta, alpha and beta frequency bands. 258 
1) Data preprocessing was conducted using the EEGLAB toolbox in MATLAB (Delorme and Makeig, 259 
2004). EEG data was resampled at 250 Hz, and filtered in the 1-45 Hz range to exclude ultraslow DC 260 
drifts at <1Hz and high-frequency noise produced by muscle movements and external electrical sources 261 
at >45Hz. We performed 827-point bandpass, zero phase, filtering with transition band width 4.063Hz, 262 
and passband edges of [1 45] Hz for cleaning the epoched data of time length [-1.5 1.5] secs; [3 7] Hz 263 
for theta specific filtering, [8 12] Hz for alpha specific and [13 30] Hz for beta specific data analysis. 264 
EEG data were average referenced and epoched to relevant stimuli in each task, as informed by the LSL 265 
time-stamps. While 24 channels is not a dense set, they are far enough from each other that no common 266 
neural signature is removed, but only common in-phase noise present in all channels is canceled during 267 
average referencing (Nunez, 2010). Any task data with missing LSL markers (1.4% of all data) had to be 268 
excluded from neural analyses. Any missing channel data (channel F8 in 2 participants) was spherically 269 
interpolated to nearest neighbors. Epoched data were cleaned using the autorej function in EEGLAB to 270 
remove noisy trials (>5sd outliers rejected over max 8 iterations; 6.6± 3.4% of trials rejected per 271 
participant). EEG data were further cleaned by excluding signals estimated to be originating from non-272 
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brain sources, such as electrooculographic, electromyographic or unknown sources, using the Sparse 273 
Bayesian learning (SBL) algorithm (Ojeda et al., 2018, 2019, https://github.com/aojeda/PEB) explained 274 
below. 275 
2) For ERSP calculations, we performed time-frequency decomposition of the epoched data using the 276 
continuous wavelet transform (cwt) function in MATLAB’s signal processing toolbox. Baseline time-277 
frequency (TF) data in the -750 msec to -550 msec time window prior to stimulus presentation were 278 
subtracted from the epoched trials (at each frequency) to observe the event-related synchronization (ERS) 279 
and event-related desynchronization (ERD) modulations (Pfurtscheller, 1999). 280 
3) Cortical source localization was performed to map the underlying neural source activations for the 281 
ERSPs using the block-Sparse Bayesian learning (SBL) algorithm (Ojeda, Kreutz-Delgado and Mullen, 282 
2018; Ojeda et al., 2019) implemented in a recursive fashion. This is a two-step algorithm in which the 283 
first-step is equivalent to low-resolution electromagnetic tomography (LORETA, (Pascual-Marqui, 284 
Michel and Lehmann, 1994). LORETA estimates sources subject to smoothness constraints, i.e. nearby 285 
sources tend to be co-activated, which may produce source estimates with a high number of false 286 
positives that are not biologically plausible. To guard against this, SBL applies sparsity constraints in the 287 
second step wherein blocks of irrelevant sources are pruned. Source space activity signals were estimated 288 
and then their root mean squares were partitioned into 1) regions of interest (ROIs) based on the standard 289 
68 brain region Desikan-Killiany atlas (Desikan et al. 2006; Supplementary Figure 1) using the Colin-290 
27 head model (Holmes et al., 1998) and 2) artifact sources contributing to EEG noise from non-brain 291 
sources such as electrooculographic, electromyographic or unknown sources; activations from non-brain 292 
sources were removed to clean the EEG data. The SBL GUI accessible through EEGLAB provides access 293 
to an EEG artifact dictionary; this dictionary is composed of artifact scalp projections and was generated 294 
based on 6774 ICs available from running Infomax ICA on two independent open-access studies 295 
(http://bnci-horizon-2020.eu/database/data-sets, study id: 005-2015 and 013-2015). The k-means method 296 
is used to cluster the IC scalp projections into Brain, EOG, EMG, and Unknown components. We checked 297 
visually that EOG and EMG components had the expected temporal and spectral signatures according to 298 
the literature (Jung et al., 2000). The SBL algorithm returns cleaned channel space EEG signals in 299 
addition to the derived cortical source signals as outputs. In this study, we first applied SBL to the epoched 300 
channel EEG signals; activations from artifact sources contributing to EEG noise, i.e., from non-brain 301 
sources such as electrooculographic, electromyographic or unknown sources, were removed to clean the 302 
EEG data (Ojeda et al., 2019). Cleaned subject-wise trial-averaged channel EEG data were then 303 
specifically filtered in theta (3-7 Hz), alpha (8-12 Hz), and beta (13-30 Hz) bands and separately source 304 
localized in each of the three frequency bands and in each task to estimate their cortical ROI source 305 
signals. The source signal envelopes were computed in MatLab (envelop function) by a spline 306 
interpolation over the local maxima separated by at least one time sample; we used this spectral amplitude 307 
signal for all neural analyses presented here. We focused on post-stimulus encoding in the 100-300 msec 308 
range for theta and alpha bands, and 400-600 msec spectral amplitude range for the beta band signals, 309 
respectively. These epoch windows were chosen based on the peak global activity of the task-averaged 310 
signals in the respective frequency bands. We used these time windows to compute common-task-average 311 
neural signals and also distinct-task based neural activations across subjects.  312 

 313 
Statistical Analyses. Behavioral data were compared across tasks using repeated measures analyses of 314 
variance (rm-ANOVA) with a within-subject factor of task-type; the Tukey-Kramer method was used 315 
for post-hoc testing. 316 

Channel-wise theta, alpha, beta ERS and ERD modulations on each task, and within the common-317 
task-average were analyzed for significance relative to baseline using t-tests (p≤0.05), followed by false 318 
discovery rate (fdr) corrections applied across the three dimensions of time, frequency, and channels 319 
(Genovese, Lazar and Nichols, 2002).  320 
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Significant source activations underlying the theta, alpha, beta ERS and ERD modulations were 321 
computed using t-tests with Bonferroni family wise error rate (fwer) correction applied for multiple 322 
comparisons in the 68 ROI source dimension, 5 tasks and 3 frequency bands (p≤0.00005). For the global 323 
cognitive task-averaged activity averaged across 5 tasks, the modulations were computed using t-tests 324 
fwer correction applied for multiple comparisons in the 68 ROI source dimension and 3 frequency bands 325 
(p≤0. 00024). Rm-ANOVA tests were conducted to investigate differences in frequency band x task type 326 
cortical activations, and the Tukey-Kramer method was used for post-hoc tests. 327 

For the TMS study, we first calculated the Cronbach’s alpha internal consistency measure (MatLab 328 
Intraclass Correlation Coefficient, ICC, type ‘C-k’ function) for the week 1 vs week 2 pre- data to assess 329 
reliability of the cognitive performance metrics as well as neural signals at each cortical source region. 330 
Additionally, we conducted rm-ANOVA tests with within-subjects factors of stimulation type (cTBS vs 331 
iTBS) and assessment time (pre- vs post-); results were corrected for multiple comparisons across 5 332 
cognitive tasks and 3 frequency bands at p≤0.003 significance threshold, the significant ROIs were 333 
further corrected for multiple comparisons using fdr; the Tukey-Kramer method was used for post-hoc 334 
tests. Estimates of effect size were calculated as standardized mean difference/Cohen’s d (Cohen et al., 335 
1988) with the Hedges and Olkin small sample bias correction applied (Hedges and Olkin, 1985).  336 

Finally, we investigated the relationship between the cognitive and neural activations versus 337 
subjective mental health symptom severity for anxiety, depression, inattention and hyperactivity self-338 
reports using Spearman correlations (thresholded at p≤0.05). For neural data, we used the significant 339 
global cognitive task-average activity for correlations. For the four symptom data that were highly 340 
correlated, we conducted a principal component analysis (PCA) and used the top PC that explained 341 
majority of the symptom score variance across subjects, and further corrected for multiple comparisons 342 
across ROIs and frequency bands using fdr. We confirmed Spearman correlations were appropriate for 343 
correlations based on the Anderson-Darling test for normality (Spearman, 1904; Anderson et al., 1952) 344 
and confidence intervals were calculated using 10,000-iteration percentile bootstrap method (Efron, 345 
1982). 346 

 347 

Results 348 
 349 
Behavioral performance. Signal detection sensitivity d’, response times (msec), speed and efficiency 350 
for all tasks are shown in Table 1. Repeated measures ANOVAs were conducted on each behavioral 351 
variable with five task types as within-subjects factor. For d’, we found a significant effect of task (F4,384 352 
= 218.22, p<0.0001). Post-hoc tests revealed significant interactions between every task type pair 353 
(p<0.05). For speed and efficiency, we again found a significant effect of task (speed: F4,384 = 559.29, 354 
p<0.0001; efficiency: F4,384 = 715.13, p<0.0001) and the post-hoc tests for each of them showed 355 
significant interaction between each task type pair (p<0.001) except for that between interference 356 
processing and emotion interference processing tasks for speed.   357 
 358 

Cognitive Task d’ 
mean ± std 

Response time 
median ± mad sec 

Speed 
mean ± std 

Efficiency 
mean ± std 

Selective attention 4.47 ± 0.32 0.44 ± 0.03 0.36 ± 0.05 0.34 ± 0.06 
Response inhibition 4.28 ± 0.46 0.40 ± 0.04 0.40 ± 0.06 0.36 ± 0.07 
Working memory 2.06 ± 0.92 0.88 ± 0.14 0.04 ± 0.10 0.02 ± 0.05 
Interference processing 3.63 ± 0.83 0.48 ± 0.03 0.31 ± 0.05 0.24 ± 0.06 
Emotion interference processing 3.38 ± 0.65 0.48 ± 0.03 0.31 ± 0.06 0.22 ± 0.05 

Table 1. Behavioral performance across tasks for all participants (n=97), as mean ± standard error of 359 
mean (sem). Response times that did not have a normal distribution, are reported as median ± median 360 
absolute deviation (mad).  361 
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 362 
Neural activations at EEG channels. Results of the time-frequency decompositions of the stimulus-363 
evoked neural activity are shown at exemplar electrodes, FCz and POz, for all five tasks and for the 364 
global cognitive average across tasks (Figure 2). ERS/ERD modulations in the data were fdr-corrected 365 
across time, frequency and channel dimensions across subjects. Most tasks had significant and equivalent 366 
ERS and ERD signatures at the channel level, with ERS predominant in the theta/alpha frequencies and 367 
ERD predominant in the beta frequency range. We also show topographic maps in each task (Figure 2) 368 
for the stimulus-evoked peak activity windows and for frequency averaged theta, alpha, beta, during the 369 
100-300 msec time range for theta and alpha, and 400-600 msec range for beta. 370 
 371 
Neural activations at cortical sources. Significant cortical source-localized neural activity in the theta, 372 
alpha and beta bands for the stimulus encoding period, for each cognitive task and for the global task-373 
average are shown in Figure 3; both p<0.05 uncorrected and p≤0.00005 fwer-corrected maps for 374 
individual tasks, p≤0.00024 fwer-corrected global cognition maps are shown. Consistent with the channel 375 
maps, theta and alpha frequencies predominantly showed ERS at bilateral cortical sites, while significant 376 
ERD was observed for beta frequencies prominently in medial frontal, parietal, posterior cingulate cortex 377 
and left sensorimotor cortex.  378 
 379 
We conducted repeated measured ANOVAs on the source activations at the 68 ROIs with the three 380 
frequency bands and five task types as within-model factors, to investigate whether theta, alpha and beta 381 
band modulation patterns in cortical space were significantly different from each other across tasks. 382 
These analyses showed a main effect of frequency band (F2,134=13.65, p<0.0001) and task (F4,268 = 12.79, 383 
p<0.0001) and a significant frequency band x task interaction (F8,536=10.40, p<0.0001). Post-hoc tests 384 
revealed significant differences in the three frequency band cortical activations in each task (p<0.01) 385 
except in the working memory task where there were no significant differences in theta/alpha/beta 386 
specific cortical maps.  387 

Overall, the theta and alpha band cortical activations were significantly positively correlated, while 388 
these lower frequency activations were negatively correlated with the beta band activations (Pearson 389 
correlations on the global cognitive task-average data (p<0.01); Supplementary Figure 2). We also 390 
confirmed that the cortical activations maps were near equivalent if they were computed over all task 391 
trials vs. just correct trials (93.50±3.45% correct trials averaged across tasks). These all vs. correct trial 392 
maps were strongly positively correlated in each frequency band (Spearman correlations on the global 393 
cognitive task-average maps across 68 ROIs, r(67)>0.99, p<0.001 for theta and alpha bands and 394 
r(67)=0.78, p<0.001 for beta band).  395 
 396 
 397 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.05.14.097014doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.097014


 11 

 398 
 399 
Figure 2. Significant event related synchronization (ERS: yellow) and desynchronization (ERD: navy 400 
blue), fdr-corrected, time-locked to the stimulus (-0.5 to +1 sec) across all tasks and averaged across 401 
tasks (global cognition) at exemplar electrodes FCz and POz. ERS was observed at theta/alpha 402 
frequencies while ERD was predominant in the beta frequency range. Topographic maps for the stimulus-403 
evoked peak activity windows for the frequency-averaged theta, alpha and beta band signals are shown 404 
at right, for the peak time windows, of  100-300 msecs for theta and alpha, and 400-600 msecs for beta. 405 
 406 
 407 

Task FCz Poz Theta Alpha Beta

Selective Attention

Response Inhibition

Working Memory

Interference Processing

Emotion Interference 
Processing

Global cognition

ERD
ERS

Time (msec)

Fr
eq

 (H
z)

24

7
12

-500      0       500   1000

24

7
12

-500      0       500   1000

24

7
12

-500      0       500   1000

24

7
12

-500      0       500   1000

24

7
12

-500      0       500   1000

24

7
12

-500      0       500   1000

24

7
12

-500      0       500   1000

24

7
12

-500      0       500   1000

24

7
12

-500      0       500   1000

24

7
12

-500      0       500   1000

24

7
12

-500      0       500   1000

24

7
12

-500      0       500   1000

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.05.14.097014doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.097014


 12 

  408 
 409 
Figure 3. Significant theta, alpha and beta band ERS and ERD signatures during stimulus encoding 410 
relative to baseline for the five cognitive tasks and for the global cognitive task-average. Left column 411 
maps are at uncorrected p<0.05 threshold and right column maps are fwer corrected. 412 
   413 
Common and distinct neural activations across cognitive tasks. We computed logical maps 414 
representing whether each cortical source was significantly active in one or more tasks regardless of the 415 
neural activity magnitude (binarized at p≤0.00005 fwer threshold, Figure 4A); if any cortical source ROI 416 
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was uniquely active in a single cognitive task, we further identified that distinct task (Figure 4B). These 417 
maps showed neural activations in brain-wide ROIs in the theta/alpha bands in the majority of tasks, with 418 
greater cortical overlap in the theta than alpha band (up to 3 tasks). In the beta band there was no 419 
overlapping task activity.  420 
 Distinct task activation maps revealed that only the selective attention task significantly activated 421 
left inferior frontal cortex, bilateral sensory-motor cortices, left superior temporal cortices in the alpha 422 
band. The response inhibition task selectively activated the left caudal middle frontal area, commonly 423 
referred to as dorsolateral prefrontal cortex (DLPFC), in the alpha band. Activity related to stimulus-424 
encoding on the working memory task was observed in left superior parietal cortex in the beta band. The 425 
Flanker interference task selectively activated right inferior frontal cortex, bilateral orbitofrontal, right 426 
sensory and supramarginal cortices in the alpha band, bilateral posterior cingulate in the beta band. 427 
Finally, the emotion interference task selectively activated left caudal middle frontal area/dlPFC in the 428 
theta band as well as left orbitofrontal, right anterior cingulate, left posterior/isthmus-cingulate cortex 429 
and bilateral fusiform regions in the alpha band, and left fusiform activation in the beta band, potentially 430 
specific to face stimuli in this task. 431 
 432 

 433 
 434 
Figure 4. Common and distinct neural activations across tasks. (A) Common activation brain maps are  435 
logical maps showing cortical sources that are active during stimulus encoding in one or more cognitive 436 
tasks. (B) Distinct activation brain maps are logical maps showing cortical sources that are active during 437 
stimulus encoding only in one particular cognitive task. Logical maps are based on significantly active 438 
ROIs within task at p≤0.00005 fwer threshold. 439 
 440 
TMS driven cognitive neuroplasticity. In this second study, participants made two visits completing 441 
the five BrainE cognitive tasks twice at each visit, pre- and post- rTMS application. Either the cTBS or 442 
iTBS protocol for rTMS was applied at each visit counterbalanced across subjects (see Methods, Figure 443 
1F). We calculated Cronbach’s alpha as a summary reliability measure for the pre-stim visit 1 vs. visit 2 444 
cognitive and neural data. For cognitive performance across the 25 healthy subjects, reliability was high 445 
(task-averaged Cronbach’s alpha for d’: 0.83, speed: 0.80, efficiency: 0.80, p<0.0001). For neural activity 446 
averaged across all five tasks and concatenated across all three frequency bands and summarized across 447 
cortical source sites, reliability was high (Cronbach’s alpha = 0.77, p<0.0001). When neural data were 448 
further analyzed separately for reliability in the three frequency bands, Cronbach’s alpha values were 449 
more variable (for theta: 0.55, p<0.05; alpha: 0.73, p=0.001; beta: 0.44, p=0.08), though paired t-tests 450 
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confirmed that visit 1 vs. 2 pre-stim neural data were not significantly different in any frequency band 451 
(all p>0.05). Finally, we also calculated neural reliability concatenated across all three frequency bands 452 
within each cortical source region, showing moderate to high test-retest reliability across different 453 
cortical ROIs (Figure 5A).  454 

We performed a 3-factor repeated measures ANOVA for each behavioral measure (d’, speed, 455 
efficiency) with task type, assessment time (pre-stim, post-stim) and stimulation type (cTBS, iTBS) as 456 
within-subject factors. No analyses showed main effects or interactions for stimulation type, thus single 457 
session rTMS stimulation did not affect cognitive behaviors. A significant main effect of task type was 458 
found for each behavioral measure (d’: F4,92=188.47.65, p<0.0001; speed: F4,92=159.17, p<0.0001; 459 
efficiency: F4,92=342.34 p<0.0001), and similarly assessment time also showed a significant main effect 460 
for each measure (d’: F1,23=6.53, p=0.02; speed: F1,23=81.27, p<0.0001; efficiency: F1,23=38.42, 461 
p<0.0001); a significant task x assessment time interaction only emerged for the speed measure 462 
(F4,92=9.86, p<0.0001) that showed significantly greater speed at post vs. pre for all tasks (p<0.01). Post-463 
hoc pre/post speed comparisons (Tukey-Kramer test) showed a larger post vs. pre change for working 464 
memory (Δspeed, 0.04±0.006, p<0.0001) followed by that for sustained attention (Δspeed, 0.02±0.004, 465 
p=0.0009) and emotion interference processing (Δspeed, 0.02±0.003, p<0.0001) and then for flanker 466 
interference (Δspeed, 0.01±0.003, p=0.008) and response inhibition (Δspeed, 0.01±0.004, p=0.003), but 467 
with no differential effect by stimulation type. 468 

 In rm-ANOVAs conducted on the neural data, we explicitly focused on significant stimulation type 469 
x assessment time interactions to understand differential neuroplasticity outcomes of cTBS vs iTBS. 470 
Results were thresholded at p≤0.003 fwer for 5 tasks x 3 frequency band comparisons and fdr-corrected 471 
for multiple comparisons across all ROIs (Figure 5B). These interactions exclusively showed 472 
significance for the emotional interference task in the left superior parietal brain region with a large effect 473 
size in the theta band (Cohen’s d, iTBS>cTBS, 1.32, 95% CI [0.7 1.94], p=0.0011), in left lateral occipital 474 
area with a medium effect size in the alpha band (Cohen’s d, iTBS>cTBS, 0.65, 95% CI [0.07 1.23], 475 
p=0.0006), and in right superior frontal/rostral anterior cingulate cortex with a large effect size in the 476 
beta band (Cohen’s d, iTBS>cTBS, 1.09, 95% CI [0.49 1.70], p=0.0029).  477 

 478 

   479 
 480 
Figure 5. TMS study results. (A) Neural data acquired at pre-TMS at visit 1 and 2 showed moderate to 481 
high reliability measured across all three frequency bands using Cronbach’s alpha calculated for each 482 
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cortical source region [min: 0.5 max: 0.9, thresholded at p<0.05]. (B) Significant stimulation type (iTBS 483 
vs. cTBS) by time (pre- vs. post-stim) neural interactions in rm-ANOVAs emerged only for the emotion 484 
interference processing task, shown in red  for theta band, green for alpha band and blue for beta band 485 
activations (post-pre iTBS>cTBS, p≤0.003 fwer correction applied for 5 tasks x 3 frequency comparisons 486 
and fdr-corrected for brain-wide ROI multiple comparisons).  487 

 488 
Cognitive neural correlates of subjective mental health. All participants provided self-reports on 489 
standard scales of anxiety, depression, inattention and hyperactivity. These four symptoms had high inter-490 
correlation coefficients (mean±sem, r= 0.57±0.03, p<0.0001) in our participant sample. Hence, we 491 
conducted a PCA of the symptoms and extracted the top mental health PC that explained 69.72% variance 492 
in the symptom data; other PC components were not considered as they each explained less than a quarter 493 
of the total variance. Spearman correlations of the cognitive metrics (d’/speed/efficiency) with the mental 494 
health PC did not show any significant correlations (all p>0.05).  495 

For mental health correlations with  neural data, we focused on the significant global task-averaged 496 
evoked activity (Figure 3, rightmost column) and found several symptom correlates, specifically in the 497 
theta and alpha bands (Table 2 and Figure 6, p<0.05 corrected for multiple comparisons across ROIs 498 
and frequency bands using fdr, associated scatter plots shown in Supplementary Figure 3). In all cases, 499 
more severe symptoms across our healthy participant sample were associated with significantly reduced 500 
ERS activity. Theta/alpha symptom correlates were widespread and included distinct cognitive control 501 
regions of the fronto-parietal network including the left DLPFC (Caudal middle frontal L in Table 2), 502 
temporal regions, and visual areas such as the precuneus showed negative correlations with the symptom 503 
PC.  504 
 505 

Freq ROI rho upper CI lower CI   p 
Theta Caudal middle frontal L -0.25 -0.43 -0.05 0.015 
 Insula R -0.24 -0.42 -0.05 0.020 
 Para-hippocampal L -0.28 -0.46 -0.09 0.005 
 Para-hippocampal R -0.29 -0.47 -0.09 0.004 
 Precentral L -0.24 -0.42 -0.04 0.021 
 Precuneus L -0.25 -0.43 -0.06 0.015 
 Precuneus R -0.23 -0.42 -0.02 0.026 
 Transverse temporal R -0.21 -0.40 -0.02 0.038 
Alpha Middle temporal R -0.27 -0.46 -0.07 0.008 

 506 
Table 2. Global task-averaged neural correlates of subjective mental health symptoms. Significant 507 
correlates were observed in theta and alpha frequency bands (Spearman correlations, p < 0.05 fdr-508 
corrected for multiple comparison across ROIs and frequency bands). Correlation coefficients, upper and 509 
lower 95% confidence intervals (CI) and p-values are shown. 510 
 511 

 512 
Figure 6. Global task-average neural correlates of subjective  mental health. We found significant neural 513 
correlations with the top principal mental health symptom component that explained 69.72% variance 514 
across all symptoms. All correlations were negative and predominantly in the theta band (Table 2). 515 
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Correlations used the Spearman method (p<0.05, rho (𝜌) values were fdr-corrected for multiple 516 
comparisons across ROIs and frequency bands). 517 

Discussion 518 
 519 

In this study, we developed a scalable and accessible, mobile EEG based platform to assess neuro-520 
cognitive processing. We refer to this platform as BrainE (short for Brain Engagement) and demonstrate 521 
how it can be used to inform cognitive and neural processes, specifically stimulus encoding, in five 522 
cognitive task contexts - selective attention, response inhibition, interference processing, emotional 523 
interference processing, and working memory. We present cortical processes parsed in distinct theta, 524 
alpha and beta frequency bands, with robust ERS in theta and alpha and inversely correlated ERD in the 525 
beta band. We demonstrate that the five tasks elicit common stimulus encoding related neural processing 526 
as well as some distinct cortical activations. In a second experiment that used rTMS to engender 527 
neuroplasticity, we show that specific cognitive tasks exhibit differential neural outcomes to two 528 
different, continuous versus intermittent, theta burst stimulation protocols.  529 

 530 
Notably, we conducted these experiments with mobile wireless EEG in a rapid test sequence of less 531 

than an hour per subject. The results processed in the cortical space demonstrate consistency with 532 
findings from neuroimaging studies using less scalable approaches such as fMRI or high density EEG. 533 
Electrophysiological studies in primates and humans have shown that theta and alpha band evoked 534 
responses are broadly distributed in the brain and reflect many top-down cognitive control operations 535 
including goal directed attention, memory encoding, and novelty detection among others, consistent with 536 
our results (Aftanas and Golocheikine, 2001; Makeig et al., 2002; Ekstrom et al., 2005; Christie and Tata, 537 
2009; Mishra et al., 2012; Buzsáki and Moser, 2013). In beta band global cognitive activity, we observed 538 
left lateralized sensory-motor ERD, contralateral to the right-hand dominant responses made by our 539 
participants, which is consistent with motor performance representations in prior studies (Aron, 2007; 540 
Picazio et al., 2014; Zavala, Jang, Trotta, Codrin I. Lungu, et al., 2018; Khanna and Carmena, 2017). 541 
Amongst some interesting activations, the response inhibition task specifically showed alpha ERS in left 542 
caudal middle frontal cortex (DLPFC area) and the selective attention task showed significant ERS in 543 
left inferior frontal cortex, which aligns with previous findings (Aftanas and Golocheikine, 2001; Palva 544 
and Palva, 2007; Zavala, Jang, Trotta, Codrin I Lungu, et al., 2018; Beltrán et al., 2019; Chong, Williams, 545 
Cunnington, and Mattingley, 2008). In our implementation, these two tasks only differed in the presented 546 
frequency of target vs. non-target stimuli and both tasks required moment-to-moment flexible decision-547 
making whether to respond or to inhibit response; many studies show that DLPFC is important for such 548 
flexible decision-making (Dosenbach et al., 2007; Menon and Uddin, 2010) with noted alpha band 549 
oscillatory effects found in this region (Sadaghiani et al., 2012, 2019). The Flanker interference 550 
processing task significantly activated right inferior frontal cortex as well as right sensory-motor areas 551 
in the alpha band, which is in line with studies of interference control and inhibitory processing (Brass 552 
et al., 2005; Tettamanti et al., 2008; Hampshire et al., 2010; Zanto et al., 2011; Mishra et al., 2014; 553 
Zavala, Jang, Trotta, Codrin I Lungu, et al., 2018; Beltrán et al., 2019). The emotional interference 554 
processing task particularly activated left caudal middle frontal area or DLPFC in the theta band aligned 555 
with other neuroimaging studies using emotion tasks (Siegle et al., 2007; Grimm et al., 2008; Avissar et 556 
al., 2017); posterior (isthmus-) cingulate cortex in the alpha band was also modulated in this task as 557 
observed by others (Waugh, Lemus and Gotlib, 2014; Okon-Singer et al., 2015; Song et al., 2017). 558 
Finally, during working memory encoding, we observed distinct activity in the beta band that localized 559 
to parietal cortex matching prior evidence, especially with respect to right hemispheric activations 560 
(Berryhill and Olson, 2008; Nee et al., 2013). These results provide confidence that a mobile EEG tool, 561 
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which can be easily scaled to any lab/community setting with limited resources, can be used to generate 562 
neuro-cognitive results that replicate the literature.  563 

 564 
In the rTMS study, we first demonstrated that the task-related cognitive performance and neural 565 

processing data were reliably replicable across two baseline sessions completed one-week apart. 566 
Specifically, we computed intraclass correlation coefficients between the two baseline sessions that 567 
showed moderate-to-high reliability, particularly in the visual, parietal and temporal regions relative to 568 
the frontal activations, consistent with findings in other studies (McEvoy, 2000; Gudmundsson et al., 569 
2007). We compared cognitive and neural effects of continuous (cTBS) and intermittent (iTBS) theta 570 
burst stimulation protocols, as previous studies have suggested their contrasting effects—iTBS to 571 
facilitate while cTBS to inhibit cortical excitability (Thimm and Funke, 2015; Viejo-Sobera et al., 2017; 572 
Vékony et al., 2018). No such differential effects were found for the cognitive performance measures; 573 
both stimulation protocols speeded up information processing as evidenced in post- vs. pre-stimulation 574 
response time differences in several tasks, most prominently on the working memory task. This was an 575 
interesting finding given that our healthy participant sample was already performing at high accuracy on 576 
the cognitive tasks, and suggests that rTMS application generally enhanced alertness (Guse, Falkai and 577 
Wobrock, 2010; Mensen et al., 2014). Absence of a sham rTMS arm limits further interpretation. Notably, 578 
medium to large effect size differential neural outcomes were observed for iTBS versus cTBS, 579 
particularly in the emotion interference processing task in all theta/alpha/beta frequency bands. The 580 
majority of these effects showed greater positive neuroplasticity for iTBS versus cTBS (W, 2005; Hoy et 581 
al., 2016). Modulations were observed in occipito-parietal brain regions in theta/alpha and in cognitive 582 
control regions of superior frontal/rostral anterior cingulate cortex in the beta band. The specificity of 583 
these results to certain tasks, brain regions and neural rhythms shows that the BrainE platform has utility 584 
for assessing rTMS related neuro-cognitive plasticity in future studies. Interestingly, rTMS is an FDA-585 
approved treatment for depression (Rossi, Hallett, Rossini and Pascual-Leone, 2009; George, Taylor and 586 
Short, 2013), a disorder with emotion dysregulation problems. That we find neural processes on an 587 
emotion interference processing task sensitive to rTMS protocols suggests that this task could serve as a 588 
promising assay for measuring neuro-cognitive outcomes in future rTMS studies of depression. 589 
 590 

While we investigated neuro-cognitive outcomes in healthy subjects excluding data from those with 591 
a clinical diagnosis, the study participants reported varying degrees of severity of anxiety, depression, 592 
inattention and hyperactivity symptoms. Self-reports were highly correlated across the four symptom 593 
scales, hence, we extracted the top principal component of the mental health symptoms. We found 594 
widespread mental health correlations of global task-averaged neural activity in the theta band, and a few 595 
activations in the alpha band. All correlations were negative showing reduced theta/alpha activity with 596 
greater symptom severity. The DLPFC/caudal middle frontal region, insular cortex were prominent in 597 
these neuro-behavioral correlations, aligned with studies demonstrating dysfunction in the core cognitive 598 
control networks, the fronto-parietal network and the cingulo-opercular network, in mood disorders 599 
(McNaughton, 1997; Deckersbach, Dougherty and Rauch, 2006; Zhao et al., 2007; Canbeyli, 2010; 600 
Brzezicka, 2013; Etkin, Gyurak and O’Hara, 2013) and in ADHD (Hesslinger et al., 2002; Biederman et 601 
al., 2008; Bush, 2011). Finally, we also found negative symptom correlations in the memory-related 602 
middle temporal area, and orbital network including para-hippocampal regions (Haldane and Frangou, 603 
2006; Price and Drevets, 2012). 604 
 605 
 Overall, our research shows that the BrainE platform can serve as a useful tool to map several 606 
dimensions of neuro-cognition in a rapid, scalable and cost-effective manner. We further demonstrate 607 
that the tool can be used to study neuroplasticity of targeted interventions. In this study, the emotion 608 
interference processing task was most sensitive to differential neurostimulation protocols. We also show 609 
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meaningful correlates of mental health symptoms. In future, this research platform can serve to inform 610 
the Research Domain Criteria (RDoc) framework for investigating mechanisms of mental disorders 611 
(Insel et al., 2010), both in terms of understanding the neuro-cognitive correlates of mental disorders and 612 
to study specific circuit engagement in the context of targeted interventions that engage neuroplasticity. 613 
Notably, we quantify several analyses in cortical source space, thus, facilitating comparison with the 614 
EEG as well as fMRI literature. While this particular study was limited to a healthy adult cohort, we aim 615 
to integrate this platform in future neuro-cognitive studies in children and adolescents, aging adults, as 616 
well as individuals with clinical psychiatric diagnoses. Given the mobility of the BrainE platform, it is 617 
not limited to the research lab setting, and can be used to reach participants and acquire data in 618 
community settings such as schools and clinics, enabling greater diversity in research participation 619 
(Mishra, 2019).  Finally, we have only scratched the surface of the rich neural dynamics that can be 620 
investigated in this dataset, limiting the neural analyses in this study to stimulus-evoked spectrotemporal 621 
activity modulations on core cognitive tasks; future studies may investigate aspects of functional 622 
connectivity as well as information processing in the context of task cues, and onset of responses and 623 
rewards on these tasks and newly added cognitive tasks. Fundamentally, the BrainE platform enables 624 
systematic cognitive neuroscience studies at scale across the mental health spectrum. In future, it may be 625 
used to find new biomarkers of brain-targeted interventions, and its ease of use may help to reduce the 626 
replicability crisis of small sample lab studies. 627 
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 967 
 968 
Supplementary Figure 1. Cortical source regions as per the Desikan-Killiany atlas (Desikan et al., 969 
2006). 970 
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 972 
 973 
Supplementary Figure 2. Significant correlations between the theta, alpha and beta band global 974 
cognitive task-average maps are shown (Pearson correlations, r(96) at p<0.01). 975 
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 982 

  983 
Supplementary Figure 3. Neural symptom correlations. Significant correlations between the theta and 984 
alpha band global cognitive task-average activations and the top principal mental health symptom 985 
component (PC) are shown (Spearman correlations, p<0.05, fdr-corrected for multiple comparisons 986 
across ROIs and frequencies). 987 
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