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Abstract 1 

Processing bodies (PBs) are ribonucleoprotein granules important for cytokine mRNA 2 

decay that are targeted for disassembly by many viruses. Kaposi’s sarcoma-associated 3 

herpesvirus is the etiological agent of the inflammatory endothelial cancer, Kaposi’s sarcoma, 4 

and a PB-regulating virus. The virus encodes Kaposin B (KapB), which induces actin stress 5 

fibres (SFs) and cell spindling as well as PB disassembly. We now show that KapB-mediated PB 6 

disassembly requires actin rearrangements, RhoA effectors and the mechanoresponsive 7 

transcription activator, YAP. Moreover, ectopic expression of active YAP or exposure of ECs to 8 

mechanical forces caused PB disassembly in the absence of KapB. We propose that the viral 9 

protein KapB activates a novel mechanoresponsive signaling axis and links changes in cell shape 10 

and cytoskeletal structures to enhanced inflammatory molecule expression using PB 11 

disassembly. Our work implies that cytoskeletal changes in other pathologies will similarly 12 

impact the inflammatory environment.  13 

 14 

Importance 15 

For the first time, we demonstrate that processing bodies (PBs), cytoplasmic sites of 16 

RNA decay, are regulated by mechanical signaling events that alter actin dynamics. Using the 17 

overexpression of a viral protein called KapB, known previously to mediate PB disassembly, we 18 

show that actin stress fibers (SFs) and the mechanoresponsive transcription factor, YAP, are 19 

required for PB loss. We also show that other established mechanical signals (shear stress or stiff 20 

extracellular matrix) that lead to the formation of SFs and activate YAP also cause PB 21 

disassembly. This is important because it means that KapB activates, from the inside out, a 22 

pathway that links cell shape to post-transcriptional gene regulation via cytoplasmic PBs.  23 

 24 

  25 
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Introduction  26 

Cells are exposed to a variety of environments and they respond to changes in external 27 

force by adjusting internal tension. These mechanical cues can be transmitted to the cell through 28 

changes to extracellular contact nodes (focal adhesions) and contractile actomyosin structures to 29 

maintain tension homeostasis (Friedland, Lee, and Boettiger 2009; Kong et al. 2009; del Rio et 30 

al. 2009; Grashoff et al. 2010; reviewed in Finch-Edmondson and Sudol 2016). Actin stress 31 

fibres (SFs) are cytoskeletal structures composed of thick actin bundles, often associated with 32 

focal adhesions (Vallenius 2013), that are force-responsive, maintaining cytoskeletal integrity in 33 

changing mechanical environments (Burridge and Guilluy 2016). SF formation is coordinated by 34 

the GTPase, RhoA; it activates the formin, mammalian diaphanous protein-1 (mDia1) to promote 35 

actin filament growth and Rho-associated coiled-coil kinase (ROCK) to promote actomyosin 36 

contractility through non-muscle myosin II  (Watanabe et al. 1997; Amano et al. 1997; Kimura et 37 

al. 1996). These RhoA-effectors act together to promote the formation of contractile and stable 38 

actin filaments in response to mechanical and chemical stimuli (Watanabe et al. 1999).  39 

 External forces elicit a cascade of signals using actin as force transducers to alter gene 40 

expression. Activated serum response factor (SRF) transcription responds to actin 41 

polymerization (reviewed in Chai and Tarnawski 2002). SRF activation is negatively regulated 42 

by the cytoplasmic concentration of monomeric G-actin (Sotiropoulos et al. 1999). However, 43 

inducers of filamentous actin (e.g. active RhoA) deplete G-actin levels leading to SRF nuclear 44 

translocation and transcription (Sotiropoulos et al. 1999). A more recent example is the 45 

mechanoresponsive transcriptional coactivator Yes-associated protein (YAP), whose activity can 46 

be controlled by cell shape and cytoskeletal structure (Dupont et al. 2011; Wada et al. 2011; 47 

Halder, Dupont, and Piccolo 2012; Yu et al. 2012). YAP is nuclear and active in response to low 48 

cell-cell contact (Zhao et al. 2007), high stiffness of the extracellular matrix (ECM) (Dupont et 49 

al. 2011), in shear stress due to fluid flow (K.-C. Wang et al. 2016; Nakajima et al. 2017; Lai and 50 

Stainier 2017; H. J. Lee et al. 2017; Huang et al. 2016), or after G-protein coupled receptor 51 

(GPCR) activation (Yu et al. 2012). Most of these signals induce the activity of RhoA and 52 

promote the formation of SFs, (Noria et al. 2004; Lee and Kumar 2016), implicating actin 53 

cytoskeletal structures as requisite intermediates for YAP activation. 54 

 Nuclear YAP associates with its coactivators to mediate transcription of genes involved 55 

in cell proliferation, differentiation, survival and migration (Halder, Dupont, and Piccolo 2012). 56 
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Consistent with this, nuclear YAP is often pro-tumourigenic and drives progression of many 57 

oncogenic traits in a variety of cancers. These include the induction of cell stemness (Panciera et 58 

al. 2016), altered metabolism (C. Yang et al. 2018), cancer cell invasion/vascular remodeling 59 

(Calvo et al. 2013; Liu et al. 2018; Kimura et al. 2020), and altered growth and proliferation 60 

(Kapoor et al. 2014; Zanconato et al. 2015; Jang et al. 2017). Kaposi’s sarcoma (KS) is an 61 

endothelial cell (EC) cancer that is strongly linked to Kaposi’s sarcoma-associated herpesvirus 62 

(KSHV) (Chang et al. 1994; Russo et al. 1996; Zhong et al. 1996; Ganem 1997). KSHV 63 

establishes persistent, life-long infection of its human host, and displays two types of infection, 64 

latent and lytic. In KS, the majority of the tumour ECs are latently infected while lytic replication 65 

is rare; in part, because these cells die as a result of viral replication (Boshoff et al. 1995; Staskus 66 

et al. 1997; Umbach et al. 2010; Speck and Ganem 2010; Arias et al. 2014). That said, during 67 

their short lifetime lytic cells expel progeny virus and secrete large quantities of pro-68 

inflammatory and angiogenic molecules, making even infrequent lytic replication an important 69 

driver of KS. A key contributor to this secretory phenotype is the constitutively active viral G 70 

protein-coupled receptor (vGPCR), a lytic viral protein (Montaner et al. 2006; Corcoran et al. 71 

2012). Despite the paracrine contributors like vGPCR, the few gene products that are expressed 72 

during the KSHV latent cycle are central for viral tumourigenesis. Many features of in vivo KS 73 

are recapitulated by in vitro latent infection of primary ECs, or ectopic expression of individual 74 

KSHV latent genes, including enhanced proliferation and an elongated or ‘spindled’ morphology 75 

characteristic of KS. Spindling is induced by two KSHV latent genes, vFLIP (Grossmann et al. 76 

2006) and Kaposin B (KapB; (Corcoran, Johnston, and McCormick 2015)). Spindled cells also 77 

secrete a variety of proinflammatory cytokines and angiogenic factors, to further promote tumour 78 

progression through inflammatory cytokine production (Ensoli 1998; Ciufo et al. 2001; Naranatt 79 

et al. 2003; Grossmann et al. 2006; Ojala and Schulz 2014). However, no information exists to 80 

demonstrate pro-tumourigenic YAP activation in KSHV latency, despite the fact that the vGPCR 81 

has been shown to activate YAP during KSHV lytic infection (Liu et al. 2015). 82 

One way that KSHV latency promotes the pro-inflammatory and pro-tumourigenic KS 83 

microenvironment is via KapB-mediated disassembly of cytoplasmic ribonucleoprotein granules 84 

called processing bodies (PBs) (Corcoran, Johnston, and McCormick 2015). PBs are involved in 85 

many RNA regulatory processes such as RNA silencing, nonsense-mediated decay and mRNA 86 

decay (Eulalio, Behm-Ansmant, and Izaurralde 2007).  We and others have shown that PBs are 87 
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the major site for the translational suppression or constitutive decay of human mRNAs that code 88 

for potent regulatory molecules such as proinflammatory cytokines (Franks and Lykke-Andersen 89 

2007; Corcoran, Johnston, and McCormick 2015; Vindry et al. 2017; Blanco et al. 2014). There 90 

are ~4500 of these transcripts, all of which bear destabilizing AU-rich elements (AREs) in their 91 

3’-untranslated regions (3’-UTRs) (Shaw and Kamen 1986; Shyu, Greenberg, and Belasco 1989; 92 

Chen and Shyu 1995; Winzen et al. 1999; Stoecklin, Mayo, and Anderson 2006; Franks and 93 

Lykke-Andersen 2007; Bakheet, Williams, and Khabar 2006; Bakheet, Hitti, and Khabar 2017). 94 

PB abundance and composition is extremely dynamic and responds to cellular stress (Sheth 95 

2003; Kedersha and Anderson 2007; Aizer et al. 2008; Takahashi et al. 2011). Specifically, 96 

activation of the stress-responsive p38/MK2 MAP kinase pathway by KapB elicits PB 97 

disassembly and prevents constitutive ARE-mRNA turnover (Winzen et al. 1999; Docena et al. 98 

2010; Corcoran et al. 2012; Corcoran and McCormick 2015; Corcoran, Johnston, and 99 

McCormick 2015). This is an important yet underappreciated regulatory mechanism that fine 100 

tunes the production of potent proinflammatory cytokines and angiogenic factors in KS.  101 

Though PBs are dynamic and stress-responsive, the precise signaling events that lead to 102 

PB assembly or disassembly are not well understood. We showed previously that KapB binds 103 

and activates MK2, which then phosphorylates hsp27, complexes with p115RhoGEF, and 104 

activates RhoA to elicit PB disassembly (Corcoran, Johnston, and McCormick 2015; Garcia et 105 

al. 2009; McCormick and Ganem 2005). While it is well-established that RhoA coordinates SF 106 

formation (Ridley and Hall 1992; Watanabe et al. 1999; Schmitz et al. 2000; Hotulainen and 107 

Lappalainen 2006), the precise mechanism of how RhoA promotes PB disassembly is not 108 

appreciated (Corcoran, Johnston, and McCormick 2015; Takahashi et al. 2011). In an effort to 109 

better understand the regulation of PB disassembly by KapB and RhoA, we began by targeting 110 

downstream RhoA effectors reported to promote SF formation to determine if the proteins 111 

known to mediate cytoskeletal remodeling were also necessary for PB disassembly. We reasoned 112 

that at some point we would be able to uncouple the signaling events that led to SFs from those 113 

that led to PB disassembly. We were not. We now present data that conclusively shows KapB-114 

mediated PB disassembly is dependent not only on RhoA, but on cytoskeletal structures, 115 

actomyosin contractility and the presence of the mechanoresponsive transcription transactivator, 116 

YAP. We also present the first evidence of elevated YAP levels in response to expression of a 117 

KSHV latent gene, KapB. We also extend these studies beyond their impact on viral 118 
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tumourigenesis, by determining the mechanical regulation of PB dynamics in the absence of 119 

KapB expression, and show that induced cell contractility, cytoskeletal structures and active 120 

YAP all precede PB disassembly. Using a viral protein from an oncogenic virus, we have 121 

discovered a novel mechanoresponsive signaling pathway that transduces signals from cell shape 122 

and cytoskeletal structures to YAP to control PBs, post-transcriptional regulators of cellular gene 123 

expression. 124 

 125 

Results 126 

RhoA effectors controlling SF formation are required for PB disassembly 127 

We previously showed that KapB-mediated PB disassembly required RhoA (Corcoran, 128 

Johnston, and McCormick 2015). In this work, we investigated whether downstream RhoA 129 

effectors known to control SF formation also control PB disassembly. Mammalian diaphanous 130 

protein 1 (mDia1) and Rho-associated coiled-coil kinase (ROCK) are considered the main 131 

coordinators of RhoA-mediated SF formation (Watanabe et al. 1999; Tojkander, Gateva, and 132 

Lappalainen 2012). mDia1 is a formin that promotes actin filament polymerization (Watanabe et 133 

al. 1999). To examine whether mDia1 was required for KapB-mediated PB disassembly, we 134 

designed short hairpin RNAs (shRNAs) to silence mDia1 mRNA. KapB- and vector- expressing 135 

human umbilical vein endothelial cells (HUVECs) were transduced with mDia1-targeting 136 

shRNAs and selected. Silencing efficacy was confirmed with immunoblotting (Fig 1A). PB 137 

analysis was performed using CellProfiler to quantify immunofluorescence images stained for 138 

the hallmark PB-resident protein, Hedls, as described in detail in the methods (J. H. Yu et al. 139 

2005; Kedersha et al. 2008). Knockdown of mDia1 increased PBs in KapB-expressing cells (Fig 140 

1B, D). mDia1-sh1 showed a greater increase in PBs in comparison to mDia1-sh2 (Fig 1B), 141 

likely because mDia1-sh1 reduced protein expression by 90% whereas mDia1-sh2 reduced it by 142 

40-50% (Fig 1A). To ensure that the loss of mDia1 did not increase PBs globally but rather that 143 

mDia1 contributed specifically to KapB-mediated PB disassembly, we calculated the ratio of 144 

PBs per cell in KapB-expressing cells and normalized to PBs per cell in vector controls. This is 145 

important because this calculation shows whether KapB is still able to disassemble PBs, relative 146 

to vector, in the context of mDia silencing. If the ratio is ≥1 after sh-mDia treatment, it indicates 147 

that KapB is no longer able to disassemble PBs in comparison to the vector control, and that 148 

mDia contributes directly to KapB-mediated PB disassembly. Conversely, if the ratio is ~ 0.4 to 149 
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0.6, it indicates that KapB can still disassemble PBs even in the context of sh-mDia treatment. In 150 

this case, we determined that silencing using both mDia1-sh1 and mDia1-sh2 restored the PB 151 

ratio in KapB:Vector cells to ~1, indicating that the ability of KapB to disassemble PBs is lost 152 

after mDia silencing and that this is a specific effect (Fig 1C).  We note that this ratio will be 153 

reported in subsequent figures for every RNA silencing or drug treatment applied to test KapB-154 

mediated PB disassembly. We also observed that mDia1 silencing did not eliminate SF 155 

formation (Fig 1D) but, instead, increased elongated cells with visible actin SFs across the cell in 156 

both vector and KapB conditions. The visible actin structures may represent different SF 157 

subtypes or actin bundles that compensate for the loss of mDia1 (Hotulainen and Lappalainen 158 

2006).  159 

ROCK promotes SF formation by increasing actin contractility and inhibiting actin severing 160 

activity (Julian and Olson 2014). Chemical inhibition of both isoforms of ROCK, ROCK1 and 161 

ROCK2, with Y-27632 (Ishizaki et al. 2000) restored PBs in KapB-expressing cells and 162 

increased the ratio of KapB:Vector PBs (Fig 2A-C).  To determine whether PB disassembly is 163 

dependent on a single ROCK isoform, both ROCK1 and ROCK2 were knocked down with 164 

isoform-specific shRNAs. Knockdown efficacy was confirmed with immunoblotting (Fig S1). 165 

Independent knockdown of ROCK1 and 2 increased PBs counts in KapB-expressing cells (Fig 166 

2D, F) and restored the ratio of KapB:Vector PBs counts (Fig 2E). This indicated that both 167 

ROCK1 and ROCK2 can contribute to KapB-mediated PB disassembly. ROCK2 knockdown 168 

showed more robust PB restoration, both in terms of PB counts and PB size, than that seen with 169 

ROCK1 knockdown (Fig 2D, F). Quantification of PB counts in control cells for both pan-170 

ROCK inhibition and ROCK knockdown experiments is reported in Figure S1. While pan-171 

ROCK inhibition and ROCK1 knockdown treatments both eliminate SFs, ROCK2 knockdown 172 

retains pronounced actin fibres in the cells (Fig 2F). Similar to mDia1 knockdown, this may 173 

indicate a compensatory mechanism to retain cell shape and suggests that only a subset of SFs 174 

may be required for PB disassembly. Taken together, these data show that inhibition of RhoA 175 

effectors that mediate SF formation can reverse KapB-mediated PB disassembly. Put another 176 

way, we have been unable to uncouple KapB-mediated SF formation from KapB-mediated PB 177 

disassembly.   178 

ROCK phosphorylates and activates LimK, which then phosphorylates and inactivates 179 

cofilin, an actin-severing protein (Ohashi et al. 2000). In this way, ROCK promote SF formation. 180 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.091876doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.091876


 6 

To investigate the role of cofilin in KapB-mediated PB disassembly, shRNAs to knockdown 181 

cofilin expression were used (Fig S2A). Since ROCK activation results in less cofilin activity 182 

and reduced actin severing, we hypothesized that knockdown of cofilin in KapB-expressing cells 183 

would augment KapB-mediated PB disassembly. Knockdown of cofilin resulted in elongated 184 

cells with more SFs (Fig S2D). Cofilin knockdown also augmented PBs disassembly in KapB-185 

expressing cells (Fig S2B, C). This indicates that inhibition of cofilin elicits PB disassembly and 186 

supports the hypothesis that by reducing cofilin activity to promote KapB-mediated SF 187 

formation, PB disassembly is enhanced.  188 

 189 

G-actin concentration does not influence PB disassembly 190 

Since we could not uncouple the signalling controlling SF formation from PB 191 

disassembly, we investigated whether changes in the concentration of monomeric G-actin, 192 

known to control cellular stress and SRF transcriptional responses (Sotiropoulos et al. 1999; 193 

Chambers et al. 2015), could be controlling PBs. Several studies have shown that increasing the 194 

proportion of filamentous actin decreases the cytoplasmic concentration of monomeric G-actin 195 

(Rasmussen et al. 2010; Bunnell et al. 2011; Chambers et al. 2015). We investigated if our 196 

phenotype, PB disassembly, was controlled by changes in the proportion of monomeric G-actin. 197 

To determine this, cells were treated with drugs known to either decrease or increase the 198 

proportion of monomeric G-actin. Jasplakinolide (Jasp) treatment decreases the G-actin fraction 199 

by facilitating actin nucleation and aberrant polymerization of actin (Bubb et al. 1999). 200 

Conversely, the actin polymerization inhibitor Cytochalasin D (CytD) caps the barbed end of 201 

actin filaments, preventing further elongation of the actin filament and increasing the free G-202 

actin concentration (Wakatsuki et al. 2001). If the level of G-actin is the signal, we hypothesized 203 

that jasplakinolide, which decreases G-actin levels, would mediate PB disassembly, while 204 

cytochalasin D would do the opposite, and promote PB assembly. However, both treatments 205 

increased the PB count per cell (Fig S3A-C); these data indicate that the concentration of G-actin 206 

does not influence PB disassembly, and this is not the mechanism by which actin SF formation 207 

or enhanced activity of RhoA alters PB dynamics. These data are congruent with our mDia1 and 208 

ROCK knockdown experiments that show retention of visible F-actin bundles despite PB 209 

restoration.  210 

 211 
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𝛼 −actinin-1 activity promotes PB disassembly  212 

The actinins are primarily known for their role in bundling actin fibres, though in non-213 

muscle cells, 𝛼 -actinin-1 and 4 do not mediate actin bundling to the same extent (Pellegrin and 214 

Mellor 2007). 𝛼 -actinin-4 can, at times, localize to dorsal SFs, but it primarily mediates focal 215 

adhesion turnover and can act as a transcriptional regulator of genes associated with cell 216 

proliferation and differentiation (Honda et al. 1998; Kovac 2010; Honda 2015). 𝛼 -actinin-1 217 

primarily mediates SF bundling and formation, as well as focal adhesion maturation (Honda et 218 

al. 1998; Kovac 2010). Using immunofluorescence, we observed that the localization of the two 219 

isoforms seen in HUVECs (Fig S4A, B) was consistent with the reported localization and 220 

function, as 𝛼 -actinin-1 was localized to actin fibres and 𝛼 -actinin-4 was more diffusely 221 

cytoplasmic and nuclear, with some actin fibre localization (Honda et al. 1998; Kovac 2010). 222 

Since 𝛼 -actinin-1 associated with SFs in HUVECs and overexpression of alpha-actinin-GFP has 223 

been shown to localize and reinforce SFs (Edlund, Lotano, and Otey 2001; Jackson et al. 2008), 224 

we asked whether its overexpression would promote PB disassembly. This was indeed the case, 225 

suggesting that enhancing SF bundling and focal adhesion maturation positively regulates PB 226 

disassembly (Fig S4C, D).  227 

 228 

Changes in cytoskeletal contractility control PB disassembly  229 

One of the downstream activities of the kinase, ROCK, is to phosphorylate myosin light 230 

chain to induce non-muscle myosin II (NMII)-mediated actomyosin contraction (Mutsuki 231 

Amano et al. 1996). Since ROCK is required for KapB-mediated PB disassembly, we 232 

determined whether functional actomyosin contractility is also required. KapB-expressing cells 233 

were treated with blebbistatin, which inhibits NMII-mediated actomyosin contractility by 234 

maintaining NMII in a conformation that is unable to bind actin filaments (Kovacs et al. 2004). 235 

Treatment of KapB-expressing cells with blebbistatin restored both PBs levels in KapB-236 

expressing cells, as well as the KapB:Vector ratio of PBs (Fig 3A-C), indicating that 237 

contractility is required for KapB-induced PB disassembly. To determine if contraction would 238 

elicit the same phenotype in the absence of KapB, cells were treated with Calyculin A (CalA), 239 

an inhibitor of myosin light chain phosphatase that promotes NMII phosphorylation and 240 

actomyosin contraction (Asano and Mabuchi 2001). Inducing contraction with CalA decreased 241 
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counts of PBs (Fig 3D, E), again consistent with the hypothesis that actomyosin contractility 242 

controls PB disassembly.  243 

Actomyosin contractility impacts cytoskeletal tension in adherent cells with SFs (Katoh 244 

et al. 1998; Tan et al. 2003). Additionally, both Jasp and CytD interfere with cytoskeletal 245 

tension (Rotsch and Radmacher 2000), and both increased PB counts (Fig S3). Since the 246 

mechanoresponsive transcription activator, YAP, is activated by increases to cytoskeletal 247 

tension via actomyosin contractility (Dupont et al. 2011), we predicted the following: 1) KapB 248 

expression increases cytoskeletal tension, 2) KapB expression will activate YAP and 3) both 249 

cytoskeletal tension and YAP will be required for PB disassembly. Though unable to directly 250 

test the first prediction, we now consider the role of YAP in KapB-mediated PB disassembly. 251 

 252 

YAP activation induces PB disassembly 253 

We investigated the cellular localization of YAP in KapB-expressing cells. KapB-254 

transduced human umbilical vein endothelial cells (HUVECs) showed increased levels of 255 

nuclear YAP, as well as increased total YAP intensity by immunofluorescence, though the ratio 256 

of nuclear:cytoplasmic YAP was not markedly increased (Fig 4A). When YAP is phosphorylated 257 

by LATS, it is sequestered in the cytoplasm and transcriptionally inactive (Zhao et al. 2007). 258 

While YAP has multiple phosphorylation sites, phosphorylation at serine 127 is the most potent 259 

LATS-mediated phosphorylation site that promotes cytoplasmic distribution of YAP (Zhao et al. 260 

2007). To investigate the phosphorylation status of YAP in KapB-expressing cells, levels of 261 

P(S127)-YAP and total YAP were measured by immunoblot. In KapB-expressing cells, there 262 

was a decrease in the ratio of P(S127)-YAP to total YAP suggesting that YAP is active when 263 

KapB is expressed (Fig 4B). We also observed an increase in total steady-state levels of YAP by 264 

immunoblotting, corroborating the increase in total YAP intensity seen by microscopy (Fig 4A, 265 

B). Taken together, these observations are the first evidence of enhanced YAP activity in 266 

response to expression of a KSHV latent gene. We next asked if active YAP in KapB-expressing 267 

cells can interact with TEAD and other transcription factors to elicit changes in gene expression 268 

(Vassilev et al. 2001).  We used a TEAD-element luciferase assay to assess if canonical YAP 269 

transcription was activated. As a positive control, we used YAP 5SA, a mutant version of YAP 270 

that is unable to be phosphorylated and inactivated by the inhibitory kinase LATS (Zhao et al. 271 

2007) and is thus considered constitutively active. YAP 5SA robustly activated the TEAD 272 
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element-containing firefly luciferase reporter (Fig S5A). Despite our observations of increased 273 

nuclear and total YAP, KapB did not induce the transcription of the TEAD element-containing 274 

firefly luciferase reporter (TEAD-Fluc; Fig S5A). Further, KapB did not increase steady-state 275 

mRNA levels of common YAP target genes CTGF, CYR61 and ANKRD1 by RT-qPCR, 276 

although these genes were elevated by YAP 5SA (Fig S5B). These data indicate despite the 277 

observation that YAP appears more abundant and nuclear in KapB-expressing cells, it is not 278 

activating transcription of its canonical gene targets.  279 

 We expressed shRNAs targeting YAP in KapB-expressing HUVECs to assess whether 280 

the altered levels of YAP impacted PB disassembly. Immunoblotting confirmed knockdown 281 

efficiency (Fig 4C). Knockdown of YAP increased PBs in KapB-expressing cells (Fig 4D-F). In 282 

the context of YAP knockdown, the KapB:Vector ratio of PBs counts was restored, indicating 283 

that YAP is required for KapB-mediated PB disassembly (Fig 4E) and suggesting that KapB is 284 

activating a mechanoresponsive signalling axis to elicit PB disassembly via YAP. We wondered 285 

if YAP was central to PB disassembly in the absence of KapB expression. To this end, we 286 

examined PBs after YAP 5SA expression. These cells displayed decreased number of PBs per 287 

cell, indicating that YAP 5SA elicited disassembly of PBs (Fig 5A, B). KapB-mediated PB 288 

disassembly correlates with increases in stability and levels of ARE-mRNA (Corcoran, Johnston, 289 

and McCormick 2015; McCormick and Ganem 2005). To examine whether YAP 5SA-mediated 290 

PB disassembly elicits the same changes in ARE-mRNAs, we used a luciferase assay previously 291 

established to measure the stability of ARE-mRNAs by measuring luminescence of an ARE-292 

containing firefly luciferase reporter (Corcoran, Khaperskyy, and McCormick 2011).  In this 293 

assay, as previously shown in Corcoran, Johnston, and McCormick (2015), KapB increased level 294 

of firefly luminescence indicating enhanced stability of its RNA transcript (Fig 5C). However, 295 

despite also inducing pronounced PB disassembly, YAP 5SA does not increase Fluc 296 

luminescence significantly more than the control construct (Fig 5C). This points to a divergence 297 

of KapB and active YAP outcome. Although PB disassembly is induced by the expression of 298 

both constitutively active YAP and KapB, active YAP increases the transcriptional activation of 299 

genes CTGF, CYR61 and ANKRD1 while KapB does not; conversely, KapB enhances the 300 

stability of ARE-mRNAs while active YAP does not.  301 

 302 

YAP activators disassemble PBs 303 
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 Since overexpression of constitutively active YAP leads to disassembly of PBs, we 304 

wanted to determine whether activation of endogenous YAP could do the same in the absence of 305 

KapB. We tested various upstream mechanical signals described to activate YAP for their ability 306 

to elicit PB disassembly: shear stress, low cell confluence and high ECM stiffness (Nakajima et 307 

al. 2017; Lee et al. 2017; Noria et al. 2004; Zhao et al. 2007; Dupont et al. 2011). For the first, 308 

we subjected HUVECs to shear stress by fluid flow (shear forces of 2 and 10 dyn/cm2) and PBs 309 

were examined via immunofluorescence. Both treatments showed prominent cell elongation and 310 

resulted in robust PB disassembly (Fig 6A, B). To test if cell confluence regulates PB levels, 311 

HUVECs were seeded at low, medium and high densities. Cells at low confluence are reported to 312 

have active YAP and we predicted PBs would disassembly; however, the low-density monolayer 313 

displayed more PBs per cell then those at medium and high densities (Fig 6C, D). To test the 314 

impact of collagen stiffness on PB disassembly, HUVECs were plated on coverslips coated with 315 

increasing densities of collagen (0 to 64 µg/ cm2). While collagen density does not perfectly 316 

reproduce matrix stiffness as it does not eliminate effects from increasing collagen-binding sites, 317 

increasing collagen densities correlate with increases in matrix stiffness (Yang, Leone, and 318 

Kaufman 2009; Lee et al. 2014; Joshi, Mahajan, and Kothapalli 2018). As collagen density 319 

increased, PBs decreased (Fig 6E, F). Taken together, these data indicate that PB disassembly 320 

occurred in response to mechanical stimuli known to require RhoA and altered cytoskeletal 321 

structures to activate YAP (shear stress and increased ECM concentration) (Zhao et al. 2012; 322 

Huang et al. 2016; Lee and Kumar 2016; Moreno-Vicente et al. 2018). Again, our model points 323 

to the importance of actin SF formation as a requisite precursor to PB disassembly irrespective of 324 

YAP activation status. 325 

 326 

Shear stress mediated PB disassembly requires YAP 327 

 YAP responds to external forces that induce active RhoA, actin SFs, and pronounced cell 328 

elongation; in short, the typical behaviour of ECs in response to fluid flow. However, how YAP 329 

responds to shear stress is controversial (Wang et al. 2016; Huang et al. 2016; Lee et al. 2017; 330 

Nakajima and Mochizuki 2017). To verify YAP activation by continuous, unidirectional fluid 331 

flow in our system, HUVECs subjected to 2 and 10 dyn/cm2 of shear stress were lysed and used 332 

for immunoblotting for P(S127)-YAP and total YAP. Shear stress the ratio of phosphor-333 

YAP/YAP in both conditions, suggesting a higher proportion of active YAP (Fig 7A). To assess 334 
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if YAP was required for PB disassembly in response to shear stress, HUVECs transduced with 335 

YAP-targeting shRNA were subjected to 10 dyn/cm2 shear stress. PBs disassembled in cells 336 

treated with a non-targeting shRNA when subjected to shear stress (Fig 7B, C), consistent with 337 

earlier experiments (Fig 6A, B). When YAP was reduced by shRNA expression, ECs exposed to 338 

shear stress had more PBs than control cells without shear (Fig 7B, C). Therefore, YAP is 339 

required to disassemble PBs in response to shear stress. Taken together with our analysis of 340 

KapB-mediated PB disassembly, these data suggest that when KapB is expressed, it turns on the 341 

same mechanoresponsive signals that endothelial cells use to withstand mechanical forces like 342 

shear, in the absence of an external stimulus. The outcome of both scenarios is YAP-dependent 343 

disassembly of cytoplasmic PBs.   344 

 345 

Discussion 346 

In this manuscript, we have used a viral protein from an oncogenic virus to uncover the 347 

relationship between cytoplasmic PBs and the mechanical regulation of actin SF formation. We 348 

present data to support the existence of a novel mechanoresponsive pathway that links actin SFs, 349 

actomyosin contractility, and the transcription transactivator YAP to the disassembly of PBs and 350 

show that this pathway is hijacked by KapB during KSHV latency. Our major findings are as 351 

follows. i) KapB-mediated PB disassembly requires actin SF effectors ROCK1/2 /mDia1 and is 352 

enhanced by loss of the actin-severing protein, cofilin. ii) KapB-mediated PB disassembly is 353 

reversed when blebbistatin is used to inhibit actomyosin contractility or after knockdown of the 354 

mechanoresponsive transcription transactivator, YAP. iii) In the absence of KapB, we can induce 355 

PB disassembly when we promote the formation of actin SFs, actomyosin contractility, and YAP 356 

activity using overexpression of α−actinin-1 (promotes actin bundling into SFs and increases 357 

cytoskeletal tension (Jackson et al. 2008)), Calyculin A (inhibits myosin light chain phosphatase 358 

to promote actomyosin contraction (Asano and Mabuchi 2001)), or overexpression of active 359 

YAP (YAP 5SA). Exposure of endothelial cells to the external forces created by shear stress or a 360 

stiff extracellular matrix also induces PB disassembly in the absence of KapB. Together, these 361 

data show for the first time, that PBs disassemble in response to mechanical signals that 362 

transduce external forces from outside the cell to the actin cytoskeleton and that this is a pathway 363 

used by endothelial cells to regulate gene expression in response to diverse stimuli. Moreover, 364 

this work also highlights the remarkable pizzazz used by viruses to hijack cellular pathways. In 365 
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this case, we reveal that the viral protein KapB taps into this mechanoresponsive pathway to 366 

trigger mechanical changes to cytoskeletal structures and downstream effectors that would 367 

normally respond to force, thereby inducing PB disassembly from within the cell, rather than 368 

from without. 369 

During the process of actin polymerization, the monomeric form of actin, globular actin 370 

(G-actin), aggregates in groups of three subunits or more to nucleate an actin filament, which 371 

extends into filaments via addition of further G-actin monomers through ATP-dependent 372 

polymerization (reviewed in Pollard 2016). 10 to 30 actin filaments (F-actin) bundle together 373 

into SFs, primarily using the α-actinin family for crosslinking (Small et al. 1998; Cramer, 374 

Siebert, and Mitchison 1997; Lazarides and Burridge 1975; Pellegrin and Mellor 2007). SFs with 375 

periodic distribution of actin-crosslinking proteins and non-muscle myosin II (NMII) are 376 

contractile structures (Katoh et al. 1998; Tan et al. 2003), but not all actin SFs function equally in 377 

this regard. For any structure to be able to generate tension, it must be tethered at the ends. Of the 378 

types of SFs (ventral SFs, dorsal SFs and transverse arcs; (Small et al. 1998)), ventral SFs are 379 

attached at both termini to the extracellular matrix (ECM) through focal adhesions and contain 380 

NMII, which imparts a contractile phenotype (Hotulainen and Lappalainen 2006; Small et al. 381 

1998; Vallenius 2013). Dorsal SFs are attached through focal adhesions but do not contain NMII, 382 

and thus are not contractile (Small et al. 1998; Vallenius 2013). However, dorsal SFs are thought 383 

to work in concert with transverse arcs, which contain NMII but are not attached to focal 384 

adhesions, to mediate cellular contractility.  385 

In this work, while we did not directly determine the subtype of actin SF structures that 386 

form in response to KapB-mediated RhoA activation, several features of our data suggest that the 387 

structures that are important for PB disassembly must be contractile and cytoskeletal tension. 388 

When both mDia1 and ROCK2 were silenced in KapB-expressing cells (Fig 1, 2), visible actin 389 

bundles are still apparent despite PB restoration in both contexts. This suggests that not all SF 390 

subtypes are required for our phenotype. In addition, blebbistatin treatment of KapB-expressing 391 

cells dramatically restored PBs; these data suggest that PB disassembly requires actin-mediated 392 

contractility rather than merely structural support (Fig 3). Furthermore, overexpression of a-393 

actinin and shear stress increase cell stiffness (Lee et al. 2006; Jackson et al. 2008). Both 394 

treatments induced PB disassembly (Fig S4, 6), reinforcing the correlation between increasing 395 

cell tension and PB disassembly. Finally, our data show that YAP is required for PB disassembly 396 
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(Figs 4, 5, 7). YAP is mechanoresponsive; it becomes active when tension-forming actin 397 

structures are induced by external forces e.g. focal adhesion engagement by stiff ECM (Dupont 398 

et al. 2011; Sugimoto et al. 2018). As YAP activation and PB disassembly both rely on RhoA-399 

induced cytoskeletal contractility, any activator of YAP that induces cytoskeletal tension through 400 

RhoA should mediate PB disassembly. Our data supports this notion, as shear stress forces and 401 

increasing collagen density both cause PB disassembly in the absence of KapB, while low 402 

confluence does not (Fig 6). We also know that GPCRs (G11/12 and Gq/11) activate YAP in a 403 

RhoA-dependent manner (Yu et al. 2012) and LPA treatment or overexpression of KSHV-404 

derived constitutively active vGPCR (both activate G11/12) both induce PB disassembly (Corcoran 405 

et al. 2012; Corcoran and McCormick 2015), these findings support the conclusion that PB 406 

disassembly requires the formation of contractile actin structures like those associated with YAP 407 

transactivation responses. 408 

KSHV is an oncogenic virus associated with the endothelial neoplasm, Kaposi’s sarcoma 409 

(KS). Cells within the KS lesion display latent KSHV infection, proliferate abnormally, spindle, 410 

and release many pro-inflammatory and pro-tumourigenic mediators into the microenvironment. 411 

KapB expression alone recapitulates two of these key features, cell spindling and pro-412 

inflammatory mediator production that results from enhanced stability of ARE-containing 413 

cytokine mRNAs that would normally shuttle to PBs for constitutive turnover (Corcoran, 414 

Johnston, and McCormick 2015). Our previous work showed that both phenotypes require KapB 415 

activation of the stress-responsive kinase, MK2, and the downstream activation of the GTPase 416 

RhoA (Corcoran, Johnston, and McCormick 2015; Corcoran and McCormick 2015). We also 417 

showed that the lytic vGPCR protein mediates PB disassembly and the concomitant stabilization 418 

of ARE-mRNAs; more recently ORF57 has been also reported to disrupt PBs (Corcoran et al. 419 

2012; Sharma et al. 2019).  The observation that KSHV encodes at least three separate gene 420 

products sufficient to drive PB disassembly suggests that PB disassembly is beneficial for some 421 

aspect of the infectious cycle. Further research is required to definitively address how PBs 422 

influence the KSHV infectious cycle and the fate of infected cells.  423 

 We and others observed that the presence or absence of PB punctae visible by 424 

microscopy directly correlates with the stability of ARE-mRNAs (Corcoran, Johnston, and 425 

McCormick 2015; Vindry et al. 2017; Blanco et al. 2014). We predicted that YAP- mediated PB 426 

disassembly would also promote ARE-mRNA stability. Indeed, several YAP-target genes 427 
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contain ARE elements in their 3’UTR, including CTGF and ANKRD1 (Shen and Stanger 2015; 428 

Bakheet, Hitti, and Khabar 2017). Shear forces also cause YAP-dependent PB disassembly and 429 

have previously been shown to upregulate many genes containing ARE-mRNAs (Vozzi et al. 430 

2018; Bakheet, Hitti, and Khabar 2017). Comparison of the transcriptomic data from HUVECs 431 

subjected to shear stress from Vozzi et al (2018) (Accession: GEO, GSE45225) to entries in the 432 

ARE-mRNA database (Bakheet, Hitti, and Khabar 2017) showed a 20% enrichment in the 433 

proportion of genes that contained AREs in those transcripts that were upregulated by shear 434 

stress. This suggests that PB disassembly enables efficient translation of YAP targets by 435 

preventing recruitment of the ARE-containing transcripts to PBs. That said, overexpression of 436 

constitutively active YAP (YAP 5SA) disassembles PBs but does not increase stability of an 437 

ARE-containing firefly luciferase reporter (Fig 5) (Corcoran, Khaperskyy, and McCormick 438 

2011)).  This discrepancy may be due to different functional responses for different classes of 439 

AU-rich elements. Our ARE-containing luciferase reporter contains the AU-rich sequence 440 

derived from the 3’-UTR of GM-CSF, categorized in Cluster 5, whereas canonical YAP genes 441 

CTGF and ANKDR1 are in Clusters 1 and 2, respectively (Bakheet, Hitti, and Khabar 2017).  442 

Data presented herein clearly implicate a requirement for YAP in the PB disassembly 443 

phenotype that is induced by KapB and by the external force, shear stress (Fig 4,7). However, the 444 

precise connection between YAP and PB disassembly is unclear. What we do know is that 445 

despite the clear reliance on YAP for PB disassembly, KapB does not increase expression of 446 

canonical YAP-regulated transcripts (Fig S5). Our data also show increases in total YAP, 447 

decreases in phosphorylated YAP; however, the ratio of nuclear:cytoplasmic YAP is not 448 

markedly altered (Fig 4). Taken together, these data suggest that PB disassembly is independent 449 

of YAP’s role as a gene transactivator and may also be independent of YAP nuclear 450 

translocation. In the discussion that follows, we explore two possible models for how YAP may 451 

promote PB disassembly that are independent of its transactivation of canonical genes.  i) 452 

Cytoplasmic YAP promotes autophagic flux to promote PB catabolism. Several studies link YAP 453 

with the regulation of the catabolic process of autophagy, though many of these are contradictory 454 

and suggest YAP-mediated autophagy control is cell type and context-dependent (Song et al. 455 

2015; Liu et al. 2017; Pei et al. 2019; Totaro et al. 2019). Totaro et al. provided strong evidence 456 

to support that YAP promotes autophagic flux by promoting the expression of Armus, a Rab7-457 

GAP that is required to mediate the fusion of autophagosomes with lysosomes in the final 458 
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degradative step of autophagy (Totaro et al. 2019). Their data also show that autophagic flux is a 459 

mechanoresponsive process; this supported by other studies wherein endothelium exposed to 460 

unidirectional shear stress upregulates autophagy (Liu et al. 2015; Yao et al. 2015; Wang et al. 461 

2018; Das et al. 2018). These data are also consistent with preliminary data from our group that 462 

suggests that PB disassembly mediated by KapB requires autophagy (knockdown of Atg5 463 

restores PBs [Robinson, Singh, Corcoran, unpublished data]) and the work of others (Hardy et al. 464 

2017). In this model, we propose that the intermediate step(s) linking the requirement of YAP to 465 

the disappearance of PBs is the upregulation of autophagic flux, which results in the autophagic 466 

degradation of PB granules or PB components.   ii) YAP and PBs are antiviral PBs are sites 467 

where innate immune factors congregate that are disrupted by most viruses during infection 468 

(Burdick et al. 2010; Li et al. 2012; Ostareck, Naarmann-de Vries, and Ostareck-Lederer 2014; 469 

Burgess and Mohr 2015; Cuevas et al. 2016; H. Wang et al. 2016; Lumb et al. 2017; Balinsky et 470 

al. 2017; Núñez et al. 2018; Ng et al. 2020). Indeed, KSHV encodes three separate proteins that 471 

all induce PB disassembly (Corcoran et al. 2012; Corcoran, Johnston, and McCormick 2015; 472 

Sharma et al. 2019). PBs are likely playing an as yet undefined and underappreciated role in 473 

regulating innate antiviral responses. YAP is also a novel and unappreciated negative regulator 474 

of innate immune signaling pathways. YAP blocks the ability of the innate immune kinase, 475 

TBK1, a downstream effector for several innate signaling pathways, to associate and activate its 476 

substrates (Zhang et al 2017). In so doing, YAP blocks downstream induction of interferons and 477 

increases viral replication (Zhang et al. 2017). This feature of YAP is independent of its ability to 478 

act as a transcriptional transactivator (Zhang et al. 2017). We speculate that KapB-induced PB 479 

disassembly, like active YAP, favours viral replication and survival and is promoted by KSHV in 480 

order to reshape subsequent antiviral innate immune responses.   481 

In this manuscript, we describe the surprising convergence of two previously unrelated 482 

yet essential regulators of cellular gene expression – the mechanoresponsive transactivator YAP 483 

and cytoplasmic PBs, known regulators of AU-rich mRNA decay. We show that PB disassembly 484 

is mechanoresponsive; external forces that change cell shape and tension-forming cytoskeletal 485 

structures cause PB disassembly in a YAP-dependent manner. This discovery was made courtesy 486 

of the unique KSHV protein, KapB, and provides yet another example of how viruses have 487 

evolved surprising ways to manipulate their host and ensure their survival. In this case, KapB 488 

induces, from the inside out, a mechanoresponsive pathway to cause PB disassembly and 489 
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elevated YAP. Future study will untangle how these related mechanoresponsive events are 490 

induced by KSHV to better promote viral replication. 491 

 492 

Materials and Methods 493 

Antibodies, Plasmids and Reagents 494 

 The antibodies used in this study can be found in Table S1. The plasmids used in this 495 

study can be found in Table S2.  Forward and reverse shRNA sequences were selected from the 496 

TRC Library Database in the Broad Institute RNAi consortium. YAP target shRNAs in pLKO.1 497 

were obtained from Dr. C. McCormick (Dalhousie University, Halifax, Canada). Sequences for 498 

all shRNA oligonucleotides used for cloning are listed in Table S3. Cloning of shRNAs was 499 

conducted according to the pLKO.1 protocol (Addgene 2006). The chemical inhibitors used in 500 

this study can be found in Table S4. 501 

Cell Culture 502 

Human embryonic kidney 293T and 293A cells (HEK-293T/A, ATCC, Manassas, 503 

Virginia, US) and human cervical adenocarcinoma cells expressing a tetracycline-inducible 504 

repressor (HeLa Tet-Off, Clontech, Mountain View, California, US) were cultured in Dulbecco’s 505 

Modified Eagle Medium (DMEM, Gibco, Carlsbad, California, US) supplemented with 10% 506 

heat-inactivated fetal bovine serum (Gibco), 100 U/mL penicillin, 100 µg/mL streptomycin, and 507 

2 mM L-glutamine (Gibco). Pooled human umbilical vein endothelial cells (HUVECs, Lonza, 508 

Basel, Switzerland) were cultured in endothelial cell growth medium 2 (EGM-2, Lonza)). For 509 

HUVEC passaging, tissue culture plates were precoated for 30 min at 37˚C with 0.1% (w/v) 510 

porcine gelatin (Sigma, St. Louis, Missouri, US) in 1X PBS (Gibco).  511 

Transfection for Lentivirus Production 512 

 HEK-293T cells at 70-80% confluence were transfected using 3.3 µg of the target 513 

lentiviral construct, 2 µg pSPAX2 and 1 µg pMD2.G with 1 mg/mL polyethyenimine (PEI, 514 

Sigma) in serum-free DMEM. After 5 to 6 h, media was replaced with antibiotic-free DMEM 515 

containing 10% FBS and 2 mM L-glutamine (Gibco). Transfected cells were incubated for 48 h 516 

at 37˚C to allow lentivirus production. The supernatant media containing viral particles was 517 

harvested and filtered through a 0.45 µm polyethersulfone (PES) filter (VWR, Randor, 518 

Pennsylvania, US) and aliquoted. Virus was stored at -80˚C until use. 519 

Lentiviral Transduction 520 
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Lentivirus was supplied into wells of plated HUVECs in EGM-2 supplemented with 5 521 

µg/mL hexadimethrine bromide (polybrene). After 24 h incubation, cells were selected with 522 

either 5 µg/mL blasticidin (Sigma) for 96 h, replacing the media and antibiotic at 48 h, or 1 523 

µg/mL puromycin (Sigma) for 48 h. Following selection, HUVEC medium was replaced with 524 

EGM-2 without selection for at least 24 h recovery before further use. 525 

Immunofluorescence  526 

Immunofluorescence was performed as described previously (Corcoran, Johnston, and 527 

McCormick 2015). Briefly, cells were grown on coverslips (no. 1.5, Electron Microscopy 528 

Sciences, Hatfield, Pennsylvania, US). Following treatment, coverslips were fixed in 4% 529 

paraformaldehyde (PFA, Electron Microscopy Sciences) in PBS at 37°C for 10 min, 530 

permeabilized with 0.1% Triton-X100 (Sigma) in 1X PBS for 10 min at RT, and blocked in 1% 531 

Human AB serum (blocking buffer, Sigma) in 1X PBS for 1 h at RT. Coverslips were then 532 

incubated with diluted primary antibody in blocking buffer overnight at 4°C in a humidified 533 

chamber. After primary antibody incubation, coverslips were washed with 1X PBS and then 534 

incubated in fluorescently-tagged secondary antibody diluted in blocking buffer for 1 h at RT. If 535 

applicable, coverslips were stained with Phalloidin-conjugated Alexa-Fluor 647 (Invitrogen, 536 

1:100) in 1X PBS for 1.5 h. Coverslips were mounted onto microscope slides (FisherBrand, 537 

Pittsburgh, Pennsylvania, US) using Prolong Gold Antifade Mounting Media (Invitrogen, 538 

Carlsbad, California, US). For coverslips that were used for Hedls puncta quantification, the 539 

following modifications to immunofluorescence were made: (1) Prior to permeabilization, 540 

coverslips were stained with wheat germ agglutinin (WGA) Alexa-647 conjugate (Invitrogen, 541 

1:400) in 1X PBS for 10 min at RT. (2) Following secondary antibody incubation, coverslips 542 

were stained with 4',6-Diamidino-2-Phenylindole (DAPI, Invitrogen, 1:10,000) in 1X PBS for 5 543 

min. 544 

Confocal imaging was performed on the Zeiss LSM 880 Confocal Microscope 545 

(Charbonneau Microscopy Facility, University of Calgary, Calgary, Canada) at the 63X oil 546 

objective. CellProfiler imaging was performed on the Zeiss AxioImager Z2 (CORES facility, 547 

Dalhousie University, Halifax, Canada) or Zeiss AxioObserver (Charbonneau Microscopy 548 

Facility, University of Calgary) at the 40X oil objective.  549 

Quantification of Processing Bodies Using CellProfiler Analysis 550 
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CellProfiler (cellprofiler.org) is an open source software for high-content image analysis 551 

(Kamentsky et al. 2011) and was used to develop an unbiased method for quantifying changes to 552 

PB dynamics. The pipeline used for quantifying PBs was structured as follows: To detect nuclei, 553 

the DAPI image was thresholded into a binary image. In the binary image, primary objects 554 

between 30 to 200 pixels in diameter were detected and defined as nuclei. Cells were identified 555 

as secondary objects in the WGA image using a propagation function from the identified nuclei, 556 

which determined the cell’s outer edge. Using the parameters of a defined nucleus and cell 557 

border, the cytoplasm was then defined as a tertiary object. The Hedls channel image was 558 

enhanced using an “Enhance Speckles” function to identify distinct puncta and eliminate 559 

background staining. The cytoplasm image was then applied as a mask to the enhanced puncta 560 

image to ensure quantitation of only cytoplasmic puncta. Hedls puncta were measured in the 561 

cytoplasm of cells using a ‘global thresholding with robust background adjustments’ function as 562 

defined by the program. The threshold cut-off for identified Hedls puncta remained constant 563 

between all experiments with identical staining parameters. Puncta number per cell, intensity and 564 

locations with respect to the nucleus were measured and exported as .csv files and analyzed in 565 

RStudio. A template of the RStudio analysis pipeline is attached in Appendix A. Data was 566 

represented as fold change in Hedls puncta count per cell normalized to the vector puncta count. 567 

‘Relative Hedls Puncta/Cell (KapB/Vector)’ demonstrates the KapB puncta count divided by 568 

vector puncta count, a ratio that was calculated within each treatment group for each biological 569 

replicate. 570 

 571 

Protein Electrophoresis and Immunoblotting 572 

Cells were lysed in 2X Laemmli buffer (20% glycerol, 4% SDS, 120 mM Tris-HCl), 573 

between 150 to 300 µL, depending on cell density. Lysates were homogenized with a 0.21-gauge 574 

needle, and supplemented to contain 0.02% (w/v) bromophenol blue (Sigma) and 0.05 M 575 

dithiothreitol (DTT, Sigma), then heated at 95˚C for 5 min. 7.5 or 12% TGX Stain-Free SDS-576 

polyacrylamide gels (BioRad) were cast according to the instructions of the manufacturer and 5 577 

to 15 µg of total protein were subjected to SDS gel electrophoresis using 1X SDS running buffer 578 

(25 mM Tris, 192 mM Glycine, 0.1% SDS). Precision Plus Protein All Blue Prestained Protein 579 

Standards (BioRad, Hercules, California, US) was used as a molecular weight marker. After 580 

electrophoresis, gels were UV-activated using the ChemiDocTouch (BioRad) Stain-Free Gel 581 
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setting with automated exposure for 45 s. The protein was transferred to low-fluorescence 582 

polyvinylidene difluoride (PVDF) membranes (BioRad) on the Trans-Blot Turbo Transfer 583 

System (BioRad) according to the instructions of the manufacturer. Following transfer, total 584 

protein amounts on membranes were imaged on the ChemiDocTouch using the Stain-Free 585 

Membrane setting with automated exposure. Membranes were then blocked using 5% BSA 586 

(Sigma) in 1X TBS-T (150 nM NaCl, 10 mM Tris, pH 7.8, 0.01% Tween-20) for 1 h at RT. 587 

Primary antibody was diluted in 2.5% BSA in 1X TBS-T.  Membranes were incubated in 588 

primary antibody solution overnight at 4˚C with rocking. The following day, membranes were 589 

washed 3 times for 5 min in 1X TBS-T. Membranes were incubated with the appropriate 590 

secondary antibody, conjugated to horseradish peroxidase (HRP) for 1 h at RT. Membranes were 591 

washed 4 times for 5 min in 1X TBS-T. Clarity™ Western ECL Blotting Substrate (BioRad) was 592 

mixed at a 1:1 ratio and applied to the membrane for 5 min. Chemiluminescent signal was 593 

imaged on ChemiDocTouch Chemiluminescence setting. Band intensity was quantified using 594 

ImageLab software (BioRad), normalizing to total protein. 595 

Quantitative Reverse-Transcriptase Polymerase Chain Reaction (qRT-PCR) 596 

Cells were lysed in 250 µL RLT buffer (Qiagen, Hilden, Germany) and RNA was 597 

extracted using the RNeasy Plus Mini kit (Qiagen) according to the manufacturer’s instructions. 598 

Complementary DNA (cDNA) was synthesized from 1 µg of total RNA using the qScript cDNA 599 

SuperMix (QuantaBio, Hilden, Germany) according to the manufacturer’s instructions. Real-600 

time quantitative PCR with SsoFast EvaGreen qPCR MasterMix (BioRad) was used to quantify 601 

the fold-change in mRNA abundance. Relative fluorescence was quantified using CFX Connect 602 

(BioRad). All qRT-PCR primers efficiencies were between 90-110% in HUVECs and sequences 603 

are found in Table S5. 604 

Luciferase Assay for TEAD Transcriptional Activity 605 

 HEK-293A cells were seeded in antibiotic-free DMEM at 75,000 cells/well. Mixtures of 606 

500 ng of the target construct (pcDNA (Vector), pcDNA-KapB (KapB), p1XFLAG or 607 

p2XFLAG-YAP 5SA), 450 ng 8X-GTIIC luciferase reporter, 50 ng TREX-Renilla luciferase 608 

reporter and 3 µL FuGENE HD Transfection Reagent (Promega, Madison, Wisconsin, US) were 609 

transfected into HEK-293A cells. After 36 h, DMEM containing only 2 mM L-glutamine 610 

(starvation media) was supplied to the cells. Twelve hours after addition of starvation media, 611 

cells were lysed in 200 µL passive lysis buffer (Promega) and luciferase activity was assayed 612 
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using the Dual-Luciferase Reporter Assay System (Promega) according to the manufacturer’s 613 

instructions. Luminescence was measured using the GloMax Luminometer (Promega).  614 

Luciferase Assay for Stability of mRNA with AU-Rich Elements 615 

 This technique is described in Corcoran, Khaperskyy, and McCormick (2011). Briefly, 616 

Hela-Tet Off cells were seeded in antibiotic-free DMEM at 100,000 cells/well. Mixtures of 900 617 

ng of the target construct (pcDNA (Vector), pcDNA-KapB (KapB), p1XFLAG or p2XFLAG-618 

YAP 5SA), 90 ng TREX-Firefly ARE luciferase, 10 ng TREX-Renilla luciferase and 3 µL 619 

FuGENE HD Transfection Reagent (Promega) were transfected into Hela Tet-Off cells. After 36 620 

h, 1 µg/mL doxycycline was supplied to the cells to inhibit further transcription of each reporter. 621 

Twelve hours after addition of doxycycline, cells were lysed in 200 µL passive lysis buffer 622 

(Promega) and luciferase activity was assayed using the Dual-Luciferase Reporter Assay System 623 

(Promega) according to the manufacturer’s instructions. Luminescence was measured using the 624 

GloMax Luminometer (Promega).  625 

Collagen-Coating for Altering Matrix Stiffness 626 

 Coverslips (no. 1.5, Electron Microscopy Sciences) were coated with a dilution series (0 627 

to 64 µg/cm2) of rat-tail collagen-1 (Gibco) in 0.02 M acetic acid for 4 h at RT. Slides were 628 

sterilized with UV irradiation and washed with 2 times with sterile 1X PBS prior to seeding 629 

cells. 630 

Unidirectional Fluid Flow for Endothelial Cell Shear Stress  631 

A parallel-plate flow chamber was used to expose ECs to shear stress. The system was 632 

described in detail in Gomez-Garcia et al. (2018). Briefly, cleaned, unfrosted microscope slides 633 

(Cole-Parmer, Vernon Hills, Illinois, US) were coated for 4 h at RT with rat-tail collagen-1 634 

(Gibco) in 0.02 M acetic acid for a resultant 8.3 µg/cm2 collagen density. Slides were sterilized 635 

with UV irradiation and washed 2 times with sterile 1X PBS. HUVECs were seeded at a density 636 

of 350,000 cells/slide and cultured for 24 h. Forty-five mL of EGM-2 supplemented with dextran 637 

(Spectrum Chemical, New Brunswick, New Jersey, US) for a resultant 3 cP viscosity was added 638 

to the stock media bottle. The stock media bottle was connected with the associated tubing and 639 

pulse dampener. Slides with seeded cells were inserted onto the flow chamber, a gasket 640 

(Specialty Manufacturing, Calgary, Canada) was added, and the system was sealed shut and 641 

attached to the flow loop following the outlet of a pulse dampener. The rate of fluid flow was 642 

started at 0.3 L/min and doubled every 15 min until final flow rates of 0.6 L/min and 2.7 L/min 643 
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were reached, corresponding to shear stress rates of 2 and 10 dyn/cm2. Following 21 h, cells were 644 

removed and immediately fixed for immunofluorescence or lysed for immunoblotting. 645 

Statistical Analysis 646 

Statistical analysis was performed in GraphPad Prism 8.0 software. Significance was 647 

determined using a ratio paired t-test or repeated measures analysis of variance (ANOVA). One-648 

tailed ratio paired t-tests were applied in comparisons specifically examining PB restoration in 649 

KapB-expressing cells as a directional hypothesis. In all other comparisons, two-tailed ratio 650 

paired t-tests were applied. Significance was determined at 𝑝 = 0.05. Each biological replicate 651 

for CellProfiler quantification consisted of 6 images of each treatment in a given experiment, 652 

counting approximately 100 to 200 cells per treatment.  653 

  654 
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 1163 
 1164 
Figure 1: The RhoA-effector mDia1 is required for KapB-mediated PB disassembly. KapB- 1165 
and vector- expressing HUVECs were transduced with shRNAs targeting mDia1 (shDIA1-1, 1166 
shDIA1-2) or with a non-targeting (shNT) control and selected. In parallel, cells were fixed for 1167 
immunofluorescence or lysed for immunoblotting. (A) One representative immunoblot of three 1168 
independent experiments stained with mDia1-specific antibody is shown. (B, C) Fixed cells were 1169 
stained for CellProfiler analysis as detailed in the methods. (B) The number of Hedls puncta per 1170 
cell was quantified and normalized to the vector NT control within each replicate. (C) 1171 
CellProfiler data was used to calculate the ratio of Hedls puncta counts in KapB-expressing cells 1172 
versus the vector control for each treatment condition. (D) Representative images of cells stained 1173 
for PB-resident protein Hedls (green), KapB (blue), and F-actin (red, phalloidin). Boxes indicate 1174 
area shown in the Hedls (zoom) panel. Scale bar represents 20 µm. Statistics were determined 1175 
using ratio paired t-tests between control and experimental groups; error bars represent standard 1176 
deviation; n=3 independent biological replicates; * = p < 0.05, ** = p < 0.01.   1177 
 1178 
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 1181 
 1182 
Figure 2: The RhoA-effector ROCK is required for KapB-mediated PB disassembly. (A-C) 1183 
KapB- and vector- expressing HUVECs were treated with 10 ìM Y-27632 or water control for 4 1184 
h and fixed for immunofluorescence. (A) Representative images of cells stained for PB-resident 1185 
protein Hedls (green), KapB (blue), and F-actin (red, phalloidin). Boxes indicate area shown in 1186 
the Hedls (zoom) panel. Scale bar represents 20 µm. (B, C) Fixed cells were stained for 1187 
CellProfiler analysis as detailed in the methods. (B) The number of Hedls puncta per cell was 1188 
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quantified and normalized to the vector NT control within each replicate. (C) CellProfiler data 1189 
was used to calculate the ratio of Hedls puncta counts in KapB-expressing cells versus the vector 1190 
control for each treatment condition. (D-F) KapB- and vector- expressing HUVECs were 1191 
transduced with shRNAs targeting ROCK1 and ROCK2 (shROCK1-1, shROCK1-2, shROCK2-1192 
1, shROCK2-2) or with a non-targeting (shNT) control and selected. Cells were fixed for 1193 
immunofluorescence. (D, E) Fixed cells were stained for CellProfiler analysis as detailed in the 1194 
methods. (D) The number of Hedls puncta per cell was quantified and normalized to the vector 1195 
NT control within each replicate. (E) CellProfiler data was used to calculate the ratio of Hedls 1196 
puncta counts in KapB-expressing cells versus the vector control for each treatment condition. 1197 
(F) Representative images of cells stained for PB-resident protein Hedls (green), KapB (blue), 1198 
and F-actin (red, phalloidin). Boxes indicate images shown in Hedls (zoom) panel. Scale bar 1199 
represents 20 µm. Statistics were determined using ratio paired t-tests between control and 1200 
experimental groups; error bars represent standard deviation from n=3 independent biological 1201 
replicates except shROCK1-2, (n=2); * = p < 0.05, ** = p < 0.01 .  1202 
 1203 
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 1204 
 1205 
Figure 3: Actomyosin contractility controls PB disassembly. (A-C) KapB- and vector- 1206 
expressing HUVECs were treated with 10 ìM blebbistatin to inhibit actomyosin contractility or 1207 
DMSO for 30 min and fixed for immunofluorescence. (A, B) Fixed cells were stained for 1208 
CellProfiler analysis as detailed in the methods. (A) The number of Hedls puncta per cell was 1209 
quantified and normalized to the vector NT control within each replicate. (B) CellProfiler data 1210 
was used to calculate the ratio of Hedls puncta counts in KapB-expressing cells versus the vector 1211 
control for each treatment condition. (C) Representative images of cells stained for PB-resident 1212 
protein Hedls (green), KapB (blue), and F-actin (red, phalloidin). Boxes indicate area shown in 1213 
the Hedls (zoom) panel. Scale bar represents 20 µm. (D, E) Untransduced HUVECs were treated 1214 
with 5 nM Calyculin A (CalA) to stimulate actomyosin contraction or DMSO for 20 min and 1215 
fixed for immunofluorescence. (D) Fixed cells were stained for CellProfiler analysis as detailed 1216 
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in the methods. Hedls puncta per cell were quantified and normalized to the DMSO control 1217 
within each replicate. (E) Representative images of cells treated with 5 nM CalA and stained for 1218 
PB-resident protein Hedls (green) and F-actin (red, phalloidin). Boxes indicate area shown in the 1219 
Hedls (zoom) panel. Scale bar represents 20 µm. Statistics were determined using ratio paired t-1220 
tests between control and experimental groups; error bars represent standard deviation; n=3 (A, 1221 
B) and n=5 (D) independent biological replicates; * = p < 0.05.   1222 
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 1225 
 1226 
Figure 4: YAP is required for KapB-mediated PB disassembly. (A, B) KapB- and vector- 1227 
expressing HUVECs were fixed for immunofluorescence or lysed for immunoblotting. (A) 1228 
Representative images of cells stained for YAP (red). Scale bar represents 20 µM. (B) One 1229 
representative immunoblot and quantification of three independent experiments stained with 1230 
P(S127)-YAP-,  YAP- or KapB-specific antibody are shown. Protein levels in each condition 1231 
were normalized to total protein. All treatments were normalized to vector control within each 1232 
replicate. (C-F) KapB- and vector- expressing HUVECs were transduced with shRNAs targeting 1233 
YAP (shYAP-1, shYAP-2) or with a non-targeting (shNT) control and selected. In parallel, cells 1234 
were fixed for immunofluorescence or lysed for immunoblotting. (C) One representative 1235 
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immunoblot of three independent experiments stained with YAP-specific antibody is shown. (D, 1236 
E) Fixed cells were stained for CellProfiler analysis as detailed in the methods. (D) The number 1237 
of Hedls puncta per cell was quantified and normalized to the vector NT control within each 1238 
replicate. (E) CellProfiler data was used to calculate the ratio of Hedls puncta count in KapB-1239 
expressing cells to the vector control for each treatment condition. (F) Representative images of 1240 
cells stained for PB-resident protein Hedls (green), KapB (blue), and F-actin (red, phalloidin). 1241 
Boxes indicate area shown in the Hedls (zoom) panel. Scale bar represents 20 µm. Statistics were 1242 
determined using ratio paired t-tests between control and experimental groups; error bars 1243 
represent standard deviation; n=3 independent biological replicates; * = p < 0.05, ** = p < 0.01, 1244 
*** = p < 0.001 .   1245 
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 1248 
 1249 
Figure 5: Active YAP elicits PB disassembly. (A, B) HUVECs were transduced with YAP 1250 
5SA-expressing and empty vector lentivirus and selected. Cells were fixed for 1251 
immunofluorescence. (A) Representative images of cells stained for PB-resident protein Hedls 1252 
(green) and F-actin (red, phalloidin). Boxes indicate area shown in the Hedls (zoom) panel. Scale 1253 
bar represents 20 µm. (B) Fixed cells were stained for CellProfiler analysis as detailed in the 1254 
methods. The number of Hedls puncta per cell was quantified and normalized to the vector 1255 
control. (C) HeLa Tet-Off cells were seeded and co-transfected with an ARE-containing Firefly 1256 
luciferase (Fluc) reporter plasmid, a Renilla luciferase (Rluc) reporter plasmid lacking an ARE, 1257 
and either a KapB, YAP 5SA expression plasmid or vector controls. At 36 h post-transfection, 1258 
transcription was terminated with doxycycline treatment for 12 h. Fluc and Rluc activity was 1259 
measured. Data is normalized to vector control within each replicate. Graphs show the ratio of 1260 
Fluc to Rluc, independent Fluc values and independent Rluc values, respectively. Statistics were 1261 
determined using ratio paired t-tests between control and experimental groups (B) or repeated 1262 
measures ANOVA (C); error bars represent standard deviation; n=3 independent biological 1263 
replicates; * = p < 0.05, ** = p < 0.01 .   1264 
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 1266 
 1267 
Figure 6: YAP Inputs Mediate PB Disassembly. (A, B) HUVECs were seeded onto collagen-1268 
coated microscope slides and exposed to shear stress of 2 dyn/cm2, 10 dyn/cm2 or no shear (static 1269 
control) for 21 h. Cells were fixed and stained for immunofluorescence. (A) Representative 1270 
images of cells stained for PB-resident proteins Hedls (green) and DDX6 (blue), as well as F-1271 
actin (red, phalloidin). Boxes indicate area shown in Hedls (zoom) and DDX6 (zoom) panels. 1272 
Scale bar represents 20 µm. (B) CellProfiler was used to count nuclei, Hedls puncta and DDX6 1273 
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puncta. In RStudio analysis, puncta with ≥ 70% correlation between Hedls and DDX6 (PBs) 1274 
were counted and normalized to number of nuclei per condition. PB counts were normalized to 1275 
static control within each replicate. (C, D) HUVECs were split and seeded at a high-, medium- 1276 
and low-density, cultured for 48 h and fixed for immunofluorescence. (C) Representative images 1277 
of cells stained for the PB-resident protein Hedls (green) and F-actin (red, phalloidin). Boxes 1278 
indicate images shown in Hedls (zoom) panel. Scale bar represents 20 µm. (D) Fixed cells were 1279 
stained for CellProfiler analysis as detailed in the methods. The number of Hedls puncta per cell 1280 
was quantified and normalized to the high confluence condition. (E, F) Coverslips were coated 1281 
for 4 h with 0 to 64 µg/cm2 of collagen. HUVECs were grown for 72 h on coated coverslips and 1282 
fixed for immunofluorescence. (E) Representative images of cells stained for PB-resident protein 1283 
Hedls (green), DDX6 (blue) and F-actin (red, phalloidin). Boxes indicate images shown in Hedls 1284 
(zoom) panel. Scale bar represents 20 µm. (F) Fixed cells were stained for CellProfiler analysis 1285 
as detailed in the methods. The number of Hedls puncta per cell was quantified and normalized 1286 
to the 0 µg/mL collagen-coating condition. Statistics were determined using repeated measures 1287 
ANOVA (A, B) or Pearson’s correlation co-efficient (C); error bars represent standard deviation 1288 
(A, B) and 95% confidence interval of line of best fit (slope is significantly non-zero, p = 0.014) 1289 
(C); n=3 independent biological replicates; * = p < 0.05, ** = p < 0.01.   1290 
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 1292 

 1293 
 1294 
Figure 7: YAP is required for Hedls puncta disassembly in HUVECs subjected to shear 1295 
stress. (A) HUVECs were seeded onto collagen-coated microscope slides and exposed to shear 1296 
stress of 2 dyn/cm2, 10 dyn/cm2 or a static control for 21 h. Cells were lysed for immunoblotting. 1297 
One representative immunoblot and quantification of three independent experiments stained with 1298 
P(S127)-YAP- and YAP-specific antibody is shown. P(S127)-YAP and YAP protein levels in 1299 
each condition were normalized to total protein. All treatments were normalized to static control 1300 
within each replicate. (B, C) HUVECs were transduced with shRNAs targeting YAP (shYAP-2) 1301 
or with a non-targeting (shNT) control and selected. Cells were seeded onto collagen-coated 1302 
microscope slides and exposed to shear stress of 10 dyn/cm2 or no shear (static control) for 21 h. 1303 
Cells were fixed and stained for immunofluorescence. (B) CellProfiler was used to count nuclei 1304 
and Hedls puncta. In RStudio analysis, Hedls puncta were normalized to number of nuclei per 1305 
condition. Hedls puncta counts were normalized to static control. (C) Representative images of 1306 
cells stained for PB-resident protein Hedls (red), DDX6 (green) and DAPI (blue). In parallel, 1307 
separate coverslips were stained for F-actin (phalloidin). Boxes indicate area shown in the Hedls 1308 
(zoom) panel. Scale bar represents 20 µm. Statistics were determined using repeated measures 1309 
ANOVA (A); error bars represent standard deviation (A) ; n=4, except 2 dyn/cm2 (n=3) (A) and 1310 
n = 2 (B, C) independent biological replicates; * = p < 0.05, ** = p < 0.01.   1311 
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 1312 
Figure 8: KapB activates a mechanoresponsive pathway from within the cell rather than 1313 
without to mediate PB disassembly. Cells respond to external mechanical force by activating 1314 
their structural support network, the actin cytoskeleton. The GTPase RhoA and its downstream 1315 
effectors coordinate this response, bundling actin filaments into stress fibers (SFs), enhancing 1316 
actomyosin contractility and increasing adhesion to the underlying matrix to help withstand 1317 
force-induced membrane deformation. Together, these actin-based responses increase 1318 
cytoskeletal tension and elicit the dephosphorylation and nuclear translocation of the 1319 
mechanoresponsive transcription activator YAP where it collaborates with other transcription 1320 
factors to induce TEAD-responsive genes. We present data to support the existence of a novel 1321 
mechanoresponsive pathway that links actin SFs, actomyosin contractility, and the transcription 1322 
transactivator YAP to the disassembly of PBs.  The viral protein KapB taps into this 1323 
mechanoresponsive pathway to trigger mechanical changes to cytoskeletal structures and 1324 
downstream effectors that would normally respond to force, thereby inducing PB disassembly 1325 
from within the cell, rather than from without.  1326 
  1327 
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Supplementary Information 1328 

 1329 
 1330 
Figure S1: The RhoA-effector ROCK is required for KapB-mediated PB disassembly, 1331 
knockdown confirmation and vector data. (A) KapB- and vector- expressing HUVECs were 1332 
treated with 10 µM Y-27632 or water control for 4 h and fixed for immunofluorescence. Fixed 1333 
cells were stained for CellProfiler analysis as detailed in the methods. The number of Hedls 1334 
puncta per cell was quantified and normalized to the vector control. Vector control data is 1335 
shown. (B, C) KapB- and vector- expressing HUVECs were transduced with shRNAs targeting 1336 
ROCK1 and ROCK2 (shROCK1-1, shROCK1-2, shROCK2-1, shROCK2-2) or with a non-1337 
targeting (shNT) control and selected. In parallel, cells were lysed for immunoblotting or fixed 1338 
for immunofluorescence. (B) One representative immunoblot of three independent experiments 1339 
stained using ROCK1- and 2-specific antibodies. (C) Fixed cells were stained for CellProfiler 1340 
analysis as detailed in the methods. The number of Hedls puncta per cell was quantified and 1341 
normalized to the vector NT control within each replicate. Vector control data is shown. 1342 
Statistics were determined using a ratio paired t-test between control and experimental groups; 1343 
error bars represent standard deviation; n=3 independent biological replicates; * = p < 0.05. 1344 
 1345 
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 1346 
  1347 
Figure S2: Cofilin knockdown augments KapB-mediated PB disassembly. KapB- and 1348 
vector- expressing HUVECs were transduced with shRNAs targeting cofilin (shCFN-1, shCFN-1349 
2) or with a non-targeting (shNT) control and selected. In parallel, cells were fixed for 1350 
immunofluorescence or lysed for immunoblotting. (A) One representative immunoblot of three 1351 
independent experiments stained using a cofilin-specific antibody. (B, C) Fixed cells were 1352 
stained for CellProfiler analysis as detailed in the methods. (B) The number of Hedls puncta per 1353 
cell was quantified and normalized to the vector NT control within each replicate. (C) 1354 
CellProfiler data was used to calculate the ratio of Hedls puncta counts in KapB-expressing cells 1355 
versus the vector control for each treatment condition. (D) Representative images of cells stained 1356 
for PB-resident protein Hedls (green), KapB (blue), and F-actin (red, phalloidin). Boxes indicate 1357 
the area of the field of view that is shown in Hedls (zoom) panel. Scale bar represents 20 µm. 1358 
Statistics were determined using a ratio paired t-test between control and experimental groups; 1359 
error bars represent standard deviation; n=3 independent biological replicates; * = p < 0.05. 1360 
 1361 
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 1363 
 1364 
Figure S3: G-actin concentration does not control PB disassembly. (A, B, C) HUVECs were 1365 
treated with 1 µM Jasp (polymerizes actin and decreases monomeric G-actin), 1 µg/µL CytD 1366 
(actin depolymerization to increase monomeric G-actin) or a DMSO control for 30 min. (A, B) 1367 
Fixed cells were stained for CellProfiler analysis as detailed in the methods. The number of 1368 
Hedls puncta per cell was quantified and normalized to the DMSO control. (C) Representative 1369 
images of cells stained for PB-resident protein Hedls and F-actin (phalloidin). Actin is not seen 1370 
in Jasp panel due to Jasp-mediated interference with phalloidin staining (Bubb et al. 1999). Scale 1371 
bar represents 20 µm. Statistics were determined using a ratio paired t-test between control and 1372 
experimental groups; error bars represent standard deviation; n=3 independent biological 1373 
replicates; * = p < 0.05, ** = p < 0.01. 1374 
 1375 
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 1378 
 1379 
Figure S4: a-actinin-1-overexpression mediated SF formation and PB disassembly. 1380 
HUVECs were fixed and stained with antibodies for (A) a-actinin-1 and (B) a-actinin-4. (C, D) 1381 
HUVECs transduced with recombinant lentiviruses expressing GFP-tagged a-actinin-1 (ACTN-1382 
GFP) or a GFP control were selected and fixed for immunofluorescence. (C) Fixed cells were 1383 
stained for CellProfiler analysis as detailed in the methods. The number of Hedls puncta per cell 1384 
was quantified and normalized to the vector GFP control. (D) Representative images of cells 1385 
stained for PB-resident protein Hedls (false-coloured green), ACTN-GFP (false-coloured blue), 1386 
and F-actin (red, phalloidin). Boxes indicate images shown in Hedls (zoom) panel. Scale bar 1387 
represents 20 µm. Statistics were determined using a ratio paired t-test between control and 1388 
experimental groups; error bars represent standard deviation; n=3 independent biological 1389 
replicates; * = p < 0.05. 1390 
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 1393 
 1394 
Figure S5: KapB does not induce transcription of canonical YAP-responsive genes.  (A) 1395 
HEK-293A cells were co-transfected with a firefly luciferase (Fluc) reporter plasmid with a 1396 
YAP-responsive TEAD promoter element, a TREX-renilla luciferase (Rluc) reporter plasmid, 1397 
and overexpression constructs for either a KapB, YAP 5SA or vector control. At 36 h post-1398 
transfection, cells were starved in serum-free DMEM for 12 h, lysed and Fluc and Rluc activity 1399 
was recorded. Data is normalized to vector control. Graphs show the ratio of Fluc to Rluc, 1400 
independent Fluc values and independent Rluc values, respectively. (B) HUVECs were 1401 
transduced with recombinant lentiviruses expressing KapB, a constitutively-active version of 1402 
YAP (YAP 5SA) or an empty vector control, selected and lysed for total RNA. qRT-PCR 1403 
analysis of steady state mRNA levels of canonical YAP-regulated genes CTGF, ANKRD1 and 1404 
CYR61 was performed, and was normalized to steady state HPRT-1 mRNA levels. Statistics 1405 
were determined using repeated measures ANOVA; error bars represent standard deviation; n=3 1406 
independent biological replicates; * = p < 0.05, ** = p < 0.01.   1407 
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Table S1: Antibodies used in this study. 1419 

Antibody Source  Use Dilution 
 

Rabbit á-mDia1  Cell Signalling 
Technologies 
(Cat#:5486) 
 

Immunoblotting 1:1000 in 2.5% BSA 

Rabbit á-ROCK1  Cell Signalling 
Technologies 
(Cat#:4035) 
 

Immunoblotting 1:1000 in 2.5% BSA 

Rabbit á-ROCK2  Cell Signalling 
Technologies 
(Cat#:9029) 
 

Immunoblotting 1:500 in 2.5% BSA 

Rabbit á-Cofilin  Cell Signalling 
Technologies 
(Cat#:5175) 
 

Immunoblotting 1:1000 in 2.5% BSA 

Rabbit á-P-YAP 
 

Cell Signalling 
Technologies 
(Cat#: 4911) 
 

Immunoblotting 1:1000 in 2.5% BSA 

Rabbit á-YAP 
 

Cell Signalling 
Technologies 
(Cat#: 4912) 
 

Immunoblotting 1:1000 in 2.5% BSA 

á-Mouse IgG, HRP-
linked (2˚) 
 

Cell Signalling 
Technologies 
(Cat#: 7076) 
 

Immunoblotting 1:2000 to 1:4000 in 
2.5% BSA 

á-Rabbit IgG, HRP-
linked (2˚) 
 

Cell Signalling 
Technologies 
(Cat#: 7074) 
 

Immunoblotting 1:2000 to 1:4000 in 
2.5% BSA 
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Mouse á-p70 s6 
kinase (detects Hedls) 

Santa Cruz 
(Cat#:sc-8418) 

Immunofluorescence 1:1000 in blocking 
buffer (1% Human AB 
in PBS), 4˚C overnight 
 

Rabbit á-KapB Gift from D. 
Ganem and C. 
McCormick 
 

Immunofluorescence/ 
Immunoblotting 

1:1000 in blocking 
buffer (1% Human AB 
in PBS), 30 min RT 
 

Rabbit á-actinin-1 Abclonal 
(Cat#:A1160) 
 

Immunofluorescence 1:500 in blocking 
buffer (1% Human AB 
in PBS), 4˚C overnight 
 

Mouse á-actinin-4  Santa Cruz 
(Cat#:sc-390205) 
 

Immunofluorescence 1:500 in blocking 
buffer (1% Human AB 
in PBS), 4˚C overnight 
 

Mouse á-YAP Santa Cruz 
(Cat#:sc-101199) 

Immunofluorescence 1:1000 in blocking 
buffer (1% Human AB 
in PBS), 4˚C overnight 
 

Rabbit á-DDX6 Bethyl Labs 
(Cat#:A300-
461A) 
 

Immunofluorescence 1:1000 in blocking 
buffer (1% Human AB 
in PBS), 4˚C overnight 
 

Alexa Fluor 555- 
conjugated donkey 
á-mouse IgG (2˚) 
 

Invitrogen 
(Cat#:A31570) 

Immunofluorescence 1:1000 in blocking 
buffer (1% Human AB 
in PBS), 1h RT 
 

Alexa Fluor 488- 
conjugated chicken 
á-rabbit IgG (2˚) 
 

Invitrogen 
(Cat#:A21441) 

Immunofluorescence 1:1000 in blocking 
buffer (1% Human AB 
in PBS), 1h RT 
 

Alexa Fluor 555- 
conjugated donkey 
á-rabbit IgG (2˚) 
 

Invitrogen 
(Cat#:A31572) 

Immunofluorescence 1:1000 in blocking 
buffer (1% Human AB 
in PBS), 1h RT 
 

Alexa Fluor 488- 
conjugated chicken 
á-mouse IgG (2˚) 
 

Invitrogen 
(Cat#:A21200) 

Immunofluorescence 1:1000 in blocking 
buffer (1% Human AB 
in PBS), 1h RT 
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Table S2: Plasmids used in this study. 1423 

Plasmid 
Name 

Use Source Bacterial 
Selection 
Cassette 

Mammalian 
Selection 
Cassette 
(Lentiviral 
Plasmids Only) 
 

pLJM-1-EV Control vector 
for lentiviral 
expression 
studies 
 

C. McCormick 
(Dalhousie 
University) 

Ampicillin Blasticidin, 
Puromycin 

pLJM-1 
KapB  
 

Lentiviral 
expression of 
KapB 
 

C. McCormick 
(Dalhousie 
University) 

Ampicillin Blasticidin 

pLKO-
(shRNA) 

Lentiviral 
expression of 
short hairpin 
RNAs (shRNA 
sequences in 
Table S3) 
 

Cloned from: 
pLKO-TRC 
Addgene no.: 
26655 

Ampicillin Puromycin 

pLJM-1 á-
actinin1-
GFP  

Lentiviral 
expression of á-
actinin1-GFP 
 

Cloned from: 
pEGFP-N1 á-
actinin-1, 
Addgene no.: 
11908 
 

Ampicillin Puromycin 

pLJM-1-
YAP-5SA 
(CA-YAP) 

Lentiviral 
expression of 
constitutively 
active YAP 
 

Cloned from: 
p2XFLAG-
YAP-5SA, 
Donated by 
C. McCormick 
(Dalhousie 
University) 
 

Ampicillin Blasticidin 

pcDNA3.1 Transfection 
control 
 

Invitrogen Ampicillin N/A 

pcDNA3.1 
KapB 

Transfection of 
KapB 

C. McCormick 
(Dalhousie 
University) 
 

Ampicillin N/A 
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p1XFLAG Transfection 
control 
 

Cloned from: 
p2XFLAG-
YAP-5SA, 
Donated by 
C. McCormick 
(Dalhousie 
University) 
 

Ampicillin N/A 

p2XFLAG-
YAP 5SA 
 

Transfection of 
YAP 5SA 

Donated by 
C. McCormick 
(Dalhousie 
University) 
 

Ampicillin N/A 

pMD2.G Envelope protein 
for lentiviral 
production  
 

Addgene no.: 
12259 

Ampicillin N/A 

psPAX2 Packaging 
proteins for 
lentiviral 
production  
 

Addgene no.: 
12260 

Ampicillin N/A 
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Table S3: shRNA sequences used in this study. 1428 

Target Sequence (5’ – 3’) 
 

Non-targeting  
sense 

CCGGAGCACAAGCTGGAGTACAACTACTCGAGATCAA
CATGAGGTCGAACACGATTTG 
 

Non-targeting 
antisense  

AATTCAAAAAGCACAAGCTGGAGTACAACTAATCAAC
ATGAGGTCGAACACGATTTG 
 

mDia1 sh1 
sense 

CCGGCCAATTCTGCTCATAGAAATTCTCGAGAATTTCT
ATGAGCAGAATTGGTTTTTG 
 

mDia1 sh1 
antisense 

AATTCAAAAACCAATTCTGCTCATAGAAATTCTCGAG
AATTTCTATGAGCAGAATTGG 
 

mDia1 sh2 
sense 

CCGGAAGATGACGTTGTTACACTTCCTCGAGGAAGTG
TAACAACGTCATCTTTTTTTG 
 

mDia1 sh2 
antisense 

AATTCAAAAAAAGATGACGTTGTTACACTTCCTCGAG
GAAGTGTAACAACGTCATCTT 
 

ROCK1 sh1 
sense 

CCGGAAGATGACGTTGTTACACTTCCTCGAGGAAGTG
TAACAACGTCATCTTTTTTTG 
 

ROCK1 sh1 
antisense 

AATTCAAAAAAAGATGACGTTGTTACACTTCCTCGAG
GAAGTGTAACAACGTCATCTT 
 

ROCK1 sh2 
sense 

CCGGAAGATGACGTTGTTACACTTCCTCGAGGAAGTG
TAACAACGTCATCTTTTTTTG 
 

ROCK1 sh2 
antisense 

AATTCAAAAAAAGATGACGTTGTTACACTTCCTCGAG
GAAGTGTAACAACGTCATCTT 
 

ROCK2 sh1 
sense 

CCGGCGTTGCCATATTAAGTGTCATCTCGAGATGACA
CTTAATATGGCAACGTTTTTG 
 

ROCK2 sh1 
antisense 

AATTCAAAAACGTTGCCATATTAAGTGTCATCTCGAG
ATGACACTTAATATGGCAACG 
 

ROCK2 sh2 
sense 

CCGGGCCTTGCATATTGGTCTGGATCTCGAGATCCAG
ACCAATATGCAAGGCTTTTTG 
 

ROCK2 sh2 
antisense 

AATTCAAAAAGCCTTGCATATTGGTCTGGATCTCGAG
ATCCAGACCAATATGCAAGGC 
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Cofilin sh1 
sense 

CCGGACGACATGAAGGTGCGTAAGTCTCGAGACTTAC
GCACCTTCATGTCGTTTTTTG 
 

Cofilin sh1 
antisense 

AATTCAAAAAACGACATGAAGGTGCGTAAGTCTCGAG
ACTTACGCACCTTCATGTCGT 
 

Cofilin sh2 
sense 

CCGGCCAGATAAGGACTGCCGCTATCTCGAGATAGCG
GCAGTCCTTATCTGGTTTTTG 
 

Cofilin sh2 
antisense 

AATTCAAAAACCAGATAAGGACTGCCGCTATCTCGAG
ATAGCGGCAGTCCTTATCTGG 
 

YAP sh1 sense CCGGCTGGTCAGAGATACTTCTTAACTCGAGTTAAGA
AGTATCTCTGACCAGTTTTTC 
 

YAP sh1 
antisense 

AATTGAAAAACTGGTCAGAGATACTTCTTAACTCGAG
TTAAGAAGTATCTCTGACCAG 
 

YAP sh2 sense CCGGAAGCTTTGAGTTCTGACATCCCTCGAGGGATGT
CAGAACTCAAAGCTTTTTTTC 
 

YAP sh2 
antisense 

AATTGAAAAAAAGCTTTGAGTTCTGACATCCCTCGAG
GGATGTCAGAACTCAAAGCTT 
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Table S4: Drug treatments used in this study. 1432 

Drug Use Source (Cat#) 
 

Concentration 
Used  

Duration 
 

Y-27623 
dihydrochloride 
(ROCKi) 

Non-isoform 
specific inhibition 
of ROCK 
 

Sigma-Aldrich 
(Cat#:Y0503)  

10 µM 4 h 

Jasplakinolide  Aberrant 
polymerization of 
actin, decreasing 
monomeric G-actin 
 

Sigma-Aldrich 
(Cat#:J4580) 

0.5 µM, 1 µM 30 min  

Cytochalasin D Inhibition of actin 
polymerization, 
increasing 
monomeric G-actin 
 

Sigma-Aldrich 
(C8273) 

1 µg/mL 30 min 

(-)-Blebbistatin Inhibition of MLC 
contractility  
 

Sigma-Aldrich 
(Cat#:B0560) 

10 µM 30 min 

Calyculin A Inhibition of MLC 
phosphatase, 
resulting in cell 
contraction 
 

Abcam (Cat#: 
ab141784) 

2.5 nM, 5 nM 20 min 
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Table S5: qRT-PCR primers used in this study. 1435 

Target Forward/ 
Reverse 
 

Sequence Tm 
(˚C) 

Reference 

CYR61 Forward ATGGTCCCAGTGCTCAAAGA 60 (K.-C. 
Wang et al. 
2016) 
 

CYR61 Reverse GGGCCGGTATTTCTTCACAC 62 (K.-C. 
Wang et al. 
2016) 
 

CTGF Forward CAGCATGGACGTTCGTCTG 60 (K.-C. 
Wang et al. 
2016) 
 

CTGF Reverse AACCACGGTTTGGTCCTTGG 62 (K.-C. 
Wang et al. 
2016) 
 

CTGF Forward CCCTCGCGGCTTACCG 56 (K.-C. 
Wang et al. 
2016) 
 

CTGF Reverse GGACCAGGCAGTTGGCTCT 62 (K.-C. 
Wang et al. 
2016) 
 

ANKRD1  Forward ACGCCAAAGACAGAGAAGGA 60 (K.-C. 
Wang et al. 
2016) 
 

ANKRD1  Reverse TTCTGCCAGTGTAGCACCAG 52 (K.-C. 
Wang et al. 
2016) 
 

HPRT-1  Forward CTTTCCTTGGTCAGGCAGTATAA 66 (Singh, 
2019)  
 

HPRT-1  Reverse AGTCTGGCTTATATCCAACACTTC 60 (Singh, 
2019)  
 

HPRT-1  Forward TGGCGTCGTGATTAGTGATG 64 (Singh, 
2019)  
 

HPRT-1  Reverse GACGTTCAGTCCTGTCCATAAT 68 (Singh, 
2019)  
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