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Abstract 
CRISPR-Cas loci encode for highly diversified prokaryotic adaptive defense systems that           
have recently become popular for their applications in gene editing and beyond. The             
increasing demand for bioinformatic tools that systematically detect and classify          
CRISPR-Cas systems has been largely challenged by their complex dynamic nature and            
rapidly expanding classification. Here, we developed CRISPRCasTyper, a new automated          
software tool with improved capabilities for identifying and typing CRISPR arrays and cas             
loci across prokaryotic sequences, based on the latest classification and nomenclature (39            
subtypes/variants) (Makarova et al. 2020; Pinilla-Redondo et al. 2019). As a novel feature,             
CRISPRCasTyper uses a machine learning approach to subtype CRISPR arrays based on            
the sequences of the direct repeats. This allows the typing of orphan and distant arrays               
which, for example, are commonly observed in fragmented metagenomic assemblies.          
Furthermore, the tool provides a graphical output, where CRISPRs and cas operon            
arrangements are visualized in the form of colored gene maps, thus aiding annotation of              
partial and novel systems through synteny. Moreover, CRISPRCasTyper can resolve hybrid           
CRISPR-Cas systems and detect loci spanning the ends of sequences with a circular             
topology, such as complete genomes and plasmids. CRISPRCasTyper was benchmarked          
against a manually curated set of 31 subtypes/variants with a median accuracy of 98.6%.              
Altogether, we present an up-to-date and freely available software pipeline for significantly            
improved automated predictions of CRISPR-Cas loci across genomic sequences.  

 

Implementation 
CRISPRCasTyper is available through conda and PyPi under the MIT license           
(https://github.com/Russel88/CRISPRCasTyper), and is also available as a web server         
(http://cctyper.crispr.dk).  
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Introduction 
CRISPR-Cas systems constitute a group of bacterial and archaeal adaptive immune           
systems that have garnered much attention in recent years due to their promising             
biotechnological applications (Pickar-Oliver and Gersbach 2019; Barrangou and Doudna         
2016). These systems are composed of two main components: 1) the CRISPR array, a              
chromosomal memory bank of sequences derived from previous infecting genetic parasites,           
and 2) operon(s) of CRISPR-associated (cas) genes encoding the proteins required during            
the three stages of immunity (adaptation, processing, and interference). For further details            
on the mechanisms driving the CRISPR-Cas immune response, we refer readers to recent             
reviews (Hille et al. 2018; Mohanraju et al. 2016; Jackson et al. 2017). 
 
Like all other prokaryotic defense systems, CRISPR-Cas loci evolve rapidly in a constant             
arms race with their mobile genetic element foes (Hampton, Watson, and Fineran 2020).             
The resultant evolutionary tension has led to a remarkable diversification of CRISPR-Cas            
systems, which, together with the apparently frequent exchange of components and lack of a              
universal marker gene across systems (Koonin and Makarova 2019), greatly challenges the            
development of a unified classification scheme. Accordingly, classification efforts have relied           
on a multi-faceted approach that jointly takes into consideration the architectural           
organization of CRISPR-Cas loci, the presence/absence of certain Cas components, and           
sequence similarities of genes (Makarova et al. 2015). Broadly, the current classification            
contemplates two major classes, Class 1 and Class 2, that either rely on heteromeric              
multi-protein effector complexes or single multi-domain effector proteins, respectively         
(Makarova et al. 2020). In the next hierarchical level, there are six types (I, III and IV for                  
Class 1; and II, V and VI for Class 2), each of which contain several subtypes and multiple                  
variants. While recent years have seen an extraordinary expansion in the classification of             
newly discovered systems, the current classification is predicted to be nearly complete at the              
“type” level (Makarova, Wolf, and Koonin 2018; Makarova et al. 2020). For a summary of the                
state of the art classification and nomenclature, we refer the readers to recent             
comprehensive reviews and articles (Makarova et al. 2020; Pinilla-Redondo et al. 2019). 
 
The systematic efforts to classify novel CRISPR-Cas systems have run parallel to those             
aiming their automated prediction across genomic sequences. Although systematic         
CRISPR-Cas identification pipelines have been developed (Crawley, Henriksen, and         
Barrangou 2018; Couvin et al. 2018; Lange et al. 2013), their sensitivity below the type level                
is generally inadequate. Furthermore, the discovery of novel systems has been occurring at             
a breakneck pace, rendering older classification software obsolete. Additionally, many          
CRISPR-Cas loci are complex, comprising hybrid cas cassettes or share arrays between            
different Cas types. For instance, recent work has shown that around 40% of CRISPR-Cas              
loci show atypical organizations, where orphan CRISPR arrays and cas operons are            
common, as well as hybrid loci resulting from the associations of different co-occurring             
systems within genomes (e.g. distinct types of interference modules and one shared            
adaptation cassette) (Bernheim et al. 2020). However, the CRISPR-Cas prediction tools           
published so far largely lack the formalism required to handle such complexity. 
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Here we present CRISPRCasTyper, a new tool that can accurately identify and annotate             
CRISPR and cas loci automatically based on the newest classification (Makarova et al.             
2020; Pinilla-Redondo et al. 2019). Besides classifying cas operons, CRISPRCasTyper can           
also accurately assign subtypes to CRISPR arrays based on the sequence composition of             
the consensus repeat. We also provide the first benchmark of automated classification of             
CRISPR-Cas loci on a manually curated dataset across all known subtypes, which            
exemplifies the strengths of CRISPRCasTyper. 

Software description 
CRISPRCasTyper identifies cas operons and associated CRISPR arrays from an input           
fasta-formatted DNA sequence (Fig. 1A). CRISPRCasTyper searches for cas and other           
genes functionally linked to CRISPR-Cas systems with HMMER3 (Eddy 2009) against 680            
Hidden Markov Models (HMMs). Matches to Class 2 effectors (cas9, cas12, cas13) and the              
III-E gRAMP fusion protein are filtered by specific E-value and coverage cutoffs optimized             
specifically for each effector. The remaining HMM matches are filtered by overall cutoffs (see              
Methods and Materials for details). Adjacent cas and accessory genes are then joined into              
operons; inclusion of a gene in the operon is based solely on synteny. These operons are                
then typed based on a scoring scheme (see Methods and Materials for details).  
 
CRISPRCasTyper includes the following 39 subtypes/variants: I-A, I-B, I-C, I-D, I-E, I-F, I-G,             
II-A, II-B, II-C, III-A, III-B, III-C, III-D, III-E, III-F, V-A, V-B, V-C, V-D, V-E, V-F, V-G, V-H, V-I,                  
V-J, VI-A, VI-B, VI-C, VI-D (Makarova et al. 2020), IV-A1, IV-A2, IV-A3, IV-B, IV-C, IV-D,               
IV-E (Pinilla-Redondo et al. 2019), and transposon-associated V-K (Strecker et al. 2019) and             
I-F (Klompe et al. 2019). 
 
To aid in resolving ambiguous CRISPR-Cas operons, and to subtype distant and orphan             
CRISPR arrays, we created a CRISPR repeat classification model. We used gradient            
boosting decision trees fitted to counts of canonical tetramers (Chen and Guestrin 2016 , see              
Methods and Materials for details). Only subtypes with at least 20 known repeats were              
included. The classifier has a median accuracy across the 19 included subtypes of 89% on               
an unseen test dataset (Fig. 1B). Furthermore, the web server includes an additional model,              
which is automatically re-trained monthly using subtyped repeats crowdsourced from the           
inputs from web server users. This novel feature ensures that the accuracy of the tool               
increases over time and with usage of the platform, as well as its ability to recognize                
previously undetectable subtypes/variants. As of writing, this model includes more than ~34k            
repeats from non-redundant genomes, in addition to the ~6k repeats in the manually curated              
set. This model also includes the subtypes IV-D, IV-E, V-B, V-F, V-J, VI-A, and VI-D (Fig.                
S1), and has a median per-subtype accuracy of 84%, mainly drawn down by the rare               
subtypes III-C, IV-D, and V-B. 
 
As an additional feature, CRISPRCasTyper automatically draws gene maps to enable           
visualization of the operonic structure (Fig. 1C). These gene maps can be expanded to              
include HMM matches below the inclusion thresholds, which could aid the discovery of             
diversified cas components or accessory genes, partial and novel CRISPR-Cas          
variants/subtypes, especially around orphan CRISPR arrays.  
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Moreover, CRISPRCasTyper can resolve loci spanning the ends of circular sequences, such            
that loci are not erroneously split in two due to the linear representation of circular               
sequences. Furthermore, the percentage completion of both the interference and adaptation           
modules of each detected operon are provided in the output. Finally, CRISPRCasTyper runs             
in less than a minute on a typical genome (2-6 Mbp) using 4 threads, and in less than 10                   
minutes on a deep metagenome assembly (60-100 Mbp) using 20 threads. 
 

 
Figure 1. A) CRISPRCasTyper workflow. B) Prediction matrix of CRISPR repeat typer            
against an unseen test dataset. Only subtypes with at least 20 repeats were included in the                
model. Counts are normalized per row totals. C) Examples of graphical outputs from             
CRISPRCasTyper. The predicted subtype associated with a repeat sequence is written           
above the array, colored in black (top). Interference module in yellow (except Cas6),             
adaptation module in blue, Cas6 in red, and accessory genes in purple. Unknown genes              
(grey) and genes with low-quality matches (same color scheme in lighter shade) can be              
added to the plots, also around orphan CRISPR arrays (middle). Furthermore,           
CRISPRCasTyper resolves hybrid systems (bottom). D) Performance of CRISPRCasTyper         
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versus CRISPRCasFinder on manually curated CRISPR-Cas systems. ‘Correct with         
CRISPR’ denotes loci which were resolved using subtype prediction based on the CRISPR             
repeat sequence. Asterisks (*) denote subtypes not included in CRISPRCasFinder;          
CRISPRCasFinder includes type IV without subtype prediction, and these are denoted as            
‘Ambiguous’. E) Density plot of differences in operon sizes between CRISPRCasTyper and            
CRISPRCasFinder. 

Benchmark 
CRISPRCasTyper was compared with the widely used CRISPRCasFinder (Couvin et al.           
2018) using the manually curated CRISPR-Cas loci from Makarova et al. 2020 (Makarova et              
al. 2020), the newest type IV classification from Pinilla-Redondo et al. 2019 (Pinilla-Redondo             
et al. 2019) and manually curated III-E loci (see Methods and Materials). We find that               
CRISPRCasTyper outperforms CRISPRCasFinder at identifying 17 subtypes and is equally          
accurate in the prediction of the remaining 2 subtypes included in CRISPRCasFinder (Fig.             
1D) (Couvin et al. 2018). Across these 19 subtypes, CRISPRCasTyper had a median             
accuracy of 99.5%, while that of CRISPRCasFinder was 93.9%. The median accuracy of             
CRISPRCasTyper on all 31 subtypes (12 lacking in CRISPRCasFinder) was 98.6%.           
Furthermore, CRISPRCasTyper often provides a more complete cas operon identification          
(Fig. 1E). An example is a type III-B operon in an Acidilobus saccharovorans genome              
(NC_014374.1), in which CRISPRCasFinder identifies cmr4, cmr5, and cmr6, whereas          
CRISPRCasTyper finds 9 additional genes, including cas1, cas2, cas4, cas10, and cas6. 
 
Both CRISPRCasTyper and CRISPRCasFinder found few false positives (28 (0.4%) and 24            
(0.4%), respectively), with a large bias towards VI-B (10 and 13, respectively). Interestingly,             
several of these seem to be true positives, which have been missed in the curated dataset; 9                 
of the VI-B operons have adjacent CRISPR arrays whose repeat sequence is predicted by              
CRISPRCasTyper to be VI-B associated (Table S1). V-F is especially challenging due to the              
similarity of its effector to transposases; we chose a conservative approach, which identifies             
as many as possible without finding false positives. Many V-F are missed with this approach,               
but some can be found using the graphical output if they are adjacent to CRISPR arrays.                
When the V-F subtype is more clearly defined, improved HMMs might solve this problem. 

Methods and Materials 
CRISPRCasTyper 
Open reading frames are called with prodigal v2.6.3 (Hyatt et al. 2010). Protein-profile             
alignments are performed with HMMER3 (Eddy 2009). HMM matches are filtered in a             
two-step process. All single-effector genes (cas9, cas12, cas13, gRAMP) are filtered with            
specific cutoffs (see Table S2). The remaining Cas proteins are filtered with an E-value              
cutoff of 0.01, and sequence and HMM coverage both of 30%. The single-effector cutoffs              
were set by running a grid search across the curated set with coverages between 5% and                
95% with a step size of 5%, and E-values from 10e-5 to 1e-150 with a step size of the                   
exponent of 5. The subtypes with no representative in the curated set were given the               
following cutoffs: E-value: 1e-5, sequence coverage: 90%, HMM coverage: 25%. Cas genes            
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are grouped into operons based on synteny. By default, no more than 3 unannotated genes               
can separate known cas genes to be considered part of a single operon. 
The operons are then typed based on a scoring scheme where each Cas HMM within it has                 
a score between 0 and 4 for each subtype. The scoring scheme was built such that                
mandatory HMMs give a score of 2 and accessory genes a score of 1. HMMs specific to a                  
subtype adds 2 to the score. Forbidden HMMs give a score of -4. The subtype that obtains                 
the highest score is then assigned to the operon if the score is at least 6 and there are at                    
least 3 different cas genes. Operons with at least 6 cas genes and two or more types with a                   
score of at least 6 and at least one specific HMM are denoted as ‘Hybrid’ systems. Operons                 
falling outside these cutoffs are annotated as ‘Putative’ unless one of the genes is a Class 2                 
effector or the III-E gRAMP fusion protein. Non-hybrid operons with multiple equally scoring             
subtypes are annotated as ‘Ambiguous’. 
To resolve problems of ambiguity, a score of 0.1 was added to mandatory and specific I-F                
HMMs, such that typing defaults to type I-F, unless TniQ is found which will change the type                 
to I-F_T, transposon-associated I-F. Similarly for IV-A2, which is distinguished from IV-A1            
and IV-A3 by the absence of Csf1. Typing therefore defaults to IV-A2 unless a Csf1 is found                 
or Csf2 or Csf4 is specific to IV-A1 or IV-A3. Similarly with III-A and III-F, for which the                  
scores are designed to default to III-A unless SSgr11 is detected. As Cas12j and Cas12k are                
so similar the typing defaults to V-J unless transposon-associated TniQ, TnsB, and TnsC are              
found. 
 
RepeatTyper 
A curated set of subtyped repeat sequences was created by predicting CRISPR arrays with              
minced v0.4.2 (https://github.com/ctSkennerton/minced , Bland et al. 2007) in the curated          
datasets (Makarova et. al. 2020; Pinilla-Redondo et. al. 2019). Consensus repeats from all             
arrays within 1kbp to a cas operon were included. This resulted in a total of 5838 subtyped                 
repeat sequences. Only subtypes with at least 20 repeat sequences were included in the              
model. For each repeat sequence all canonical tetramers were counted, and these 136             
features were the input for our model. The sequences were split in 70% training data, used                
to train the model and choose parameters, and 30% testing data, used as an unseen dataset                
to evaluate the accuracy of the final model. We used xgboost v1.0.2 with multi:softprob              
objective evaluated with mlogloss and 3-fold cross-validation across a grid of max-depth={4,            
6, 8}, subsample={0.6, 0.8, 1}, and colsample_bytree={0.6, 0.8, 1}. The models were run             
with a learning rate of 0.3 for 100 boosting rounds, but with 10 early stopping rounds. The                 
remaining parameters were defaults. The script for training this model is part of             
CRISPRCasTyper, such that users can easily re-run the model on their own repeat-set             
and/or with other parameters. The accuracy for each subtype was calculated as percent             
correct predictions on the test set. The adjusted accuracy was then the average accuracy              
across all subtypes, such that subtypes with many repeats were not inflating the accuracy. 
On the web server, consensus repeats from novel loci are automatically included in the              
model. Novelty is based on position of loci in the sequence, the subtype prediction, and the                
repeat sequence. This updated set was supplemented with subtyped repeats from Ensembl            
bacterial and archaeal genomes (Yates et al. 2020), GTDB (Parks et al. 2018), and NCBI               
metagenomes (ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/metagenomes/). As of writing     
this article, the model includes 40717 subtyped repeats across 37 subtypes/variants; 26 of             
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these with at least 20 repeat sequences. This updated model is automatically re-trained             
each month with the same parameters as above except with max-depth={6, 8, 10}. 
 
Hidden Markov Models 
CRISPRCasTyper includes 680 HMMs. The largest share was built using hmmbuild from            
HMMER3 v3.2.1 (Eddy 2009) on the multiple alignments provided by Makarova et al. 2020              
(Makarova et al. 2020), excluding the consensus sequence. Some HMMs were obtained            
from CRISPRCasFinder 2.0.2. The V-K specific HMMs and the I-F associated TniQ HMM             
were built from multiple alignments created with MUSCLE v3.8.1551 (Edgar 2004), based on             
previous studies (Strecker et al. 2019; Klompe et al. 2019). Type IV HMMs were obtained               
from Pinillia-Redondo et. al. 2019. 
 
Benchmark 
All non-type IV CRISPR-Cas loci from Makarova et al. 2020, available at            
ftp://ftp.ncbi.nih.gov/pub/wolf/_suppl/CRISPRclass19/, were included. Multi-systems and     
partial systems were excluded from the benchmark. Type IV loci were obtained from             
Pinilla-Redondo et. al. 2019 to include the newest classification. We further included a             
curated set of III-E loci (Table S3). For CRISPRCasTyper, all predicted non-putative systems             
were included. For CRISPRCasFinder, all systems, including partial systems, were included.  
As Makarova et al. 2020 does not include V-K, the few V-J operons which were predicted by                 
CRISPRCasTyper to be V-K were labelled as correct classifications. For determining false            
positives only operons not overlapping with any loci, including partial and multi-systems,            
were counted. CRISPRCasFinder version 4.2.17 with CasFinder 2.0.2 was used for the            
benchmark. CRISPRCasTyper version 1.0.0 was used for the benchmark. 
 
Data availability 
The scoring table, all HMM profiles, the filtering cut-offs, the repeat typer model, and the               
completion files are available in the data directory at the CRISPRCasTyper github:            
https://github.com/Russel88/CRISPRCasTyper/tree/master/data . The updated repeat typer     
models are available at http://mibi.galaxy.bio.ku.dk/russel/repeattyper/. 
 
Web server 
The web server was built on the jobson framework (https://github.com/adamkewley/jobson ),          
with a modified UI available at https://github.com/Russel88/jobson . The web server also           
includes the possibility to submit a RefSeq/Genbank accession, which will download the            
corresponding nucleotide sequence through the entrez-direct command line tool. 
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Supplementary Information 

 
Figure S1. Prediction matrix of CRISPR repeat typer against an unseen test dataset using              
the updated repeat set of 40k repeat sequences. Counts are normalized per row totals, such               
that the diagonals contain the accuracy for each subtype. 
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Table S1. False positive operons from CRISPRCasTyper. Several have CRISPRs adjacent,           
and the predicted subtype of these CRISPRs match the CRISPRCasTyper predictions. * The             
subtype for the repeat sequence from the V-J on NZ_AP014815.1 could not be predicted              
with the curated repeat set, but was predicted to be V-J with the updated repeat set. § This                  
I-E loci is likely part of the I-E loci in the end of this sequence. 
Nucleotide Subtype Start End CRISPR CRISPR Subtype 

NC_014377.1 I-A 1179284 1183097 No  

NC_017768.1 I-A 838904 841348 No  

NZ_CP022385.1 I-A 1996653 2002119 No  

NZ_CP031218.1 I-B 1882001 1884693 No  

NZ_CP019794.1 I-C 4407864 4411147 Yes I-C 

NC_008750.1 I-D 2011041 2015216 No  

NC_009438.1 I-D 2601641 2605816 No  

NC_014248.1 I-D 4303670 4309589 No  

NC_017566.1 I-D 2602859 2607034 No  

NC_015499.1 I-E 1031980 1036308 No  

NZ_CP032329.1 I-E § 3 7027 Yes I-E 

NZ_CP032099.1 II-B 801907 802326 No  

NC_015519.1 III-A 3080 4920 No  

NC_019954.2 III-A 3199 5039 No  

NZ_CP021838.1 III-B 2057 4497 No  

NC_002950.2 VI-B 1244197 1248317 Yes VI-B 

NC_010729.1 VI-B 1410847 1414967 Yes VI-B 

NC_014734.1 VI-B 3133284 3136748 No  

NC_016001.1 VI-B 2545026 2549183 Yes VI-B 

NZ_CP011995.1 VI-B 920122 924242 Yes VI-B 

NZ_CP012889.1 VI-B 1409775 1413895 Yes VI-B 

NZ_CP024591.1 VI-B 209480 213600 Yes VI-B 

NZ_CP024595.1 VI-B 1078280 1082400 Yes VI-B 

NZ_CP025930.1 VI-B 1411695 1415815 Yes VI-B 

NZ_CP025932.1 VI-B 1167344 1171464 Yes VI-B 

NC_019678.1 V-J 6308425 6308943 No  

NZ_AP014815.1 V-J 2551679 2553529 Yes Unknown (V-J)* 

NZ_CP026681.1 V-J 5056609 5057136 No  
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Table S2. Specific cutoffs used for filtering single-effector cas genes. 

Gene E-value Coverage Sequence Coverage HMM 

cas9 1.00E-10 0.35 0.1 

cas12a 1.00E-05 0.9 0.75 

cas12b 1.00E-10 0.9 0.35 

cas12c 1.00E-05 0.9 0.25 

cas12d 1.00E-05 0.9 0.25 

cas12e 1.00E-05 0.9 0.25 

cas12f 1.00E-130 0.8 0.7 

cas12g 1.00E-05 0.9 0.25 

cas12h 1.00E-05 0.9 0.25 

cas12i 1.00E-05 0.9 0.25 

cas12j 1.00E-05 0.9 0.25 

cas12k 1.00E-05 0.9 0.25 

cas13a 1.00E-10 0.05 0.55 

cas13b 1.00E-10 0.95 0.85 

cas13c 1.00E-10 0.9 0.75 

cas13d 1.00E-10 0.95 0.95 

gRAMP 1.00E-10 0.75 0.75 
 

 
Table S3. Accession numbers of III-E gRAMP proteins. No adjacent CRISPR could be             
determined (NA) in short contigs or with a gRAMP gene at the end of a sequence. 
Nucleotide Gene CRISPR 

JRYO01000185.1 KHE91659.1 Yes 

NZ_BAFH01000003.1 WP_007220849.1 Yes 

MVRP01000104.1 OPY65763.1 Yes 

MGTA01000040.1 OGR07205.1 Yes 

NZ_BEXT01000001.1 WP_124327589.1 Yes 

LAQJ01000233.1 KKO18793.1 NA 

NBMK01000156.1 OQY58162.1 NA 

QMMU01000439.1 RLC14096.1 NA 

QMMU01000323.1 RLC15988.1 NA 

QMMU01000137.1 RLC19861.1 NA 

JPDT01001326.1 KPA14974.1 No 

NZ_BEXT01000001.1 WP_124327589.1 No 
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