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Abstract6

Microorganisms mainly exist within complex networks of ecological interactions. Given that7

the growth and survival of community members frequently depend on an obligate exchange8

of essential metabolites, it is generally unclear how such communities can persist despite the9

destabilizing force of ecological disturbance. Here we address this issue using a population10

dynamics model. In contrast to previous work that suggests the potential for obligate interaction11

networks to evolve is limited, we find the opposite pattern: natural selection in the form of12

ecological disturbance favors both specific network topologies and cooperative cross-feeding13

among community members. These results establish environmental selection as a key driver14

shaping the architecture of microbial interaction networks.15
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1 Significance16

Microbes live in diverse communities that significantly impact the ecology and evolution of other17

organisms. These communities represent complex ecological networks, within which the con-18

stituent strains engage in an obligate exchange of essential metabolites. However, it remains gener-19

ally unclear how these interactions can persist in the face of strong ecological perturbation. Here,20

we address this question using a population dynamics model. We show that both the topology of21

the interaction network and the degree to which microbes engage in a cooperative exchange of22

metabolites shape the systems robustness to ecological disturbance. Thus, our study identifies key23

principles underlying metabolic trade in natural microbial communities. These results can help to24

design synthetic microbial consortia for medical and biotechnological applications.25

2 Introduction26

Microbial communities play key roles in many ecosystems1,2 and contribute significantly to the27

maintenance of plant and animal health3,4,5. In most cases, these assemblages consist of a large28

number of metabolically diverse genotypes that engage in a complex network of both antagonis-29

tic and synergistic ecological interactions6,7. While it is clear that the interplay between these30

different interactions determines the structure, function, and evolution of a given microbial com-31

munity, the general principles guiding this process remain poorly understood. However, a detailed32

knowledge of how properties of individual strains combine to give rise to emergent phenotypes at33

the community-level is not only central to our understanding of microbial ecology, but also to the34

design of synthetic microbial communities for medical or biotechnological applications8,6.35

One specific type of ecological interaction that appears to be particularly important in micro-36

bial communities is the exchange of essential metabolites among community members9,10,11. A37

growing body of literature suggests that a large proportion of all bacteria known lacks biosynthetic38

pathways to autonomously produce essential building block metabolites such as amino acids, vi-39

tamins, and even nucleotides12,13,14. Thus, growth and survival of these so-called auxotrophic40

microorganisms depends on the presence of other individuals that provide sufficient amounts of the41

required metabolites. The evolutionary process that likely drives the emergence of such metabolic42

dependencies has been termed Black Queen dynamics15,16. The basic idea is that as microbes43

grow, they commonly release significant amounts of metabolites in the extracellular environment.44

These compounds represent a valuable resource (i.e., a so-called public good) that can be used by45

newly arising auxotrophic genotypes that lack the ability to autonomously produce the correspond-46

ing metabolites. In this way, an obligate metabolic interaction is generated that ties the fate of the47

auxotrophic recipient to the presence of other cells that can provide it with the required metabolite.48
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Interestingly, it has been shown that auxotrophic mutants gain a significant fitness advantage from49

using external metabolite sources, because they save the energy to produce the compound on their50

own14,16. This type metabolic cross-feeding interaction, which initially relies on an exchange of51

metabolic by-products, can be further strengthened when auxotrophic genotypes start to increase52

the production level of the traded chemical17,18,19. Such an increased investment that is costly to53

the producing cell, can be favored by natural selection, when the cooperative cell is rewarded for its54

initiative by receiving fitness benefits in return. This can be the case when two types interact that55

reciprocally exchange essential metabolites17,19 or if the interaction is staged in a spatially struc-56

tured environment with low rates of population intermixing20,21. In the long-run, this evolutionary57

process is expected to give rise to multipartite microbial networks of different sizes and topologies,58

within which metabolites are reciprocally exchanged10.59

In the beginning, such interaction networks are likely created by chance: resident auxotrophic60

mutants and prototrophic genotypes that share the same environment start engaging in metabolic61

cross-feeding interactions. Depending on the amounts of metabolites the interacting cells produce62

and consume, the resulting interaction collapses immediately or remains stable for extended pe-63

riods. However, what determines the stability of these highly-interwoven interaction networks?64

Given that the survival of auxotrophic cells critically depends on the presence of other individu-65

als that can provide the required metabolite, loss of these donor cells may lead to a catastrophic66

collapse of the entire microbial community. Indeed, a previous theoretical study on the ecological67

stability of microbial community networks concluded that cooperating networks of microbes are68

often unstable22. In this study, stability was modeled as resilience: the capacity to return to the69

equilibrium after a transient change in population size. However, changes in the environment often70

cause modifications of population growth rates, instead of merely a transient decrease in the num-71

ber of individuals. Moreover, given that the public goods that are exchanged between microbial72

strains are often key for determining community stability, their dynamics should be taken into ac-73

count as well23. Furthermore, even though public goods can negatively affect yield and stability of74

microbial communities when they are produced in sub-optimal concentrations, they can also pos-75

itively affect these parameters when they are efficiently produced and involved in an effect called76

‘division of labor’. Here, two or more strains can save energy by distributing the production of77

certain metabolites among the participating individuals and subsequently exchanging the produced78

compounds18,24. However, this division of labor effect was not considered in previous models22.79

Taken together, environmental variables can directly and indirectly affect population growth rates80

by modifying the production and availability of public goods. In this way, environmental changes81

can impinge upon the dynamics and stability of microbial communities.82

Changes in environmental variables are more explicitly incorporated in models as ecological83

disturbance by modifying one or several parameters that affect the growth rate of the focal popu-84
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lation. Disturbance, in the form of periodically-occurring or constant perturbations of the environ-85

ment, can cause mass-mortality and has been shown to strongly affect the composition, structure,86

and function of microbial communities from diverse habitats such as soil25, lakes26, and the human87

gut27,28. Models incorporating disturbance in microbial communities revealed that the response to88

such perturbations can exhibit complex dynamics29. Following disturbance, the community can,89

for example, undergo critical transitions to alternative stable states30,29 or approach a catastrophic90

collapse of the entire community31,32. The architecture of the network that is determined by the91

ecological interactions among individual types can strongly affect the robustness of biological com-92

munities to such events of ecological disturbance33. This is the case, for example, for pollination,93

seed dispersal34, and trophic networks35. However, very little is known on how ecological net-94

works of different sizes and topologies within microbial communities respond to disturbance13.95

Here we fill this gap by using a population dynamics model to analyze networks of auxotrophic96

microorganisms that exchange metabolites as extracellular public goods. In particular, we aim at97

identifying how the robustness of these networks to ecological disturbance is affected by: (i) the98

number of auxotrophy-causing mutations, (ii) the topology of the interaction network, and (iii) the99

presence of cooperative cross-feeders within the network. Our analysis revealed that, all else being100

equal, communities with more auxotrophy-causing mutations were less robust to disturbance. Sec-101

ond, the network topology of metabolite production strongly affected the system’s stability. Finally,102

mutations that increased amino acid production levels of auxotrophic microbes within interaction103

networks increased the robustness of these communities to ecological disturbance.104

3 Methods105

The dynamics of n auxotrophic microbes (Bi) and m metabolites (Mk) is described by the following106

system of ordinary differential equations:107

dBi

dt
= Bi

Γ(Mk)−κiBi−
n

∑
i=1
i6=i

φiBi−D

 (1)

dMk

dt
=

n

∑
i=1

ψi,kΩiBi−Mk

(
qk +

n

∑
i=1

diBi−αD

)
(2)

The function Γ(Mk) takes different forms depending on the model assumptions (see Supplementary108

Material for details and extensions). In the model used throughout the main text, this function is109

given by Γ(Mk) = ∏
m
k=1 Mk

(
rk−ψi,kck

)
, where the per capita growth of microbes is the result110
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of the utilization of all metabolites with rk denoting the per capita growth rate and ck is the cost111

associated with the production for the kth metabolite. The obligate nature of the interaction between112

microbes and metabolites is represented by the term ∏
m
k=1 Mk

(
rk−ψi,kck

)
. This product ensures113

that, when at least one of the metabolites Mk is zero, all microbes are going extinct. The terms114

κi and φi are the rate of intra- and inter-specific competition. Microbes produce metabolites at115

a rate Ωi and the intake of metabolites occurs at a rate di. Metabolites are also assumed to be116

lost by degradation or diffusion into the environment at a rate qk. The parameter ψi,k represent117

the presence/absence of a mutation causing auxotrophy, and therefore can take the values 0 or 1,118

defining the network of auxotrophs. In the main model, we assumed that metabolites themselves119

are not affected by disturbance (α = 0). However, relaxing this assumption did not change the120

results (see the Supplementary Material).121

3.1 Disturbance in random networks of auxotrophs122

Simulations are based on different parametrization of the model given by equations (1, 2), describ-123

ing the microbial dynamics and the metabolites produced. We created microbial systems assuming124

that all parameters affecting the dynamics are the same among microbes, and the same among125

metabolites (in the main text) and vary only the position of mutation-causing auxotrophies in the126

network. This allowed us to study the stability of the resulting network topology of metabolite127

production in isolation, without the confounding effect that would result if parameters were differ-128

ent among microbes and metabolites. To ensure that our results still hold when this assumption is129

relaxed, we assigned random parameters for microbes and metabolites in another set of simulations130

(see Supplementary Material).131

In all cases, network topologies are given by a bipartite graph describing metabolite produc-132

tion by microbes (Fig.1a). Here, a network is formalized by a matrix in which entries contain the133

production of the kth metabolite by the ith microbe. A microbial system of prototrophs producing134

metabolites is given by a matrix of size n x m, where all ψi,k = 1. In such a microbial system,135

a mutation causing auxotrophy is symbolized by a particular entry in the matrix where ψi,k = 0.136

For a given fixed number of auxotrophy-causing mutations, different matrices are randomly gen-137

erated, characterized by a fixed number of zeros in the entries, but in different positions in the138

matrix. This diversity of patterns in the randomly generated matrices, under the formalization of139

the network theory, was characterized by different topologies. Not all topologies resulting from the140

randomization process generate microbial systems with a stable equilibrium, where all microbes141

and all metabolites are non-zero. Thus, we only incorporated cases, where the resulting system of142

equations has a stable equilibrium with non-zero microbes and metabolites, and such equilibrium143

is stable (i.e., all eigenvalues were negative). For this, we first assumed that D = 0, then obtained144
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the equilibrium where all variables were non-zero, and finally used those values as the initial con-145

dition for a new set of ordinary differential equations, where the disturbance term was added to the146

equation for the microbes (D > 0). This type of disturbance has been called ‘press disturbance’36
147

(see Supplementary Material for details). Each microbial system generated through the random-148

ization process was exposed to increased levels of disturbance (i.e., increasing the numerical value149

of parameter D) (Fig.1b) until it went extinct. The disturbance value D, where the first extinction150

took place, was defined as the robustness for that microbial system.151

3.2 Normalized entropy and assortativity152

Each randomly generated microbial system is represented by an interaction network between mi-153

crobes and metabolites with a certain topology, which can be depicted as a bipartite network154

(Fig.1a). Analyzing these networks, we aimed at finding topological properties that correlate with155

robust responses to disturbance. Two measures, which describe the degree of homogeneity with156

which metabolite production is distributed among microbes, were strongly correlated with network157

robustness. The first one defines how evenly auxotrophy-causing mutation are distributed in the158

microbial community. The corresponding value is simply given by the entropy of the distribution159

of mutations causing auxotrophy, relative to the maximum entropy possible for that particular num-160

ber of mutations, and it is called the ‘normalized entropy’ (node degree in microbes, given by the161

red bar plot in Fig.1a). On the other hand, metabolites can be produced by a different number of162

microbes (node degree of metabolites, given by the blue bar plot in Fig.1a. This measure describes163

how evenly the production of each metabolite is distributed within the community). The second164

measure, the ‘assortativity index’, quantifies the correlation between the node degree of microbes165

with the node degree of metabolites.166

The total number of vertices v j for n microbes Bi, and m metabolites Mk, is l = n+m (with j =167

i+ k). The normalized entropy is calculated using the standard Shannon index37. The normalized168

entropy is given by: ER = (−∑i=1 vi logvi)/EM, with EM = −∑i(i/∑i vi) log(i/∑i vi). Note that169

in this case, the index i refers to the number of vertices representing the microbial populations (not170

the metabolites). If there are µ auxotrophy-causing mutations in the community, then there will be171

s = nxm−µ links in the network.172

Mathematically, the assortativity is given by a correlation coefficient38 defined by:173

ρ =
1

σ2
P

∑
j,k

jk
(
E jk−PjPk

)
(3)

which runs from −1 for completely disassortative behavior to 1 for completely assortative.174
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Here, Pk is the normalized distribution of the remaining degree - the number of edges leaving the175

node, other than the one that connects the pair -, σ2
P is its variance, and E jk is the joint probability176

distribution of the remaining degrees of the two vertices at either end of a link. Note that the177

network describing auxotrophies links microbes with metabolites and is bipartite, i.e., there are178

links connecting only microbes to metabolites and vice versa, but not microbes to microbes or179

metabolites to metabolites. Therefore, the relevant description of the interaction is given by a180

biadjacency matrix ψi,k.181

3.3 Cooperative cross-feeding networks182

Loss-of-function mutations can cause auxotrophies and thus affect the production of shared metabo-183

lites. In addition, other mutations can result in an increased production of shared metabolites within184

a microbial community. This can occur, for example, by mutations that redirect fluxes within185

metabolic networks or deregulate biosynthetic pathways39,18. As a consequence, the microbial186

community is comprised of a mixture of auxotrophs and cooperative cross-feeders for different187

metabolites. We define a parameter ξ , denoting the degree of cooperative cross-feeding in the188

community. This parameter can take values in the range 0 and 1, with 1 indicating that all (100%)189

metabolites in the given community are produced in increased amounts.190

4 Results191

4.1 Model of cross-feeding networks192

Our main goal is to understand how environmental disturbance affects different networks of mi-193

croorganisms that exchange essential metabolites with each other. Specifically, we aim at identify-194

ing the parameters that confer robustness against this disturbance. To achieve this goal, we devised195

a population dynamics model, which describes both the dynamics of all microbial strains that are196

part of the interaction network and the metabolites that are exchanged between them. The resulting197

interaction networks can be depicted as a bipartite graph including both the interacting microbes198

as well as the exchanged metabolites (Fig.1a). Strains within this network can either be able to199

produce all metabolites they require for growth (i.e., prototrophic genotypes) or lack the ability200

to produce one or more metabolites (i.e., auxotrophic genotypes). By distributing a certain num-201

ber of auxotrophy-causing mutations among microbial strains, interaction networks were randomly202

generated that differed in their size (i.e., number of interacting genotypes) and topology (i.e., distri-203

bution of metabolic fluxes among cells). In addition, the amount of metabolites a given microbial204

genotype produces can be increased to assess how the presence of cooperative phenotypes affects205
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the robustness of the network interaction to ecological disturbance. The resulting microbial net-206

works were exposed to increased levels of disturbance until the population went extinct (Fig.1b,c).207

The lowest disturbance value, at which a population collapsed, was used to dene the robustness of208

the focal microbial system.209

4.2 Increasing numbers of metabolic auxotrophies decreases network ro-210

bustness to ecological disturbance211

To verify how different degrees of metabolic auxotrophies affect the ecological stability of a net-212

work of cross-feeding microbes, we randomly introduced auxotrophy-causing mutations at the213

community level and evaluated the robustness of the resulting microbial system to ecological dis-214

turbance.215

Our analysis revealed that communities with a higher number of auxotrophy-causing mutations216

were - on average - less robust to ecological disturbance than communities with a lower num-217

ber of auxotrophies (Fig.2). The relationship between robustness and the number of auxotrophy-218

causing mutations in the community can be described with an exponential decay model. Such a219

model describes the average robustness for each number of auxotrophy-causing mutations (Fig.2).220

One source of variance at this level is caused by the fact that not all topologies resulting from221

the randomization process gave rise to microbial systems with a stable equilibrium (i.e., where222

all microbes and all metabolites are present). Moreover, the variance increased for larger micro-223

bial systems (compare Fig.2 a with Fig.2 b), because the number of combinations, in which the224

auxotrophy-causing mutations can be distributed within the networks (i.e., the number of network225

topologies), is larger.226

Together, these results show that auxotrophy-causing mutations can be detrimental for microbial227

communities, by making them more vulnerable to ecological disturbances.228

4.3 The topology of auxotrophic networks affects their robustness to ecolog-229

ical disturbance230

In our model, we generated different auxotrophic networks by randomly introducing loss-of-function231

mutations into a given microbial system, which affected the ability of the corresponding microor-232

ganisms to produce certain metabolites As a consequence of this procedure, a given microorgan-233

ism can carry more than one auxotrophy-causing mutation, thus being unable to produce several234

metabolites simultaneously. Above, we studied the effect of auxotrophy-causing mutations on235

the robustness of the entire microbial community to ecological disturbance. However, for a fixed236

number of auxotrophy-causing mutations, several patterns can emerge, depending on how these237
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mutations are distributed among microbes. The range of patterns that can result when mutations238

are differentially assigned to microorganisms includes cases with a homogeneous distribution of239

auxotrophy-causing mutations as well as heterogeneous distributions, where some auxotrophs bear240

the majority of mutations, while all other cells only carry a few.241

Our analysis identified two measures, which capture essential properties of the focal topology242

and correlate with the network robustness to ecological disturbance: (1) normalized entropy and243

(2) assortativity (see the “Methods” section for more details) (Fig.3). Simulations show that both244

normalized entropy and assortativity were positively correlated with robustness to ecological dis-245

turbance (Fig.3 c, d). This means that microbial networks, in which metabolite production is more246

homogeneously distributed, are more robust to ecological disturbance. This is due to the effect the247

network topology has on the distribution of the microbial population sizes at equilibrium. Asym-248

metries in the number of metabolites produced by auxotrophs generate an increase in the variance249

of the distribution of the microbial population sizes at equilibrium, with some populations being250

present at a lower population frequency, thus making them more prone to extinction. The extinction251

of one microbe can then trigger a cascade of extinctions of other members in the consortium.252

Thus, our results show that the way auxotrophy-causing mutations are distributed among mem-253

bers of a cross-feeding community (i.e., its topology) strongly affects the robustness of the corre-254

sponding communities to ecological disturbances.255

4.4 Metabolite overproduction increases network robustness to ecological256

disturbance257

So far, we have assumed that mutations in microorganisms only affect their ability to produce258

certain metabolites. However, mutations may also increase the amount of metabolites a given cell259

produces18. If the resulting metabolite overproduction is costly to the producing cell and the result-260

ing mutant is stabilized by natural selection, the mutation would have transformed the interaction,261

which was previously based on an exchange of metabolic by-products, into a truly cooperative262

interaction. However, it is not clear how the presence of such cooperative cross-feeding mutants263

within a network of auxotrophic cells affects the robustness of the network to ecological distur-264

bance. To test this, we created networks with a different number of auxotrophy-causing mutations265

and then allowed some fraction of cells to increase the production levels of the remaining metabolic266

capabilities by a certain magnitude. In all cases, microbes carrying a mutation causing metabolite267

overproduction payed a fitness cost, which reflected the increased metabolic and energetic invest-268

ment.269

Our results show that the combination of both types of mutations (i.e., auxotrophy-causing and270

overproduction-causing mutations) can generate networks with a variable response to ecological271
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disturbance. Specifically, the presence of mutations causing metabolite overproduction in an aux-272

otrophic network can increase the robustness of the entire community to ecological disturbance273

(Fig.4). Networks that were more robust to ecological disturbance emerged when the auxotrophy-274

causing mutations generate topologies where metabolite production is homogeneous, while the275

relative position of the mutations causing metabolite overproduction can result in an increase in276

the abundance of metabolites that are produced by a low number of microbes. Strikingly, some277

particular combinations of mutations were more robust to ecological disturbance than an entirely278

prototrophic network (Fig.4 b).279

Together, these results show that cooperative cross-feeding networks containing both auxotrophy-280

causing and overproduction mutations can be highly robust to ecological distrurbance, which may281

even exceed the stability of prototrophic communities.282

5 Discussion283

In this study, we examined the effect of ecological disturbance on the stability of microbial com-284

munities using a dynamical model that describes the interaction between auxotrophic microorgan-285

isms and the public goods they produce. This interaction was formalized as a network, which286

was quantitatively analyzed using different measures of network topology. Our results revealed287

that (1) communities with more auxotrophy-causing mutations were less robust to disturbance, (2)288

microbial networks, where the production of public goods was more homogeneously distributed289

among community members, were more robust to ecological disturbance than networks with a290

more heterogeneous distribution, and (3) mutations that increased metabolite production levels of291

auxotrophic microbes within interaction networks increased the robustness of these communities292

to ecological disturbance.293

In the core mathematical model, we assumed that i) disturbance remains constant during the294

simulation (i.e., press disturbance), ii) auxotrophic microorganisms essentially depend upon an295

external supply of the required metabolite(-s) to grow (i.e., if one of the essential metabolites cannot296

be produced anymore by at least one other strain, the whole community collapses), and finally,297

iii) the metabolites are not affected by the disturbance itself (e.g., metabolites do not degrade).298

However, relaxing these assumptions does not affect any of our main conclusions299

First, if the disturbance stops before the community collapses (i.e., pulse disturbance), the mi-300

crobial community could still be able to recover and return to the equilibrium. Thus, as a rule301

of thumb, pulse disturbance is expected to be less disruptive than press disturbance for a given302

fixed magnitude of disturbance. Moreover, if a set of networks is ordered from more robust to303

less robust when press disturbance is modeled, the same order is expected to be maintained when304

pulse disturbance is modeled instead. As a consequence, and given that we are interested in the305
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robustness of a group of networks defined as the magnitude of disturbance leading to the collapse306

of the whole community, we focused our attention on the case of press disturbance. A more com-307

plex, non-trivial behavior is expected to emerge if the microbial system is exposed to sequential308

pulses of disturbance. However, this issue should be addressed in future studies. Additionally, it309

is important to mention that a common approach used to determine the stability of a system in-310

volves studying departures from the system’s equilibrium when the initial conditions are changed.311

In our case, this is represented by the initial number of metabolites and the population sizes of312

the microbial populations in the community. In this way, the stability of microbial communities313

is modeled as resilience (i.e., the capacity to return to the equilibrium after a transient change in314

the population size). This approach implicitly assumes that changes in the environment (e.g., pH,315

temperature, concentration of antibiotics or toxins in the medium) will eventually result in a de-316

cline of the population size. In such a framework, cooperation destabilizes microbial networks22.317

However, environmental perturbations of this type are more accurately described by modifying the318

rate at which microbes replicate (i.e., their Darwinian fitness). Also, the empirical observation of319

an efficient division of labor between microbes for metabolite production18,24 has been ignored in320

models studying the stability of cooperating microbial networks22. By explicitly incorporating per-321

turbations affecting the rate at which microbes replicate in combination with an efficient division of322

labor for metabolite production into our model, we showed - in stark contrast to a previous study22
323

- a positive effect of metabolic cooperation on the stability of microbial interaction networks. This324

result emerges, because an enhanced production of the metabolites, which are exchanged among325

microorganisms, results in a stronger growth response that ultimately increases the robustness of a326

given community to environmental disturbance.327

Second, metabolic interactions among different microbial cells can be obligate or facultative328

for growth and reproduction of the metabolite-receiving cell. As previously mentioned, we as-329

sumed interactions to be obligate, which would for example be the case of auxotrophic bacteria330

that lack the ability to autonomously produce certain amino acids. However, public goods might331

not be essential, but can still significantly contribute to microbial fitness. This would be the case for332

metabolites such as amino acids, vitamins, or nucleotides that are opportunistically consumed as333

nutrients, whenever they become available in the environment. Also, enzymes that break down ex-334

tracellular proteins (i.e., proteases40) or sugars (e.g., invertases,41) liberate publicly available com-335

pounds that can enhance the fitness of other community members. Other public goods that could336

be involved in facultative interaction networks are secondary metabolites that are produced to repel337

competitors42, deter predators43, or kill and degrade prey organisms44. Relaxing the assumption338

of an obligate interaction by using an additive Monod growth model did not affect any of our main339

conclusions (see Supplementary Material). Given that our results can be applied to different types340

of interaction networks (e.g., obligate or facultative), our results are relevant to a diverse range of341
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microbial systems. These include ecological communities such as intestinal microbiota45,46, soil342

microbiota47,48, or microbiota living in aquatic environments49.343

Third, research shows that modeling mutualistic interactions, without explicitly accounting for344

the dynamics of resources that mediate interactions between species, can significantly alter conclu-345

sions regarding the long-term stability of microbial communities23. Given that in our model, we346

explicitly describe the dynamics of metabolite production and consumption, conclusions regarding347

the stability will not be altered by these model simplifications present in other studies. In the core348

model, we have assumed that disturbance only affects the microbial community, yet not the traded349

metabolites. This would be the case, for example, when the disturbance is due to the presence of350

an antibiotic in the environment. However, disturbances such as changes in the pH or temperature351

might affect both the microbial community and the corresponding metabolites themselves (e.g.,352

by changing their chemical properties that affects the chemical’s bioavailability or by chemically353

degrading the nutrient). Nevertheless, a relaxation of this assumption also yields results that are354

consistent with the main findings of our study (see Supplementary Material).355

The space of potential network configurations is expected to be strongly affected by how acces-356

sible the shared metabolites are to other community members. Different factors will have an im-357

pact on this, such as a limited diffusion in spatially structured environments21, contact-dependent358

transfer of metabolites via specialized structures50,51,52, or a decreased metabolite production by359

changes in the intracellular metabolic network architecture53. Future work should evaluate the role360

of spatial structure and specialized transport mechanisms for determining the stability of intercel-361

lular metabolic networks. Also, the incorporation of metabolic parameters that can be obtained,362

for example through flux balance analysis54, could reveal interesting insights into the dynamics of363

metabolite exchange within a given microbial community facing disturbance.364

Both theory and experiments suggest that microbial population dynamics and the evolutionary365

dynamics of genes, which are associated with cooperative phenotypes such as the production of366

public goods, operate on similar timescales and can be linked to each other via an eco-evolutionary367

feedback loop55. As a consequence, a microbial network of auxotrophic mutants may respond to368

an ecological disturbance by adapting evolutionarily to the corresponding selection pressure. One369

possible response could be to increase the amount of metabolites that are being overproduced. In-370

deed, it has been shown previously that metabolite production can change as a phenotypic response371

to environmental stress56. If a microorganism within a given network increased the production372

of a certain metabolite as a response to the disturbance, this would imply a change in one link of373

the network. The resulting new network would be more or less robust to the environmental dis-374

turbances. In our model, we did not consider a dynamic change in the network as a response to375

environmental disturbance and instead assumed fixed levels of metabolite production. However,376

we explored a statistically meaningful and representative subset of the relevant categories, includ-377
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ing networks with different degrees of auxotrophy (Fig.2 and Fig.3), different levels of metabolite378

overproduction, and their combinations (Fig.4). Future work should address how eco-evolutionary379

feedback loops within microbial auxotrophic networks respond to ecological disturbance.380

Here, we have analyzed the ecological stability of intercellular metabolic networks consisting381

of auxotrophic and cooperative cross-feeding microorganisms. We have identified the amount of382

public goods that is produced by a given microbial community as well as the way these metabolites383

are exchanged among community members (i.e., the network topology) as key parameters deter-384

mining the stability of the whole system. However, the production of metabolites that are being385

exchanged may not be independent of each other, but can potentially be interconnected through the386

underlying biosynthetic pathways. Thus, epistatic interactions among mutations causing auxotro-387

phy57 and/ or metabolite overproduction may strongly affect how natural selection operates on a388

given microbial network. Future work should dissect how the topology of intracellular metabolic389

networks affects the topology of networks that can emerge between cells. Our approach is general,390

and can therefore be interpreted as a null model for microbial community interactions via public391

goods in the absence of these constraints. Previous studies analyzed the emergence of coopera-392

tive phenotype mainly through the lens of social evolution. By examining the ecological dynamics393

of different cross-feeding networks, we discovered that increased production levels of exchanged394

metabolites can significantly enhance the stability of the whole microbial community. Our findings395

thus provide an intuitive explanation for the evolution and maintenance of metabolic cooperation,396

suggesting that these cooperative genotypes may be more widespread than previously thought.397
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Fig. 1. Networks of auxotrophic microorganisms and the effect of environmental disturbance. (a)
Exemplary network depicting microorganisms B1−B5 that produce metabolites M1−M5. We define the
auxotrophy degree in microbes, as the number of metabolites a microbe is unable to produce (i.e., the inverse
of the node degree). In the example, B1 has an auxotrophy degree of 3, while B5 has an auxotrophy degree
of 4. In a similar way, we define the auxotrophy degree in metabolites, as the number of microbes that are
unable to produce a certain metabolite. In the example, M1 has a degree of 3, while M4 has a degree of 1.
These quantities, which are shown as a bar plot, are important to characterize the topology of the network
calculating the normalized entropy (i.e., using the distribution of the auxotrophy degree in microbes) or
the assortativity of the network (i.e., using the distribution of the auxotrophy degree in both microbes and
metabolites) (see main text for an explanation of these terms). (b) Effect of ecological disturbance on the
dynamics of the ecological community shown in Fig.1a. The network was disturbed with (I.) a low (D = 70)
or (II.) a high (D = 136) intensity (i.e., shadowed areas).
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Fig. 2. Increasing numbers of auxotrophy-causing mutations impair the robustness of microbial inter-
action networks to environmental disturbance. The average robustness of interaction networks consisting
of (a) four microorganisms producing four metabolites, or (b) five microorganisms producing five metabo-
lites is shown. Blue points indicate the average robustness for each number of auxotrophy-causing mutations.
An exponential decay model is fitted to the data (green line). The 95% confidence interval is shown with a
green area.
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Fig. 3. The topology of an interaction network determines its robustness to ecological disturbance. (a,
b) Two networks consisting of 5 microorganisms with the same number of auxotrophy-causing mutations
(here: 12) that exchange 5 different metabolites, yet differ in their network topology, are differentially robust
to the same degree of ecological disturbance (D = 7). (a) The community goes extinct. (b) The popula-
tion is maintained at an alternative stable state. (c, d) Statistical relationship between network robustness
and (c) normalized entropy or (d) assortativity. Data represents a microbial system of 5 microbes with 12
auxotrophy-causing mutations in the community that exchange 5 metabolites in total. Arrows point to the
networks shown in Fig.3 (a, b).
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Fig. 4. Increased production levels of the public good enhance the stability of interaction networks to
environmental disturbance. (a) Homogenous and heterogeneous networks can differ in their robustness,
depending on which metabolites are produced in increased amounts. In this example, all networks include
5 auxotrophy-causing mutations and 16 links that are being overexpressed (i.e., the degree of cooperative
cross-feeding in the community ξ = 0.8, black arrows in the network). Increasing the number of links that
represent metabolites and which are produced in large amounts, enhances the robustness of the correspond-
ing ecological networks to environmental disturbance. (b) Summary of networks with different topologies
and different positions of overexpressed links. The dashed line is the robustness level of a prototrophic
community (i.e., which does not contain any auxotrophic mutants).
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