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Abstract

As neuroscience datasets continue to grow in size, the complexity of data analyses can require a detailed
understanding and implementation of systems computer science for storage, access, processing, and shar-
ing. Currently, several general data standards (e.g., Zarr, HDF5, precompute, tensorstore) and purpose-built
ecosystems (e.g., BossDB, CloudVolume, DVID, and Knossos) exist. Each of these systems has advantages
and limitations and is most appropriate for different use cases. Using datasets that don't fit into RAM in this
heterogeneous environment is challenging, and significant barriers exist to leverage underlying research in-
vestments. In this manuscript, we outline our perspective for how to approach this challenge through the
use of community provided, standardized interfaces that unify various computational backends and abstract
computer science challenges from the scientist. We introduce desirable design patterns and our reference
implementation called intern.

1 Introduction
In response to the growing number and size of large-
scale volumetric neuroscience datasets, the commu-
nity has developed a diverse set of tools and storage
frameworks that balance ease of data manipulation
and storage with efficiency and cost. These tools
are often purpose-built, and feature team- or task-
specific features that make them particularly well-
suited for their host projects, such as version con-
trol, cloud-native implementations, efficient caching,
multi-tier storage, targeted annotation or proofread-
ing tasks and more [1, 2, 3, 4, 5]. Historically, this
has been advantageous, as it has enabled teams to de-
velop tools quickly and effectively to address unique
research challenges. This diverse ecosystem, however,
has also led to community fragmentation and inter-
operability challenges because research organizations
rely on standards for data storage and access that are
often incompatible. As scientific questions continue
to grow in ambition and scope, it is increasingly im-
portant that scientists are able to easily analyze, col-
laborate, and share their data using consistent for-
mats and data-storage engines.

Though it is tempting to develop prescriptive data
formats and standards, the fast-moving pace of the
big-data neuroscience field — as well as the need
for backward-compatibility with ongoing and past

projects — will complicate the process of standard-
ization. Instead, it is more feasible to standardize
in abstraction: Rather than developing common data
formats, it is more effective to build common data
access strategies which can be applied to a variety of
underlying datastores, file formats, and interfaces.

In response to collaborations that span data sizes
from megabytes to petabytes, and that span institu-
tional, international, and interdisciplinary boundaries
from neuroscience to computer science to graph the-
ory, interfacing tools are critical to reducing barriers
for new and experienced scientists and enabling exist-
ing algorithms to scale to big data challenges. Data
access toolkits and analysis tools (e.g., neuPrint[6],
CloudVolume[7]) provide well-integrated solutions for
their use cases.

We have developed intern, a Python client library
for neuroscience data access. intern simplifies data
transit between industry-standard data formats, and
exposes a consistent and intuitive API for end-users
so that code for an analysis performed on a dataset in
a particular datastore format may be trivially ported
to other datasets and datastores (i.e., ecosystems).

We explain our architecture and implementation
details, and share several use cases common to scien-
tific analysis which are simplified through the use of
intern. We believe that this tool is helpful in provid-
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ing seamless solutions when switching between cloud
native, local, and file-based solutions, and offers an
extensible software-design paradigm as new solutions
are developed.

2 Tools
Most connectomics data management tools act as ei-
ther a data-storage tool, which manages the (long-
term) preservation of data, or a data-access tool –
which enables an end user (whether human or auto-
mated) to access and interact with the data.

2.1 Data Storage Tools
Though many biological science disciplines rely on
local, single-file data storage systems (e.g., HDF5,
multipage TIFFs), the field of connectomics realized
the need for reproducible, shareable, scalable datas-
tores early in its evolution. These datastores are per-
sistent, performant servers of volumetric data, and
are often centralized into repositories holding infor-
mation from multiple experiments and laboratories
[3, 1, 4, 7, 5]. As the size of data increased, these
datastores specialized in returning subvolumes of data
based upon 3D user queries, rather than trying to
transmit full datasets. Almost all of the most widely-
used data storage tools now leverage chunked stor-
age [8], an access-efficiency paradigm borrowed from
domains such as astronomy and GIS [9]. This en-
abled databases to increase their bandwidth and serve
more data-requests per second, because each subvol-
ume could be accessed in parallel, reducing the file
input/output and hard-drive read-speed bottlenecks.

Eventually, some datastores, including bossDB [1]
and CloudVolume [7], moved to cloud storage systems
such as Amazon AWS S3 [10] or Google Cloud Stor-
age (GCS) [11]. These systems abstracted file-access
even further and enabled high-speed network read-
and write-operations, at the cost of renting — rather
than owning — data storage space. While tools such
as Knossos or DVID may be run on cloud resources as
easily as on local compute infrastructure, other data-
stores such as bossDB are cloud-native, meaning that
they fully leverage the scalability and parallelism of
cloud-compute resources, and cannot be run on con-
ventional compute hardware.

Data storage tools can be classified into two other
large categories: Those with server-side compute re-
sources, and those without. Tools like DVID, bossDB,
and Knossos use devoted compute resources that per-
form functions such as mesh generation, cache man-
agement, and access-control authorization. Systems
like CloudVolume or zarr-backed datastores require
simpler infrastructure to run, but cannot perform pro-
cesses such as skeleton- or mesh-generation without

client-side compute resources.

2.2 Data Access Tools

Some researchers may feel comfortable accessing data
directly from one of the storage tools listed above
(e.g., via RESTful services or object-level access), but
most prefer to interact with the data through more
familiar and intuitive interfaces, such as a Python li-
brary or a web interface. Almost every data storage
tool mentioned above has its own devoted data access
tool: DVID has Go and Python libraries; data stored
in the precomputed format may be accessed with the
cloud-volume Python library. BossDB may be ac-
cessed with either cloud-volume or intern Python li-
braries. A common frustration in the connectomics
community is that with only a small handful of excep-
tions, though the underlying data may be the same in
several data storage tools, most access tools are only
capable of reading from their “partner” storage tool,
and the interfaces vary in complexity and format. In
order to integrate data and tools from our collabo-
rators, we expanded our initial data access tool in-
tern to support more data formats as well as more
data storage systems, in a Resource-based system.
intern’s architecture was expanded to communicate
with CloudVolume-accessible volumes, DVID-hosted
datasets, and several other commonly-used data stor-
age tools and formats.

Additionally, we believe that in order to enable
cross-institutional collaboration in the community, it
is important to bridge the gap between those data
storage tools with server-side compute and those with-
out. For this reason, we also introduced a Service-
based system into intern that enables a user to run
surrogates for the server-side processing tools of one
data-storage system using the data from another. For
example, we want a user to be able to request mesh
representations of data from bossDB — a tool that
supports server-side mesh generation — as well as
from cloud-volume — a tool that supports client-side
mesh generation — as well as from a dataset resid-
ing in a zarr archive in S3 — a storage technique
that does not support mesh generation at all. That
these three tools differ in how their meshes may be
generated should not matter to an end-user: The user
should be able to use the same syntax to request mesh
data from all of them with minimal code changes.

Finally, we wrote intern to be easily extended to
additional use cases and features as scientific needs
grow. We believe the underlying design principles are
common to many research questions and have value
beyond the specific implementation described here.
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Figure 1: The intern Python library acts as a shock absorber to provide a consistent API to researchers, tool
developers, and other users. A community-facing data-access tool should operate on all major data-storage systems
(including CloudVolume, DVID, and bossDB), and remain flexible enough to enable common use cases (such as
visualization, data upload/download, and data proofreading) without sacrificing performance.

2.3 The Connectomics Data-Access
Ecosystem

When considering the data storage engine for a par-
ticular scientific question, several different factors
should be considered, which we summarize as data
size, versioning, authentication and user manage-
ment, cloud services, performance, and accessibili-
ty/sharing. Each tool has a user community and
powerful feature-sets: File-based solutions are sim-
ple and easily portable and understood, but are dif-
ficult to access and analyze by communities. Cloud-
Volume excels in portability and simplicity, but does
not provide user accounts, differential permissions,
or data management services. DVID offers an excel-
lent solution for terascale solutions and fast, efficient
data-versioning, but does not leverage cloud-scale ca-
pabilities or advanced user management. BossDB is a
managed cloud-native service with user permissions,
access control, and a robust storage engine tested to
hold and process petabytes of data, but cannot run
locally and requires more infrastructural complexity
than many research labs may have the expertise to

maintain.
Although for the uninitiated these storage solu-

tions may seem to introduce unnecessary complex-
ity, managing and manipulating such large datasets
and corresponding analysis derivatives (e.g., meta-
data) requires advanced technology. The intent of
the paradigm introduced in this paper is to abstract
from the user all of the challenges introduced by the
scale of the data in order to allow methods to be easily
run on these data while minimizing impedance mis-
matches.

3 intern

Our intern library implements the philosophy of ab-
stracting computer science requirements by offering
consistent data access trait interfaces, which are cat-
egorized into Services, Resources, and Remotes. This
system of abstraction acts as a shock absorber to dif-
fering data formats, data processing, and tool func-
tionality, and serves to enable reproducible and ex-
tensible connectomics analysis. We describe our in-
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tern reference implementation, and explore how other
tool-developers may choose to expand intern or de-
velop their own community-ready software using the
same paradigm.

3.1 Architecture
As the field of connectomics evolves rapidly, a library
must strike a balance between accessibility and adapt-
ability. We designed our toolkit such that even min-
imal coding skills and copy-pasting of simple design
patterns can be leveraged to reduce user burden. As
the community continues to formalize use cases and
data storage paradigms, programmatic workflows like
SABER [12], LONI [13], Luigi [14], or other workflow
managers [15, 16, 17] may allow for additional sim-
plification and can directly leverage these functions.
Point and click graphical interfaces may also follow.

In order to facilitate extension of the intern Python
library by the community, we have published ex-
tensive online documentation for both software en-
gineering beginners as well as professionals. The li-
brary is split into three types of trait-based interfaces;
Remotes, Resources, and Services.

3.1.1 Remotes

Remotes represent data storage tools, such as
databases, on-disk chunked or non-chunked files, and
other providers of volumetric-data access APIs. A
Remote must at least allow the retrieval of volumet-
ric data, and may allow upload, manipulation, user
permissions, or project management as well.

3.1.2 Resources

Resources are pointers to atomic units or groupings
of data from a Remote. For example, in the hierar-
chical bossDB data paradigm, the BossResource im-
plementation interfaces with a CollectionResource, an
ExperimentResource and a ChannelResource [1]. In
the DVIDRemote implementation, a DataInstanceRe-
source points to a specific dataset at a specific version
in its history.

3.1.3 Services

Services are features or manipulations that act upon
data retrieved from a Remote. Services either call
upon the server-side compute of a Remote, or instead
a Service may implement a standalone local algorithm
that can act as a surrogate for a Remote that does not
have such a service available. For example, a Cloud-
VolumeRemote has an associated CloudVolumeMesh-
Service that invokes the built-in cloud-volume mesh-
ing functionality, but a ZarrRemote may use a simi-
lar, locally-executed MeshService with the same API.

Provided the underlying data are the same, the out-
put from different Services will be consistent (give-
or-take obvious differences in performance/timing or
scalability, as well as differences in parameters). In
this way, raw image data from any database (i.e. Re-
mote) can be treated the same; segmentation from
any database can be treated the same; and annota-
tion byproducts can be treated the same.

3.2 Use Cases

3.2.1 Transferring data between Remotes

Since Remotes provide unique task-specific capabili-
ties that are exclusive to a particular data store or
data type, a common use-case of intern is to transfer
data between remotes to leverage their unique capa-
bilities.

For example, DVID provides best-in-class data-
versioning of large scale image segmentation, and it
may be preferable to use DVID for this sort of data-
versioning rather than try to replicate this feature in
other datastores. Volumetric data that is stored in,
e.g., bossDB can be downloaded from the cloud for lo-
cal processing and uploaded into a DVID repository
using intern. Once the proofreading is completed, the
final annotated data can be re-uploaded to bossDB
in order to be cached internationally and served pub-
licly.

3.2.2 Shock-Absorption

Though such software abstractions place an addi-
tional engineering burden on developers, we assert
that developing flexible, ecosystem-agnostic tools is a
fundamental need of the dynamic connectomics com-
munity in lieu of more formal data-standards. To
meet this requirement, we developed intern with such
flexibility in mind: intern acts as a “shock-absorber”
for common connectomics use-cases by implement-
ing database-agnostic Services (e.g. mesh genera-
tion, skeleton generation, segmentation proofread-
ing), which can run regardless of data source. An
intern Service definition includes a list of its required
Resources, and any Remote or other data-source that
meets this interface can run the Service.

As a concrete example, a local marching-cubes
MeshService converts 3D segmentation to OBJ- or
precomputed-formatted meshes. This Service requires
only a VolumeResource provider, and so it can run on,
for example, a BossRemote, a CloudVolumeRemote,
or even, e.g., on a raw ZarrVolumeResource.

Though this may appear to add unnecessary com-
plexity, this approach enables the end-user to repro-
ducibly run the same analysis code, changing only
one line to specify from where the data should be
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pulled. In other words, a user may confidently
change a line of code from BossRemote#mesh(id)
to DVIDRemote#mesh(id), regardless of whether the
data-sources themselves support the meshing opera-
tion.

3.2.3 Local Data Caching

Like many projects in the big-data neuroscience com-
munity, one of the most painful bottlenecks in much
of our work is the speed with which data can be
uploaded and downloaded from user-facing machines
for visualization and analysis. In order to mitigate
this challenge, we developed Bossphorus, a data relay
that uses intern to fetch data from “upstream” data
storage tools in their respective dialects and which
serves data “forward” in the bossDB-flavored REST
API dialect [1]. As a result, Bossphorus instances
can be daisy-chained as a multi-tier cache. This en-
ables an end-user to quickly browse data from a va-
riety of sources with low latency, even if the datas-
tore in question does not support caching. With a
Bossphorus instance running locally using our pub-
licly available Docker image, or a Bossphorus in-
stance running on on-premise hardware at an aca-
demic institute (or indeed with both running in se-
ries), a user can interactively browse large volumes of
data from multiple data sources with sub-second la-
tency. This enables realtime data manipulation and
visualization. intern’s interfaces are designed to be
highly compatible with common data-science tools
like numpy[18] and pandas[19]; popular data stan-
dards like DataJoint [17]; as well as visualization tools
such as neuroglancer[20], substrate[21], matplotlib[22],
and plotly[23].

3.2.4 Processing

Tool and algorithm developers commonly target spe-
cific data storage ecosystems in order to reduce the
burden of supporting several disparate ecosystems
and data-standards. By leveraging shock-absorber
tools like intern, algorithm developers can write code
once and deploy it to a variety of datastores. As a
proof of concept, we adopted a synapse-detection al-
gorithm based upon the U-net architecture [12, 24].
This algorithm Service targets data downloaded from
an intern VolumeResource, which means that it is
trivially portable to data downloaded from any sup-
ported volumetric data storage service.

Just as tool designers can use intern to develop
and test their software, the intern Python library is
production-ready, and is verified to work at petabyte
scale. We believe that reproducible and repeatable
algorithm design extends past tool-design, and con-
tinues to be a fundamental aspect of responsible com-
putational science in public-facing research. Flexible

tools like intern equip peer institutes and collaborat-
ing researchers with the ability to quickly and ac-
curately reproduce, verify, and build upon scientific
claims.

3.2.5 Visualization and Meshing

intern’s Remote, Resource and Service based archi-
tecture allows all Remote data-stores to benefit from
all implementations of Services. An example of this is
intern’s MeshService, which allows users to generate
meshes using local compute resources. Any Remote
that implements volumetric data retrieval as a Vol-
umeResource (namely, all currently implemented Re-
motes) will automatically have this meshing capabil-
ity. Most impactfully, due to this trait-based archi-
tecture, any future Remote implementation for new
databases or data standards will likewise have this
meshing capability without any further development
required.

Any Service can also be used independent of the
rest of the intern library. The MeshService described
above, for example, will produce a Mesh object when
passed a volume of 3D data either as an ndarray or
as a VolumeResource. This mesh object can then be
converted into the common obj format or into the
Neuroglancer precompute format [20].

4 Discussion

In this work we highlight data accessibility, a com-
mon challenge in contemporary computational neuro-
science, which has become particularly acute as data
volumes grow in size and data ecosystems prolifer-
ate. New and experienced users will benefit greatly
by adopting the concept of a computer science shock-
absorber, which we illustrate in our solution (intern).
Such tools are particularly valuable in domains such
as connectomics, where cross-institutional collabora-
tions and data reuse are not only common but increas-
ingly necessary. Other complementary APIs and soft-
ware libraries also exist to support approaches in the
field and are well-suited for particular ecosystems and
workflows. Many of these tools offer solutions that
abstract many of the most challenging and repetitive
aspects of large scale neuroscience discovery and also
avoid common errors of interpretation. This work di-
rectly addresses the retrieval of volumetric data prod-
ucts but not object-level metadata such as synapse or
neuron attributes, or the algorithms used to create
derivative data products; these aspects are also im-
portant to consider when building standardized anal-
ysis workflows.
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By developing user-facing tools such as intern that
are flexible and provide an integrated interface to key
community data storage systems, the connectomics
community will be able to greatly benefit from shared,
collaborative science, as well as large-scale, public,
easily-accessible data.
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