Abstract
Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have consumed a large amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA) for another indication is a more rapid and less expensive option. Repurposing can yield a useful therapeutic and also accelerate proof of concept studies that ultimately lead to a new molecular entity. We present a novel machine learning framework, DRIAD (Drug Repurposing In AD), that quantifies potential associations between the pathology of AD severity (the Braak stage) and molecular mechanisms as encoded in lists of gene names. DRIAD was validated on gene lists known to be associated with AD from other studies and subsequently applied to evaluate lists of genes arising from perturbations in differentiated human neural cell cultures by 80 FDA-approved and clinically tested drugs, producing a ranked list of possible repurposing candidates. Top-scoring drugs were inspected for common trends among their nominal molecular targets and their “off-targets”, revealing a high prevalence of kinases from the Janus (JAK), Unc-51-like (ULK) and NIMA-related (NEK) families. These kinase families are known to modulate pathways related to innate immune signaling, autophagy, and microtubule formation and function, suggesting possible disease-modifying mechanisms of action. We propose that the DRIAD method can be used to nominate drugs that, after additional validation and identification of relevant pharmacodynamic biomarker(s), could be evaluated in a clinical trial.
Competing Interest Statement
PKS is a member of the SAB or Board of Directors of Applied Biomath, RareCyte Inc and Glencoe Software and has equity in these companies. In the last five years the Sorger lab has received research funding from Novartis and Merck. PKS declares that none of these relationships are directly or indirectly related to the content of this manuscript. BTH has stock in Novartis and Dewpoint. NTJ is an employee of H3 Biomedicine, a subsidiary of Eisai Inc. that develops therapies for Alzheimer's. SR, PKS, MWA, and AS are inventors on a patent application for novel targets in neurodegenerative diseases.