






EvalVax-Unlinked population coverage (averages over 15 geographic regions). As shown in Figure 5, the 19 vaccine peptides337

bind to a diverse range of alleles across the HLA-DRB/DP/DQ loci. Even though less effective than OptiVax-Robust on338

providing a high predicted number of average peptide-HLA hits in the population, the OptiVax-Unlinked peptide set still339

achieves high coverage on EvalVax-Robust metrics (93.23% for p(n≥ 1), 70.19% for p(n≥ 5), 45.87% for p(n≥ 8)). The340

expected per-individual number of peptide-HLA hits for the design is 9.736, 8.454, and 6.860 for White, Black, and Asian341

populations, respectively (Table 1).342

3.4 EvalVax evaluation of public vaccine designs for SARS-CoV-2343

We used EvalVax to evaluate peptide vaccines proposed by other publications [52, 24, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,344

63, 64, 65, 66, 67, 68, 69] on metrics including EvalVax-Unlinked and EvalVax-Robust population coverage at different per-345

individual number of peptide-HLA hits thresholds, expected per-individual number of peptide-HLA hits in White, Black, and346

Asian populations, percentage of peptides that are predicted to be glycosylated, peptides observed to mutate with greater than347

0.001 probability, or peptides that sit on known cleavage sites. We define vaccine efficiency as the mean expected per-individual348

number of peptide-HLA hits for a vaccine divided by the number of peptides in the vaccine. This metric represents the mean349

probability of display of each peptide in a vaccine, and normalizes vaccine performance by vaccine peptide count.350

Figure 6. EvalVax population coverage evaluation for MHC class I vaccines. (a) EvalVax population coverage for
OptiVax-Unlinked and OptiVax-Robust proposed vaccine at different vaccine size (b) EvalVax-Robust population coverage
with n≥ 1 peptide-HLA hits per individual, OptiVax-Robust performance is shown by the blue curve and baseline performance
is shown by red crosses (labeled by first author’s name) (c) EvalVax-Robust population coverage with n≥ 5 peptide-HLA hits.
(d) EvalVax-Robust population coverage with n≥ 8 peptide-HLA hits.

Figure 7. Expectation of per individual number of peptide-HLA hits and vaccine efficiency for MHC class I vaccines. (a)
Expected number of peptide-HLA hits vs. peptide vaccine size for OptiVax-Robust and OptiVax-Unlinked, and efficiency (hits
/ vaccine size) at different vaccine size. (b) Comparison between OptiVax-Robust and baselines on expected number of
peptide-HLA hits. OptiVax-Robust performance is shown by the blue curve and baseline performance is shown by red crosses
(c) Comparison between OptiVax-Robust and baselines on efficiency.

Figures 6 to 9 show the comparison between OptiVax-Robust designed MHC class I and class II vaccines at all vaccine351

sizes (top solution in the beam up to the given vaccine size) from 1-35 peptides (blue curves) and baseline vaccines (red crosses)352

proposed by other publications. We observe superior performance of OptiVax-Robust designed vaccines on all evaluation353

metrics at all vaccine sizes for both MHC class I and class II. Most baselines achieve reasonable coverage at n≥ 1 peptide hits.354

However, many fail to show a high probability of higher hit counts, indicating a lack of predicted redundancy if a single peptide355

is not displayed. We also evaluate randomly selected peptide sets of size 19 from predicted binders of MHC class I and II,356

where a binder is defined as a peptide that is predicted to bind with ≤ 50nM to more than 5 of the alleles in the MHC class. We357

found that a random binder set can achieve coverage that outperforms some of the proposed vaccines that we use as baselines.358
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Table 1 summarizes EvalVax results for all baselines with a vaccine peptide count less than 150 peptides. We also included359

evaluation on peptide sets derived from taking all sliding windows with proper size for MHC class I and II from the S protein or360

S1 subunit, and evaluated an average of 500 random designs for MHC class I or class II that are comprised of 19 peptides that361

are predicted to bind either MHC class I and II. We found that the baseline methods all provide less coverage than OptiVax362

derived sets, and some contain peptides predicted to be glycosylated or have a high observed mutation probability (Table 1).363

We also observe some baselines contain peptides that sit on the cleavage sites or overlap with self-peptides. In addition, we364

found that for class II MHC coverage the S protein alone is unable to achieve more than 88% coverage for n≥ 0 and 75.9%365

coverage n≥ 5.366

Figure 8. EvalVax population coverage evaluation for MHC class II vaccines. (a) EvalVax population coverage for
OptiVax-Unlinked and OptiVax-Robust proposed vaccine at different vaccine sizes. (b) EvalVax-Robust population coverage
with n≥ 1 peptide-HLA hits per individual, OptiVax-Robust performance is shown by the blue curve and baseline performance
is shown by red crosses (labeled by first author’s name). (c) EvalVax-Robust population coverage with n≥ 5 peptide-HLA hits.
(d) EvalVax-Robust population coverage with n≥ 8 peptide-HLA hits.

Figure 9. Expectation of per individual number of peptide-HLA hits and vaccine efficiency for MHC class II vaccines. (a)
Expected number of peptide-HLA hits vs. peptide vaccine size for OptiVax-Robust and OptiVax-Unlinked, and efficiency (hits
/ vaccine size) at different vaccine size. (b) Comparison between OptiVax-Robust and baselines on expected number of
peptide-HLA hits. OptiVax-Robust performance is shown by the blue curve and baseline performance is shown by red crosses.
(c) Comparison between OptiVax-Robust and baselines on efficiency.

3.5 EvalVax results are robust to different binding prediction models367

We evaluated all Table 1 vaccine designs using eleven independent peptide-MHC binding prediction methods to ensure368

that the performance observed in Table 1 is not an artifact. For MHC class I prediction we validated using seven methods:369

NetMHCpan-4.0; NetMHCpan-4.1; MHCflurry 1.6.0; PUFFIN; the mean of NetMHCpan-4.0 and MHCflurry 1.6.0 with a370

50nM cutoff on predicted affinity; and NetMHCpan-4.0 and NetMHCpan-4.1 with a 99.5% cutoff on EL ranking. For MHC371

class II peptide-MHC binding prediction we validated using four different methods: NetMHCIIpan-3.2 and NetMHCIIpan-4.0,372

each with either a 50nM cutoff on predicted affinity or a 98% cutoff on EL ranking. The result of all eleven EvalVax evaluation373

metrics for all Table 1 designs are shown in Supplement Section S3. We find that all of the eleven methods we use for evaluation374

show that Table 1 is a conservative estimate of vaccine performance.375

4 Discussion376

The computational design of peptide vaccines for eliciting cellular immunity is built upon the imperfect science of predicting377

peptide presentation by MHC molecules. Peptide vaccine designs also need to ensure that individuals with rare MHC alleles378

display vaccine peptides to ensure a high rate of vaccine efficacy over the entire population.379
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To mitigate computational model uncertainty we have taken a very conservative view of peptide presentation, emphasizing380

precision over recall. To provide coverage for individuals with rare HLA types we use haplotype frequencies that include these381

types in our evaluations. We provide an evaluation tool, EvalVax, to permit the flexible analysis of vaccine proposals on key382

metrics, including population coverage and the expected number of peptides displayed. Not surprisingly, our OptiVax vaccine383

designs that are optimized with respect to EvalVax objective functions do well on the same metrics. We also find that OptiVax384

designs do well when evaluated on eleven computational models of peptide MHC binding, providing encouragement that their385

component peptides will be displayed.386

EvalVax can be used for vaccine designs that are focused on the expression of viral proteins or their subunits to evaluate387

the level of viral peptide MHC presentation that is predicted to result. We note for SARS-CoV-2 in Table 1 that S protein and388

the S1 subunit both are limited in their predicted ability to provide robust population coverage for MHC class II display of389

more than five viral epitopes. This suggests that vaccines that only employ the S protein or its subunits may require additional390

peptide components for reliable CD4+ T cell activation across the entire population.391

At present the World Health Organization lists 79 COVID-19 vaccine candidates in clinical or preclinical evaluation [70],392

and the precise designs of most of these vaccines are not public. We encourage the early publication of vaccine designs to393

enable collaboration and rapid progress towards safe and effective vaccines for COVID-19.394

All of our software and data are freely available as open source to allow others to use and extend our methods.395

Acknowledgements396

Michael Birnbaum, Brooke Huisman, and Jonathan Krog provided helpful discussions. Viral sequences are from GISAID (see397

acknowledgement spreadsheet). This work was supported by in part by Schmidt Futures and NIH grant R01CA218094 to398

D.K.G.399

This project has been funded in part with federal funds from the Frederick National Laboratory for Cancer Research, under400

Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the401

Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply402

endorsement by the U.S. Government. This Research was supported in part by the Intramural Research Program of the NIH,403

Frederick National Lab, Center for Cancer Research. The views expressed in this article do not necessarily reflect the official404

policy or position of the National Institutes of Health, the Department of the Navy, the Department of Defense, or any other405

agency of the US government.406

Data and Software Availability407

Our data and code are available at: https://github.com/gifford-lab/optivax408

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 17, 2020. ; https://doi.org/10.1101/2020.05.16.088989doi: bioRxiv preprint 

https://github.com/gifford-lab/optivax
https://doi.org/10.1101/2020.05.16.088989


Study Vaccine
size

EvalVax-
Unlinked

EvalVax-
Robust

p(n≥ 1)

EvalVax-
Robust

p(n≥ 5)

EvalVax-
Robust

p(n≥ 8)

Efficiency
(Exp. #
peptide-

HLA
hits /

vaccine
size)

Exp. #
peptide-

HLA
hits

(White)

Exp. #
peptide-

HLA
hits

(Black)

Exp. #
peptide-

HLA
hits

(Asian)

Peptides
Glyco-
sylated

Peptides
Muta-

tion Rate
> 0.001

On
cleavage

site
Protein origins

In
SARS-
CoV

MHC Class I Peptide Vaccine Evaluation
S-protein 3795 99.96% 100.00% 99.17% 98.29% 0.91% 30.845 32.139 41.134 15.57% 29.99% 0.63% S1, S2 29.30%
OptiVax-Unlinked (Ours) 19 99.79% 99.99% 89.15% 49.59% 40.72% 7.340 6.899 8.971 0.00% 0.00% 0.00% ORF1a/b, ORF3a, S1 42.11%
S1-subunit 2055 99.88% 99.99% 98.73% 93.52% 0.74% 14.990 15.186 15.585 17.08% 30.02% 1.17% S1 10.17%
OptiVax-Robust (Ours) 19 99.39% 99.91% 93.21% 67.75% 49.26% 9.358 8.515 10.206 0.00% 0.00% 0.00% ORF1a/b, ORF3a, S1, ORF9b 52.63%
OptiVax-Robust (Ours)_len15 15 99.07% 99.89% 86.69% 54.36% 54.47% 8.175 7.196 9.140 0.00% 0.00% 0.00% ORF1a/b, S1, ORF9b 53.33%

Srivastava-Mangalayatan [58] 37 95.86% 99.75% 52.94% 16.00% 13.51% 5.365 4.986 4.645 8.11% 37.84% 0.00%
ORF1a/b, ORF3a, N, E, S1,
ORF10, ORF7ab, ORF8, M,

ORF6
45.95%

OptiVax-Robust (Ours)_SMN only 26 97.49% 98.15% 67.37% 26.24% 22.31% 5.313 5.643 6.448 0.00% 0.00% 0.00% N, S2, S1, M 57.69%
Herst-FlowPharma [59] 52 90.89% 95.82% 56.52% 19.99% 9.88% 5.204 4.437 5.767 7.69% 34.62% 0.00% N 55.77%
Herst-FlowPharma-top16 [59] 16 80.41% 93.46% 9.47% 0.03% 15.73% 2.747 2.602 2.203 12.50% 12.50% 0.00% N 68.75%
Random subset of binders 19 81.04% 90.33% 25.02% 4.58% 16.74% 3.012 2.834 3.695 0.00% 29.89% 0.00% N/A 40.37%
Baruah-Gauhait [55] 5 71.91% 90.10% 0.55% 0.00% 33.60% 1.928 1.441 1.672 0.00% 40.00% 0.00% S1, S2 40.00%
Fast-Stanford [24] 13 78.66% 85.29% 58.51% 30.56% 44.25% 5.587 4.977 6.693 7.69% 30.77% 0.00% N, S1, S2, ORF1a, E, M 23.08%
Poran-NEON [53] 10 69.12% 85.13% 3.21% 0.01% 19.23% 1.683 1.721 2.366 0.00% 30.00% 0.00% ORF3a, ORF1a/b, ORF8, S1 20.00%
Vashi-Guwahati [60] 51 68.63% 80.80% 1.52% 0.00% 3.12% 1.898 1.702 1.175 12.77% 46.81% 6.38% S1, S2 6.38%
Abdelmageed-Khartoum [56] 10 66.91% 78.49% 23.49% 2.72% 28.34% 2.933 2.501 3.069 10.00% 10.00% 0.00% E 80.00%
Lee-Oxford [52] 13 64.96% 75.75% 39.82% 37.09% 34.15% 4.771 3.685 4.862 0.00% 7.69% 0.00% ORF1a/b, S2, E, N 53.85%
Akhand-Sylhet [61] 31 49.46% 71.24% 0.08% 0.00% 3.47% 1.091 1.109 1.025 3.23% 35.48% 0.00% E, M, N, S1 41.94%
Singh-Kolkata [69] 7 53.91% 66.59% 1.38% 0.00% 19.87% 1.341 1.298 1.534 0.00% 28.57% 0.00% N, S2, E, M, S1 71.43%
Bhattacharya-Hallym [54] 13 44.56% 61.09% 0.00% 0.00% 5.67% 0.792 0.688 0.731 23.08% 46.15% 7.69% S2, S1 23.08%
Ahmed-HKUST [57] 16 45.25% 52.30% 35.61% 4.15% 15.57% 2.558 2.182 2.735 12.50% 25.00% 0.00% S2, N 100.00%
Saha-Tripura [67] 5 29.90% 41.77% 0.00% 0.00% 8.86% 0.563 0.358 0.408 0.00% 20.00% 0.00% S1 20.00%
Gupta-Jaipur [66] 7 30.23% 38.91% 21.08% 1.41% 23.92% 1.325 0.548 3.150 0.00% 42.86% 0.00% S2, S1 14.29%
Khan-JMI [63] 3 27.14% 34.98% 0.00% 0.00% 17.33% 0.762 0.556 0.241 0.00% 66.67% 0.00% S2, S1 0.00%
Mitra-Rajashtan [62] 9 13.97% 23.86% 0.00% 0.00% 2.83% 0.149 0.081 0.535 22.22% 11.11% 0.00% S1, S2 11.11%

MHC Class II Peptide Vaccine Evaluation
OptiVax-Unlinked (Ours) 19 91.67% 93.23% 70.19% 45.87% 43.95% 9.736 8.454 6.860 0.00% 0.00% 0.00% M, ORF1a/b, S2 52.63%
OptiVax-Robust (Ours) 19 90.59% 93.21% 90.17% 45.99% 48.45% 10.703 9.405 7.509 0.00% 0.00% 0.00% ORF1a/b, S2, M 57.89%
Ramaiah-UCIrvine [65] 134 87.28% 92.69% 71.65% 65.68% 17.86% 32.343 26.538 12.928 20.15% 44.78% 0.00% S1, M, E, N, S2 30.60%
S-protein 16315 89.80% 92.13% 88.84% 88.62% 1.49% 340.102 250.938 138.248 30.01% 57.50% 1.43% S1, S2 16.06%
OptiVax-Robust (Ours)_SMN only 22 85.76% 91.79% 59.64% 32.08% 28.16% 7.659 6.291 4.636 0.00% 0.00% 0.00% S1, S2, N, M 36.36%
S1-subunit 8905 86.34% 89.66% 75.29% 72.74% 1.24% 171.489 107.331 52.472 32.39% 54.28% 2.63% S1 0.71%
Fast-Stanford [24] 13 67.29% 74.48% 10.04% 2.00% 15.42% 2.943 1.751 1.319 30.77% 38.46% 0.00% ORF1a, N, S2, S1, M, E 0.00%
Random subset of binders 19 72.66% 71.16% 32.84% 17.76% 19.26% 4.627 4.022 2.329 0.00% 63.16% 0.00% N/A 24.29%
Banerjee-Midnapore [64] 9 56.73% 67.24% 8.91% 0.35% 19.81% 2.378 1.670 1.299 22.22% 44.44% 0.00% S2, S1 55.56%
Akhand-Sylhet [61] 31 43.90% 49.82% 4.85% 0.21% 4.40% 1.868 1.708 0.520 3.33% 50.00% 0.00% E, N, M, S1 30.00%
Poran-NEON [53] 10 42.30% 47.58% 0.00% 0.00% 6.20% 0.925 0.602 0.331 20.00% 90.00% 0.00% ORF1a/b, S2, ORF3a 20.00%
Singh-Kolkata [69] 7 41.48% 47.03% 0.87% 0.00% 11.57% 1.227 0.853 0.351 0.00% 28.57% 0.00% M, N, S1, E, S2 71.43%
Ahmed-HKUST [57] 5 27.69% 46.01% 0.00% 0.00% 10.18% 0.600 0.517 0.409 0.00% 20.00% 0.00% S2, N 100.00%

Qamar-Guangxi [68] 11 39.44% 43.71% 0.03% 0.00% 6.85% 1.075 0.911 0.273 0.00% 72.73% 0.00% N, ORF10, ORF7a, M, ORF8,
ORF6, E 36.36%

Mitra-Rajashtan [62] 5 25.46% 39.49% 0.00% 0.00% 10.32% 0.754 0.425 0.369 60.00% 20.00% 0.00% S2, S1 0.00%
Abdelmageed-Khartoum [56] 10 19.15% 28.39% 0.96% 0.00% 4.79% 0.919 0.274 0.244 60.00% 70.00% 0.00% E 30.00%
Vashi-Guwahati [60] 20 20.78% 22.17% 0.02% 0.00% 2.08% 0.595 0.376 0.280 15.79% 36.84% 5.26% S1, S2 0.00%
Baruah-Gauhait [55] 3 0.00% 0.00% 0.00% 0.00% 0.00% 0.000 0.000 0.000 66.67% 100.00% 0.00% S1 0.00%

Table 1. Comparison of existing baselines, S-protein peptides, and OptiVax designed peptide vaccines (using full set of
proteins or S/M/N proteins only) on various population coverage evaluation metrics and vaccine quality metrics (percentage of
peptides with larger than 0.1% probability of mutating or with non-zero probability of being glycosylated). The list is sorted by
EvalVax-Robust p(n≥ 1). Random subsets are generated 200 times.The binders used for generating random subsets are
defined as peptides that is predicted to bind with ≤ 50nM to more than 5 of the alleles.
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Supplementary Information for:594

Robust computational design and evaluation of peptide vaccines for cellular595

immunity with application to SARS-CoV-2596

S1 Validation of Computational Peptide-MHC Prediction Models597

S1.1 Criteria for Predicted Binding598

NetMHCpan-4.0 [18] and NetMHCIIpan-4.0 [36] output predicted binding affinity (BA), percentile rank of predicted BA599

compared to a set of random natural peptides, and percentile rank of an eluted ligand (EL) score compared to a set of random600

natural peptides. Default parameters for these methods suggest EL percentile rank thresholds of 0.5% and 2% rank for601

classifying peptides as strong and weak binders, respectively, for MHC class I and thresholds of 2% and 10% for strong and602

weak binders, respectively, for MHC class II.603

To identify binders for our vaccine designs, we use a 50nM predicted binding affinity threshold (Section 2.2). We find604

binders selected with this criterion are also considered binders under alternative criteria based on percentile rank. Across our605

set of all candidate SARS-CoV-2 MHC class I peptides (Section 2.1), we find that 91.0% of peptide-MHC hits with ≤ 50nM606

predicted binding affinity by NetMHCpan-4.0 are also considered binders using BA percentile rank ≤ 0.5% (100.0% have607

BA percentile rank ≤ 2%). Using percentile rank for EL scores, 67.6% of peptide-MHC hits with ≤ 50nM predicted binding608

affinity have EL percentile rank ≤ 0.5% (92.6% have EL percentile rank ≤ 2%). Across all candidate SARS-CoV-2 MHC class609

II peptides, we find that 86.1% of peptide-MHC hits with ≤ 50nM predicted binding affinity by NetMHCIIpan-4.0 are also610

considered binders using BA percentile rank ≤ 2% (100.0% have BA percentile rank ≤ 10%). Using percentile rank for EL611

scores, 26.1% of peptide-MHC hits with ≤ 50nM predicted binding affinity have EL percentile rank ≤ 2% (63.1% have EL612

percentile rank ≤ 10%).613

S1.2 Validation on SARS-CoV-2 and SARS-CoV Experimental Data614

We evaluate peptide-MHC binding predictions on a set of experimentally assessed SARS-CoV-2 peptides whose peptide-MHC615

complex stability was assessed in vitro across 11 MHC allotypes (5 HLA-A, 1 HLA-B, 4 HLA-C, 1 HLA-DRB1) [38]. Prachar616

et al. [38] suggest that peptides with low (< 60%) stability are unlikely to elicit an immune response and are unsuitable for617

vaccine development. For MHC class I alleles, the dataset contains 912 unique peptides-MHC pairs, of which 185 peptides618

are considered stable (≥ 60% stability). For MHC class II, the dataset contains 93 total peptides, of which 22 are stable. We619

use our computational models to predict peptide-MHC binding and evaluate them using various binding criteria against the620

experimental peptide stability measurement (Table S1). AUROC and average precision are computed using raw predictions, and621

the remaining metrics are computed using binarized predictions based on the respective binding criteria (using scikit-learn [71]).622

We compare classification performance using different binding criteria (see Section S1.1) and find in general that classifying623

binders using predicted binding affinity using a 50nM threshold maximizes AUROC and precision (Table S1). We find that our624

mean ensemble of NetMHCpan-4.0 and MHCflurry further improves classification AUROC and precision over the individual625

models for predicting MHC class I epitopes. On MHC class II data, we note NetMHCIIpan-4.0 achieves AUROC 0.848 and626

precision 0.625 using a 500nM threshold (Table S1). While NetMHCIIpan-4.0 with a 50nM threshold does not identify any627

peptides in this dataset as binders, we use this stricter threshold in our vaccine designs as it is more conservative and less likely628

to admit false positive binders. In general, we find performance of PUFFIN with a 50nM binding threshold comparable to629

alternative methods on both MHC class I and class II data and use PUFFIN as part of our vaccine design evaluation.630

We additionally validate our computational models using previously reported SARS-CoV T cell epitopes from experimental631

studies [39, 40, 41] as provided by Fast et al. [24]. For MHC class I, this dataset contains 17 experimentally-determined632

HLA-A*02:01 associated CD8 T cell epitopes and 1236 non-epitope 9-mer peptides from the rest of the SARS-CoV Spike (S)633

protein. Table S2 shows the performance of our peptide-MHC binding prediction models on these SARS-CoV peptides.634
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MHC Model Binding Criterion AUROC Precision Sensitivity Specificity Avg. Precision

Class I

NetMHCpan-4.0 BA ≤ 50nM 0.845 0.516 0.714 0.829 0.486
NetMHCpan-4.0 BA ≤ 500nM 0.845 0.308 0.968 0.446 0.486
NetMHCpan-4.0 BA % Rank ≤ 0.5 0.746 0.249 0.968 0.257 0.416
NetMHCpan-4.0 BA % Rank ≤ 2 0.746 0.212 1.000 0.054 0.416
NetMHCpan-4.0 EL % Rank ≤ 0.5 0.757 0.256 0.930 0.312 0.479
NetMHCpan-4.0 EL % Rank ≤ 2 0.757 0.214 0.989 0.077 0.479
NetMHCpan-4.1 BA ≤ 50nM 0.853 0.504 0.719 0.820 0.499
NetMHCpan-4.1 BA ≤ 500nM 0.853 0.304 0.984 0.428 0.499
NetMHCpan-4.1 EL % Rank ≤ 0.5 0.776 0.278 0.903 0.403 0.490
NetMHCpan-4.1 EL % Rank ≤ 2 0.776 0.219 0.989 0.103 0.490
MHCflurry 1.6.0 BA ≤ 50nM 0.724 0.404 0.422 0.842 0.411
PUFFIN BA ≤ 50nM 0.768 0.526 0.492 0.887 0.485
PUFFIN BA ≤ 500nM 0.768 0.272 0.870 0.406 0.485
Ensemble Mean BA ≤ 50nM 0.862 0.683 0.514 0.939 0.650

Class II

NetMHCIIpan-4.0 BA ≤ 50nM 0.848 0.000 0.000 1.000 0.762
NetMHCIIpan-4.0 BA ≤ 500nM 0.848 0.625 0.682 0.873 0.762
NetMHCIIpan-4.0 EL % Rank ≤ 2 0.908 1.000 0.182 1.000 0.785
NetMHCIIpan-4.0 EL % Rank ≤ 10 0.908 0.789 0.682 0.944 0.785
NetMHCIIpan-3.2 BA ≤ 50nM 0.766 1.000 0.045 1.000 0.544
NetMHCIIpan-3.2 BA ≤ 500nM 0.766 0.253 0.909 0.169 0.544
NetMHCIIpan-3.2 BA % Rank ≤ 2 0.766 0.380 0.864 0.563 0.536
NetMHCIIpan-3.2 BA % Rank ≤ 10 0.766 0.253 1.000 0.085 0.536
PUFFIN BA ≤ 50nM 0.704 0.667 0.091 0.986 0.430
PUFFIN BA ≤ 500nM 0.704 0.275 0.864 0.296 0.430

Table S1. Classification performance of computational methods for predicting peptide-MHC binding evaluated on
experimental SARS-CoV-2 peptide stability data across 11 MHC allotypes (5 HLA-A, 1 HLA-B, 4 HLA-C, 1 HLA-DRB1).
Ensemble outputs the mean predicted binding affinity of NetMHCpan-4.0 and MHCflurry (see Section 2.2). (BA = binding
affinity, EL = eluted ligand)

Model Binding Criterion AUROC Precision Sensitivity Specificity Avg. Precision

NetMHCpan-4.0 BA ≤ 50nM 0.977 0.474 0.529 0.992 0.470
NetMHCpan-4.0 BA ≤ 500nM 0.977 0.250 0.706 0.971 0.470
NetMHCpan-4.0 BA % Rank ≤ 0.5 0.977 0.538 0.412 0.995 0.470
NetMHCpan-4.0 BA % Rank ≤ 2 0.977 0.324 0.647 0.981 0.470
NetMHCpan-4.0 EL % Rank ≤ 0.5 0.985 0.500 0.706 0.990 0.536
NetMHCpan-4.0 EL % Rank ≤ 2 0.985 0.269 0.824 0.969 0.536
MHCflurry 1.6.0 BA ≤ 50nM 0.987 0.360 0.529 0.987 0.406
NetMHCpan-4.1 BA ≤ 50nM 0.979 0.438 0.412 0.993 0.466
NetMHCpan-4.1 BA ≤ 500nM 0.979 0.267 0.706 0.973 0.466
NetMHCpan-4.1 EL % Rank ≤ 0.5 0.990 0.480 0.706 0.989 0.521
NetMHCpan-4.1 EL % Rank ≤ 2 0.990 0.298 1.000 0.968 0.521
PUFFIN BA ≤ 50nM 0.976 0.467 0.412 0.994 0.425
PUFFIN BA ≤ 500nM 0.976 0.231 0.706 0.968 0.425
Ensemble Mean BA ≤ 50nM 0.980 0.474 0.529 0.992 0.427

Table S2. Classification performance of computational methods for predicting peptide-MHC binding evaluated on 17
experimentally determined HLA-A*02:01 associated CD8 T-cell epitopes from SARS-CoV vs. rest of SARS-CoV Spike (S)
protein. Ensemble outputs the mean predicted binding affinity of NetMHCpan-4.0 and MHCflurry (see Section 2.2). (BA =
binding affinity, EL = eluted ligand)
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S2 Details on S, M, N protein only vaccine design635

Figure S1. OptiVax-Robust designed vaccine using peptides from S, M, and N proteins only. (A) Results for MHC class I.
(B) Results for MHC class II. (a) EvalVax-Robust population coverage at different minimum number of peptide-HLA hit
cutoffs. (b) EvalVax-Unlinked population coverage. (c) Binding of vaccine peptides to each of the available alleles in MHC I
and II. (d) Distribution of peptide origin. (e) Distribution of the number of per-individual peptide-HLA hits in
White/Black/Asian populations. (f) Peptide presence in SARS-CoV.
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S3 Evaluation of baseline and OptiVax vaccines using different prediction tools/binder636

calling strategies637

See supplementary table in Supplementary_S3_evaluation_on_different_tools.xlsx.638

S4 Detailed GISAID accessions639

See table in GISAID_Acknowledgements.xlsx for acknowledgements.640

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 17, 2020. ; https://doi.org/10.1101/2020.05.16.088989doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.16.088989

