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ABSTRACT16

We present a combinatorial machine learning method to evaluate and optimize peptide vaccine formulations, and we find for
SARS-CoV-2 that it provides superior predicted display of viral epitopes by MHC class I and MHC class II molecules over
populations when compared to other candidate vaccines. Our method is robust to idiosyncratic errors in the prediction of
MHC peptide display and considers target population HLA haplotype frequencies during optimization. To minimize clinical
development time our methods validate vaccines with multiple peptide presentation algorithms to increase the probability that
a vaccine will be effective. We optimize an objective function that is based on the presentation likelihood of a diverse set of
vaccine peptides conditioned on a target population HLA haplotype distribution and expected epitope drift. We produce separate
peptide formulations for MHC class I loci (HLA-A, HLA-B, and HLA-C) and class II loci (HLA-DP, HLA-DQ, and HLA-DR) to
permit signal sequence based cell compartment targeting using nucleic acid based vaccine platforms. Our SARS-CoV-2
MHC class I vaccine formulations provide 93.21% predicted population coverage with at least five vaccine peptide-HLA hits
on average in an individual (≥ 1 peptide 99.91%) with all vaccine peptides perfectly conserved across 4,690 geographically
sampled SARS-CoV-2 genomes. Our MHC class II vaccine formulations provide 90.17% predicted coverage with at least
five vaccine peptide-HLA hits on average in an individual with all peptides having observed mutation probability ≤ 0.001. We
evaluate 29 previously published peptide vaccine designs with our evaluation tool with the requirement of having at least five
vaccine peptide-HLA hits per individual, and they have a predicted maximum of 58.51% MHC class I coverage and 71.65%
MHC class II coverage given haplotype based analysis. We provide an open source implementation of our design methods
(OptiVax), vaccine evaluation tool (EvalVax), as well as the data used in our design efforts.

17

1 Introduction18

Peptide vaccines elicit a protective adaptive immune response to either cancer or infectious agent antigens to immunize against19

and combat ongoing disease [1, 2]. Their component peptides present undesired epitopes as 3D structural protein subunits or20

MHC displayed peptides to train the adaptive immune system to mount a response to a threat. T and B cells use their respective21

receptors to recognize vaccine presented epitopes to trigger activation and expansion of their response to the displayed epitopes.22

The activated and expanded T and B cells can then effectively mount a response against pathogens or tumor cells. Peptide23

vaccines are presently in development for cancer [3] and viral diseases including HIV [4], HCV, and Malaria [2, 5]. An HPV24

peptide vaccine is currently licensed for humans and encodes the sequence of two viral peptides that induce both CD4+ and25

CD8+ T cell responses [6].26

The precise control of antigenic T cell recognized epitopes afforded by peptide vaccines has been proposed to reduce the27

risks posed by conventional vaccine approaches. For example, the conventional vaccine tetravalent dengue vaccine (CYD-TDV)28

increases the risk of hospitalization when an individual is infected with dengue for the first time. A study considered patients29

from 2 to 16 years of age that had not been infected at the time of vaccination but were infected post vaccination. The increased30
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risk of hospitalization was thought to occur by antibody-dependent enhancement (ADE) by sub-neutralizing responses to the31

infecting dengue serotype [7]. A peptide based dengue vaccine has been proposed to induce CD4+ and CD8+ T cell response32

to dengue that would avoid ADE [8]. Given the multiple strains of coronavirus in circulation, considerations of ADE, immune33

enhancement, and other deleterious effects of vaccination need to be considered [9].34

Here we focus on eliciting immunity by the adaptive immune system that is mediated by cells (cellular immunity). Cellular35

immunity can be induced with peptide vaccines that cause Major Histocompatibility Complex (MHC) molecules to display36

undesired epitopes on cell surfaces. Class I MHC molecules typically display peptides from a cell’s internal workings, while37

class II MHC molecules display peptides from a cell’s external environment that are taken up by professional antigen presenting38

cells by phagocytosis, and then made available for loading onto MHC class II molecules for cell surface display for T cell39

surveillance. CD8+ T cells recognize cells that are displaying non-self peptides on their class I MHC molecules and target40

the cells for destruction, while CD4+ T cells recognize non-self peptides on class II MHC molecules on professional antigen41

presenting cells and help prime the activation of CD8+ cells and antibody producing B cells. The production of a strong cellular42

immunity response to either a tumor or viral infection is important for positive patient outcomes. Cellular immunity is durable,43

and thus an important component of lasting immunity to viral infection.44

There are multiple delivery platforms for peptide vaccines, including the direct injection of peptides in carriers and the45

delivery of recombinant nucleic acid that is turned into peptides by a patient’s cells. Recombinant nucleic acid delivery of46

vaccine formulations as either DNA or RNA has the advantage that it harnesses a patient’s own cells to transiently manufacture47

vaccine peptides. Recombinant nucleic acid vectors can be quickly adapted to new payloads. DNA or RNA can be delivered to48

cells via nanoparticles, non-pathogenic viruses, or other methods. DNA vaccines have the disadvantage that their DNA must49

be transported to the nucleus for transcription in mRNA. RNA vaccines can be delivered encapsulated in lipid nanoparticles50

that cells endocytose into the cytosol and translate into peptides [8, 10]. Peptides in a vaccine can be prepended with a signal51

sequence to stay within a cell’s cytosol for class I display, or be prepended with a different sequence to be transported the52

outside of a cell for class II display [11, 12]. A single mRNA molecule can be used to express class I and class II peptides with53

each class represented by an array of peptides separated by a 2A self-cleaving peptide site [13]. If desired, class II peptides can54

be fused to a protein subunit that is designed to elicit B cell responses and expressed in the same single mRNA molecule. In55

addition, class II peptides can be linked to Ii-Key peptides to enhance their presentation [14].56

A challenge for the design of peptide vaccines is the diversity of human MHC alleles that each have specific preferences57

for the peptide sequences they will display. The Human Leukocyte Antigen (HLA) locus encodes the class I and class II58

MHC genes. We consider three loci that encode for MHC class I molecules (HLA-A, HLA-B, and HLA-C) and three loci that59

encode MHC class II molecules (HLA-DR, HLA-DQ, and HLA-DP). An individual’s HLA type describes the MHC alleles60

they contain at each of these loci. Peptides of length 8-10 residues can bind to MHC class I molecules whereas those of length61

13-25 bind to MHC class II molecules [15, 16].62

To create effective vaccines it is necessary to consider the MHC allelic frequency in the target population, as well as linkage63

disequilibrium between MHC genes to discover a set of peptides that is likely to be robustly displayed. Human populations64

that originate from different geographies have differing frequencies of MHC alleles, and these populations exhibit linkage65

disequilibrium between HLA loci that result in population specific haplotype frequencies. We utilize haplotype frequencies of66

three populations in the design and evaluation of our vaccine candidates.67

Recent advances in machine learning have produced models that can predict the presentation of peptides by hundreds68

of allelic variants of both class I and class II MHC molecules [17, 18, 19, 20, 21]. These models are evaluated on their69

ability to accurately predict data unobserved during their training on hundreds of MHC alleles. Each method has its strengths70

and weaknesses. Given that different models may be more or less accurate for different sequence families and can make71

idiosyncratic errors, we use an ensemble of models for vaccine design. We evaluate completed designs using eleven models to72

provide a conservative evaluation of vaccine peptide presentation.73

Previous peptide vaccine design and evaluation methods do not utilize the distribution of MHC haplotypes in a population,74

and thus can not accurately assess the coverage provided by a vaccine. These methods include VaxRank [22] that considers75

vaccine design for a single individual, and methods that do not take into account rare MHC allelic combinations including76

iVax [23], and SARS-CoV-2 specific efforts [24]. The IEDB Population Coverage Tool [25] estimates peptide-MHC binding77

coverage and the distribution of peptides displayed for a given population but assumes independence between different loci and78

thus does not consider linkage disequilibrium.79

We consider methods for vaccine design within the following framework and assumptions. A method takes as input: the80

target proteome, the target proteome’s expected or observed conservation at amino acid resolution, and the target human81

population for vaccination, expressed in terms of the frequencies of their HLA haplotypes. A method outputs: a candidate set82

of MHC class I and a set of class II vaccine peptides. Target proteomes can be viral or oncogenes. Our methods eliminate83

peptides that are expected to be glycosylated, peptides that are expected to drift in sequence and thus cause vaccine escape, and84

peptides that are identical to peptides in the human proteome. Vaccine peptides can be drawn from the entire proteome or from85
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Figure 1. The OptiVax and EvalVax machine learning system for combinatorial vaccine optimization and evaluation.

specific proteins of interest. An overview of our system is shown in Figure 1.86

We provide two methods for peptide vaccine evaluation, one that does not consider haplotype frequencies, EvalVax-87

Unlinked, and one that considers haplotype frequencies and computes the number of peptides predicted to be associated with88

population haplotypes, EvalVax-Robust. We employ these methods as objective functions for peptide vaccine formulation by89

combinatorial optimization in OptiVax-Unlinked and OptiVax-Robust. Using conservative metrics of peptide-MHC binding we90

find that our optimization methods provide both a higher likelihood of peptide display as well as a larger number of associated91

peptides than other published SARS-CoV-2 peptide vaccine designs with less than 150 peptides.92

2 Methods93

2.1 Datasets94

A proteome is converted into candidate vaccine peptides Given a target proteome as input, we identify all potential T cell95

epitopes for inclusion in a vaccine. We extract peptides of length 8-10 inclusive for consideration of MHC class I [15] binding96

and peptides of length 13-25 inclusive for class II [16] binding by using sliding windows of each size over the entire proteome.97

While peptides presented by MHC class I molecules can occasionally be longer than 10 residues [26], we conservatively limit98

our search to length 8-10 since MHC class I presented peptides are predominately 8-10 residues in length [15].99

Using this sliding window approach, we created peptide sets from the SARS-CoV-2 (COVID-19) and SARS-CoV (Human100

SARS coronavirus) proteomes. SARS-CoV-2 was processed to discover relevant peptides for a vaccine, and SARS-CoV was101

processed to reveal common peptides between the two viruses during evaluation. The SARS-CoV-2 proteome is comprised102

of four structural proteins (E, M, N, and S) and at least six additional ORFs encoding nonstructural proteins, including103

the SARS-CoV-2 protease [27, 28]. We obtained the SARS-CoV-2 viral proteome from the GISAID [29] sequence entry104

Wuhan/IPBCAMS-WH-01/2019, the first documented case. We used Nextstrain [30] to identify open reading frames (ORFs)105

and translate the sequence. Our sliding windows on SARS-CoV-2 resulted in 29,403 candidate peptides for MHC class I106

and 125,593 candidate peptides for MHC class II. We obtained the SARS-CoV proteome from UniProt [31] under Proteome107

ID UP000000354. For SARS-CoV, our procedure creates 29,661 and 126,711 unique peptides for MHC class I and class II,108

respectively.109

MHC population frequency computation When we compute the probability of vaccine coverage over a population we use110

complementary methods that assume either independence or linkage between allele frequencies in genomically proximal HLA111

loci. In EvalVax-Unlinked (Section 2.4.2) we assume independence and use MHC allelic frequencies for 2392 class I alleles and112

280 class II alleles from the dbMHC database [32] obtained from the IEDB Population Coverage Tool [25]. In EvalVax-Robust113

(Section 2.4.1) we assume linkage and use observed haplotype frequencies of HLA-A, HLA-B, and HLA-C loci for class I114

computations, or observed haplotype frequencies of HLA-DP, HLA-DQ, and HLA-DR for class II computations. We observed115

a total of 2138 distinct haplotypes for the HLA class I locus that include 230 different HLA-A, HLA-B, and HLA-C MHC116

alleles. We observed a total of 1711 distinct haplotypes for the HLA class II locus that include 280 different HLA-DP, HLA-DQ,117

and HLA-DR MHC alleles. We have independent haplotype frequency measurements for White, Black, and Asian populations.118
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HLA class I and class II haplotype frequencies were inferred using high resolution typing of individuals from distinct119

racial background. We estimated HLA class I haplotypes from HLA-A,-B, and -C genotypes of 2886 individuals of Black120

ancestry (46 distinct HLA-A alleles, 70 distinct HLA-B alleles, 40 distinct HLA-C alleles), 2327 individuals of White ancestry121

(38 distinct HLA-A alleles, 64 distinct HLA-B alleles, 34 distinct HLA-C alleles) and 1653 individuals of Asian ancestry122

(25 distinct HLA-A alleles, 51 distinct HLA-B alleles, 25 distinct HLA-C alleles). HLA class II haplotypes were estimated123

based on DR, DQ, DP genotypes of 2474 individuals of Black ancestry (10 distinct HLA-DPA1 alleles, 45 distinct HLA-DPB1124

alleles, 14 distinct HLA-DQA1 alleles, 21 distinct HLA-DQB1 alleles, 38 distinct HLA-DRB1 alleles), 1857 individuals125

of White ancestry (7 distinct HLA-DPA1 alleles, 29 distinct HLA-DPB1 alleles, 18 distinct HLA-DQA1 alleles, 21 distinct126

HLA-DQB1 alleles, 41 distinct HLA-DRB1 alleles) and 1675 individuals of Asian ancestry (7 distinct HLA-DPA1 alleles, 28127

distinct HLA-DPB1 alleles, 16 distinct HLA-DQA1 alleles, 16 distinct HLA-DQB1 alleles, 36 distinct HLA-DRB1 alleles).128

For each racial background, HLA class I and class II haplotypes were inferred using Hapferret [33] an implementation of the129

Expectation-Maximization algorithm [34]. A total of 1200, 779, and 440 class I and 920, 537, and 502 class II haplotype130

frequencies were derived in Black, White, and Asian populations, respectively.131

2.2 Robust peptide-MHC binding prediction132

Computational models For a peptide vaccine to be effective, its constituent peptides need to be displayed, and thus a133

computational vaccine design must be built upon a solid predictive foundation of what peptides will be displayed by each134

MHC allele. Incorrect predictions could lead to failure of a pre-clinical or clinical trial at great human cost. To this end we are135

concerned with the precision (true positives / all positives) of our predictions such that we maximize the chance that a peptide136

predicted to be displayed will in fact be displayed. We are less concerned with our ability to recall all of the peptides that137

will work as long as we have a set of suitable size that will work. We reduce the risk of false positives by employing multiple138

computational methods to predict peptide-MHC binding. For design we use an ensemble of methods, and for evaluation we use139

all methods separately.140

For MHC class I design, we use an ensemble that outputs the mean predicted binding affinity of NetMHCpan-4.0 [18]141

and MHCflurry 1.6.0 [35, 19]. We find this ensemble increases the precision of binding affinity estimates over the individual142

models on available SARS-CoV-2 experimental data (Table S1). For MHC class II design, we use NetMHCIIpan-4.0 [36].143

For evaluation, we use our ensemble estimate of binding (MHC class I), as well as use binding predictions from a wide range144

of prediction algorithms (MHC class I: NetMHCpan-4.0 [18], NetMHCpan-4.1 [37], MHCflurry 1.6.0 [35], PUFFIN [17];145

MHC class II: NetMHCIIpan-3.2 [20], NetMHCIIpan-4.0 [36], PUFFIN [17]) to ensure that all methods agree that we have a146

good peptide vaccine. We validate these models on datasets containing experimentally-studied SARS-CoV-2 and SARS-CoV147

peptides [38, 39, 40, 41] (see Section S1.2).148

All models take as input a (MHC, peptide) pair and output predicted peptide-MHC binding affinity (IC50) on a nanomolar149

scale. For both MHC class I and class II models, we consider peptides to be binders if the predicted MHC binding affinity150

is ≤ 50nM [42]. This provides a conservative threshold to increase the probability of peptide display. Where our methods151

require a probability of peptide-MHC binding (as in Equation 5), affinity predictions are capped at 50000nM and transformed152

into [0,1] using a logistic transformation, 1− log50000(aff), where larger values correspond to greater likelihood of eliciting153

an immunogenic response [42, 43, 44]. The ≤ 50nM binding affinity threshold corresponds to a threshold of ≥ 0.638 after154

logistic transformation. We explored other criteria to classify peptides as binders and found using predicted binding affinity155

with a 50nM threshold to meet these alternative criteria and maximize precision on available SARS-CoV-2 experimental data156

(Table S1).157

2.3 Removal of unfavorable peptides158

2.3.1 Removal of highly mutable peptides159

We eliminate peptides that are observed to mutate above an input threshold rate to improve coverage over all SARS-CoV-2160

variants and reduce the chance that the virus will mutate and escape vaccine-induced immunity in the future. When possible,161

we select peptides that are observed to be perfectly conserved across all observed SARS-CoV-2 viral genomes. Peptides that162

are observed to be perfectly conserved in thousands of examples may be functionally constrained to evolve slowly or not at all.163

If functional data are available, they can be used to supplement observed viral genome mutation rates by increasing mutation164

rates over functionally non-constrained residues.165

For SARS-CoV-2, we obtained the most up to date version of the GISAID database [29] (as of 2:02pm EST May 13, 2020, ac-166

knowledgements in Section S4) and used Nextstrain [30] (from GitHub commit 639c63f25e0bf30c900f8d3d937de4063d96f791)167

to remove genomes with sequencing errors, translate the genome into proteins, and perform multiple sequence alignments168

(MSAs). We retrieved 24468 sequences from GISAID, and 19288 remained after Nextstrain quality processing. After quality169

processing, Nextstrain randomly sampled 34 genomes from every geographic region and month to produce a representative set170

of 5142 genomes for evolutionary analysis. Nextstrain definition of a “region” can vary from a city (e.g., “Shanghai”) to a171
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larger geographical district. Spatial and temporal sampling in Nextstrain is designed to provide a representative sampling of172

sequences around the world.173

The 5142 genomes sampled by Nextstrain were then translated into protein sequences and aligned. We eliminated viral174

genome sequences that had a stop codon, a gap, an unknown amino acid (because of an uncalled nucleotide in the codon), or175

had a gene that lacked a starting methionine, except for ORF1b which does not begin with a methionine. This left a total of176

4690 sequences that were used to compute peptide level mutation probabilities. For each peptide, the probability of mutation177

was computed as the number of non-reference peptide sequences observed divided by the total number of peptide sequences178

observed.179

2.3.2 Removal of cleavage regions180

SARS-CoV-2 contains a number of post-translation cleavage sites in ORF1a and ORF1b that result in a number of nonstructural181

protein products. Cleavage sites were obtained from UniProt [31] under entry P0DTD1. In addition, a furin-like cleavage site182

has been identified in the Spike protein [45]. This cleavage occurs before peptides are loaded in the endoplasmic reticulum183

for class I or endosomes for class II. Any peptide that spans any of these cleavage sites is removed from consideration. This184

removes 3,739 peptides out of the 154,996 we consider across windows 8-10 (class I) and 13-25 (class II) (∼2.4%).185

2.3.3 Removal of glycosylated peptides186

We eliminate all peptides that are predicted to have N-linked glycosylation as it inhibits both MHC loading and T cell recognition187

of peptides [46]. Glycosylation is a post-translational modification that involves the covalent attachment of carbohydrates to188

specific motifs on the surface of the protein. We identified peptides that may be glycosylated with the NetNGlyc N-glycosylation189

prediction server [47]. We verified these predictions for the Spike protein using experimental data of Spike N-glycosylation190

from Cryo-EM and tandem mass spectrometry [48, 49]. A majority of the potential N-glycosylation sites (16 out of 22) were191

identified in both experimental studies, and further supported by homologous regions with glycosylation in SARS-CoV [50].192

We found that that for the Spike protein when NetNGlyc predicted a non-zero probability of a site being N-glycosylated it193

was experimentally identified as a real or likely N-glycosylation site. Therefore, we eliminated all peptides where NetNGlyc194

predicted a non-zero N-glycosylation probability in any residue. This resulted in the elimination of 18,957 of the 154,996195

peptides considered (∼12%).196

2.3.4 Self-epitope removal197

T cells are selected to ignore peptides derived from the normal human proteome, and thus we remove any self peptides from198

consideration for a vaccine. In addition, it is possible that a vaccine might stimulate the adaptive immune system to react199

to a self peptide that was presented at an abnormally high level, which could lead to an autoimmune disorder. All peptides200

from SARS-CoV-2 were scanned against the entire human proteome downloaded from UniProt [31] under Proteome ID201

UP000005640. A total of 48 exact peptide matches (46 8-mers, two 9-mers) were discovered and eliminated from consideration.202

2.3.5 Removal of undesired proteins203

OptiVax will design vaccines using peptides from specific viral or oncogene proteins of interest by removing peptides from204

undesired proteins from the candidate pool. Grifoni et al. [51] tested T cell responses from COVID-19 convalescent patients205

and found that peptides from the S, M, and N proteins of SARS-CoV-2 produce the dominant CD4+ and CD8+ responses when206

compared to other SARS-CoV-2 proteins. We have used OptiVax to produce additional SARS-CoV-2 vaccines comprised of207

peptides drawn from only S, M, and N as described in Section 3.2.208

2.4 EvalVax evaluates peptide vaccine population coverage209

We introduce two evaluation methods for estimating the population coverage of a proposed peptide vaccine set. EvalVax-210

Robust utilizes HLA haplotype frequencies for MHC class I (HLA-A/B/C) and MHC class II (HLA-DP/DQ/DR) genes, and211

evaluates population level likelihood of having larger than a certain number of peptide-HLA binding hits in each individual.212

EvalVax-Unlinked considers MHC allele frequencies at each HLA locus independently, and computes the likelihood that at213

least one peptide from a vaccine set is displayed at any locus. Both methods take into consideration MHC allele frequency,214

allelic zygosity, and for EvalVax-Robust, linkage disequilibrium (LD) among loci. We also take glycosylation and cleavage215

sites into consideration when evaluating vaccines by setting binding affinity to zero for peptides with non-zero glycosylation216

probability or on cleavage sites.217

2.4.1 EvalVax-Robust considers linkage disequilibrium of MHC genes218

EvalVax-Robust computes the distribution of per individual peptide-HLA binding hits over a given population. It accounts for219

the significant linkage disequilibrium (LD) between HLA loci and uses haplotype frequencies for population coverage estimates.220

We expect that a vaccine will be more effective if more of its peptides are displayed by an individual’s MHC molecules, and221
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thus EvalVax-Robust computes the probability of having at least N predicted peptide-HLA binding hits for each individual in222

the population.223

Assuming for each of the HLA-A,B,C loci there are MA, MB, MC alleles respectively, for a given haploid AiB jCk, the224

haplotype frequency is defined as G(i, j,k) and ∑
MA
i=0 ∑

MB
j=0 ∑

MC
k=0 G(i, j,k) = 1. We assume independence of inherited haplotypes225

and compute the frequency of a diploid genotype as:226

Fi1 j1k1i2 j2k2 = F(Ai1B j1Ck1 ,Ai2B j2Ck2) = G(i1, j1,k1)G(i2, j2,k2) (1)

For each allele A, e(A) denotes the number of peptides predicted to bind to the allele with ≤ 50nM affinity, which we call the227

number of peptide-HLA hits. Then for each possible diploid genotype we compute the total number of peptide-HLA hits of the228

genotype as the sum of e(A) of the unique alleles in the genotype (there can be 3-6 unique alleles depending on the zygosity of229

each locus):230

Ci1 j1k1i2 j2k2 =C(Ai1B j1Ck1 ,Ai2B j2Ck2) = ∑
∀A∈{Ai1 ,B j1 ,Ck1}∪{Ai2 ,B j2 ,Ck2}

e(A) (2)

We then compute the frequency of having exactly k peptide-HLA hits in the population as:231

P(n = k) =
MA

∑
i1=0

MB

∑
j1=0

MC

∑
k1=0

MA

∑
i2=0

MB

∑
j2=0

MC

∑
k2=0

Fi1 j1k1i2 j2k21{Ci1 j1k1i2 j2k2 = k} (3)

We define the population coverage objective function for EvalVax-Robust as the probability of having at least N peptide-HLA232

hits in the population, where the cutoff N is set to the minimum number of displayed vaccine peptides desired:233

P(n≥ N) =
∞

∑
k=N

P(n = k) (4)

When we evaluate metrics on a world population, we equally weight population coverage estimations over three population234

groups (White, Black, and Asian) as the final objective function. In addition to the probability of having at least N peptide-HLA235

hits per individual, we also evaluate the expected number of per individual peptide-HLA hits in the population, which provides236

insight on how well the vaccine is displayed on average.237

2.4.2 EvalVax-Unlinked computes population coverage by at least one peptide-HLA hit238

When haplotype frequencies are not available for a population, we can evaluate a vaccine using MHC allele frequencies that239

assume independence and compute the probability that at least one peptide binds to any of the alleles at any of the loci. To240

encourage a diverse set of peptides to bind to a single MHC allele, we use the predicted binding probability of a peptide to an241

allele instead of using a binary indicator of binding. This permits multiple peptides to contribute to the probability score at each242

allele. Considering K loci {L1, ...,LK}, for each locus there are Mk alleles A1, ...,AMk and the allele frequency is defined as243

Gk(Ai) and ∑
Mk
i=1 Gk(Ai) = 1. Given a set of N peptides {Pn=1:N}, for each allele (of locus Lk) the predicted binding probability244

to peptide Pn is en
k(Ai). Assuming no competition between peptides, the probability that allele Ai ends up having at least one245

peptide bound is:246

ek(Ai) = 1−
N

∏
n=1

(1− en
k(Ai)) (5)

We define the diploid frequency of alleles as Fk(Ai,A j) = Gk(Ai)Gk(A j), and we conservatively assume that a homozygous247

diploid locus does not improve the chance of peptide presentation over a single copy of the locus. Thus, the probability that a248

diploid genotype has at least one peptide bound is defined as:249

Bk(Ai,A j) =

{
1− (1− ek(Ai))(1− ek(A j)), if i 6= j
ek(Ai), if i = j

(6)

Therefore, the probability that a person in the given population displays at least one peptide in the set {Pn} at a particular locus250

Lk is calculated by:251

Fk(P) =
Mk

∑
i=1

Mk

∑
j=1

Fk(Ai,A j)Bk(Ai,A j) (7)
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To combine different loci assuming no linkage disequilibrium, the probability that a person in the given population has at least252

one locus that binds to at least one peptide from {Pn} is defined as:253

P(P) = 1−
K

∏
k=1

(1−Fk(P)) (8)

which is the evaluation metric for EvalVax-Unlinked.254

We conservatively only consider peptides with predicted binding affinity ≤ 50nM. We set values of en
k(Ai) weaker than255

50nM predicted binding affinity to zero. This constraint on peptide binding is in addition to all of the other peptide filters in256

Section 2.3. When we evaluate on a world population, we equally weight population coverage estimates over 15 geographic257

regions (see Results for list of regions) as the final objective function.258

2.5 OptiVax selects optimized vaccine peptide sets259

We use beam search over a set of candidate peptides to efficiently search for an optimal subset of peptides that maximizes a260

desired EvalVax-Unlinked or EvalVal-Robust based objective function. Our beam search procedure is parallelizable across CPU261

cores, and we typically use from 40 to 96 cores. We use a beam size of k = 10 for MHC class I and k = 5 for MHC class II.262

2.5.1 OptiVax-Robust searches for a peptide set with high expected number of per-individual peptide-HLA hits263

OptiVax-Robust uses beam search to find a minimal set of peptides that reaches a desired population coverage probability264

at a threshold of N predicted peptide-HLA hits for each individual. We start from an empty set of peptides and N = 0, and265

iteratively expand the solution by one peptide at a time and retain the top k solutions until the population coverage probability266

for the current N reaches the given population coverage probability threshold for that N. We then repeat the same process for267

N + 1. At the expense of increased computational cost, beam search improves upon greedy optimization by considering k268

possible solutions at each step. During each iteration, the population coverage probability threshold at the present N controls269

the robustness of coverage. Increasing the desired population coverage probability increases the difficulty of the optimization270

task. The iterative process stops when a desired population coverage at a desired N is achieved. In early rounds of optimization,271

OptiVax uses a high population coverage probability to provide better individual coverage. In subsequent rounds, the target272

population coverage probability is reduced on a fixed schedule.273

2.5.2 OptiVax-Unlinked searches for a peptide set that covers a population274

OptiVax-Unlinked uses beam search to find a minimal set of peptides that reaches a desired population coverage probability275

that each individual on average displays at least one vaccine peptide. We iteratively expand solutions in the beam by adding one276

peptide at a time to reach the population coverage objective, and keep the top k solutions over all possible expansions in the277

beam.278

2.5.3 OptiVax improves vaccine sequence diversity279

OptiVax reduces vaccine sequence redundancy by not selecting peptides with closely related sequences for a vaccine formulation.280

This issue arises because sliding a window over a proteome produces overlapping sequences that are very similar in MHC281

binding characteristics. When any version of OptiVax selects a peptide during optimization, it eliminates from further282

consideration all unselected peptides that are within three (MHC class I) or five (MHC class II) edits on a sequence distance283

metric from the selected peptide. The distance metric aligns two peptides without gaps within them and is the sum of the284

lengths of their unaligned portions at their ends.285

3 Results286

3.1 Validation of peptide-MHC binding prediction models for OptiVax design287

We validate our computational models on datasets containing experimentally-studied SARS-CoV-2 and SARS-CoV peptides [38,288

39, 40, 41] (details in Section S1.2). We find classifying peptides as binders by predicted binding affinity ≤ 50nM maximizes289

AUROC and precision in classification of stable binders over alternative predictors and binding criteria (Table S1). Our290

ensemble of NetMHCpan-4.0 and MHCflurry further increases AUROC and precision over individual predictors.291

3.2 OptiVax-Robust optimization results on MHC class I and II292

MHC class I results We selected an optimized set of peptides from all SARS-CoV-2 proteins using the EvalVax-Robust293

objective function. We limited our candidates to peptides with length 8-10 and excluded peptides that have been observed with294

any mutation or are predicted to have non-zero probability of glycosylation. For computation of the objective function, we295

use the mean predicted IC50 values from our NetMHCpan-4.0 and MHCflurry ensemble to obtain reliable binding affinity296

predictions for evaluation and optimization. With OptiVax-Robust optimization, we design a vaccine with 19 peptides that297
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achieves 99.39% EvalVax-Unlinked coverage and 99.91% EvalVax-Robust coverage over three ethnic groups (Asian, Black,298

White) with at least one peptide-HLA hit per individual. This set of peptides also provides 93.21% coverage with at least 5299

peptide-HLA hits and 67.75% coverage with at least 8 peptide-HLA hits (Figure 2, Table 1). The population level distribution300

of the number of peptide-HLA hits in White, Black, and Asian populations is shown in Figure 2, where the expected number of301

peptide-HLA hits is 9.358, 8.515, and 10.206, respectively.302

Figure 2. OptiVax-Robust selected peptide set for MHC class I. (a) EvalVax-Robust population coverage at different
per-individual number of peptide-HLA hit cutoffs for Asian/Black/White populations and average value. (b) EvalVax-Unlinked
population coverage on 15 geographic regions and averaged population coverage. (c) Binding of vaccine peptides to 230
HLA-A/B/C alleles. (d) Distribution of peptide origin. (e) Distribution of the number of per-individual peptide-HLA hits in
White/Black/Asian populations. (f) Peptide presence in SARS-CoV.

MHC class II results We limited our candidates to peptides with length 13-25 and excluded peptides that have been observed303

with mutation probability greater than 0.001 or are predicted to have non-zero glycosylation probability. We use the predicted304

binding affinity from NetMHCIIpan-4.0 for optimization and evaluation. With OptiVax-Robust optimization, we design a305

vaccine with 20 peptides that achieves 90.59% EvalVax-Unlinked coverage and 93.21% EvalVax-Robust coverage over three306

ethnic groups (Asian, Black, White) with at least one peptide-HLA hit per individual. This set of peptides also provides 90.17%307

coverage with at least 5 peptide-HLA hits and 45.99% coverage with at least 8 peptide-HLA hits (Figure 3, Table 1). The308

population level distribution of the number of peptide-HLA hits per individual in White, Black, and Asian populations is shown309

in Figure 3, where the expected number of of peptide-HLA hits is 10.703, 9.405, and 7.509, respectively.310

Figure 3. OptiVax-Robust selected optimal peptide set for MHC class II. (a) EvalVax-Robust population coverage at different
minimum number of peptide-HLA hit cutoffs. (b) EvalVax-Unlinked population coverage. (c) Binding of vaccine peptides to
280 HLA-DRB1/DP/DQ alleles. (d) Distribution of peptide origin. (e) Distribution of the number of per-individual
peptide-HLA hits in White/Black/Asian populations. (f) Peptide presence in SARS-CoV.

Designing vaccines with S, M, N proteins only We also used OptiVax-Robust to design vaccines for MHC class I and class311

II based solely upon peptides from the S, M, and N proteins of SARS-CoV-2 and evaluated vaccine performance. Grifoni et al.312

[51] found that peptides from the S, M, and N structural proteins of SARS-CoV-2 were dominant in producing responses from313

CD4+ and CD8+ cells from convalescent COVID-19 patients. As shown in Table 1, the resulting MHC class I vaccine with 26314

peptides achieves 98.15% coverage over three ethnic groups (Asian, Black, White) with at least one average peptide-HLA hit315

per individual. There were an average of at least five peptide hits in 67.37% of the population, and the expected per-individual316
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Figure 4. OptiVax-Unlinked selected optimal peptide set for MHC class I. (a) EvalVax-Robust population coverage at
different per-individual number of peptide-HLA hits cutoffs for Asian/Black/White populations and average value. (b)
EvalVax-Unlinked population coverage on 15 geographic regions and averaged population coverage. (c) Binding of vaccine
peptides to 230 HLA-A/B/C alleles. (d) Distribution of peptide origin. (e) Distribution of the number of per-individual
peptide-HLA hits in White/Black/Asian populations. (f) Peptide presence in SARS-CoV.

Figure 5. OptiVax-Unlinked selected optimal peptide set for MHC class II. (a) EvalVax-Robust population coverage at
different minimum number of peptide-HLA hit cutoffs. (b) EvalVax-Unlinked population coverage. (c) Binding of vaccine
peptides to 280 HLA-DRB1/DP/DQ alleles. (d) Distribution of peptide origin. (e) Distribution of the number of per-individual
peptide-HLA hits in White/Black/Asian populations. (f) Peptide presence in SARS-CoV.

number of hits for White, Black, and Asian populations are 5.313, 5.643, and 6.448, respectively. The OptiVax-Robust MHC317

class II vaccine with 22 S, M, and N peptides achieves 91.79% coverage with an average of at least one peptide-HLA hit per318

individual. There were an average of at least five peptide hits in 59.64% of the population, and the expected per-individual319

number of hits in White, Black, and Asian populations are 7.659, 6.291, and 4.636, respectively. The detailed vaccine designs320

are in Figure S1. We observed that it is more difficult to optimize vaccines with S, N, and M proteins only. We expect this is321

because we have fewer candidate peptides to cover all of our haplotype combinations.322

3.3 OptiVax-Unlinked optimization results on MHC class I and II323

MHC class I results We limited our candidates to peptides with length 8-10 and zero predicted probability of glycosylation.324

We also excluded peptides that have been observed with any mutation. We use the mean predicted binding affinity values from325

our ensemble of NetMHCpan-4.0 and MHCflurry on 2392 MHC class I alleles to obtain reliable binding affinity predictions for326

evaluation and optimization. With OptiVax-Unlinked optimization, we design a vaccine with 19 peptides that achieves 99.79%327

EvalVax-Unlinked population coverage (averages over 15 geographic regions). As shown in Figure 4, the 19 vaccine peptides328

bind to a diverse range of alleles across the HLA-A/B/C loci. Even though less effective than OptiVax-Robust at providing329

a higher number of expected individual peptide-HLA hits in the population, the OptiVax-Unlinked peptide set still achieves330

high coverage on EvalVax-Robust metrics (99.99% for p(n≥ 1), 89.15% for p(n≥ 5), 49.59% for p(n≥ 8)). The expected331

per-individual number of peptide-HLA hits for the design is 7.340, 6.899, and 8.971 for White, Black, and Asian populations,332

respectively (Table 1).333

MHC class II results We excluded peptides that have been observed with a mutation probability greater than 0.001 or are334

predicted to have non-zero probability of being glycosylated. We use the predicted binding affinity from NetMHCIIpan-4.0335

for optimization and initial evaluation. With OptiVax-Unlinked, we design a vaccine with 19 peptides that achieves 91.67%336
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EvalVax-Unlinked population coverage (averages over 15 geographic regions). As shown in Figure 5, the 19 vaccine peptides337

bind to a diverse range of alleles across the HLA-DRB/DP/DQ loci. Even though less effective than OptiVax-Robust on338

providing a high predicted number of average peptide-HLA hits in the population, the OptiVax-Unlinked peptide set still339

achieves high coverage on EvalVax-Robust metrics (93.23% for p(n≥ 1), 70.19% for p(n≥ 5), 45.87% for p(n≥ 8)). The340

expected per-individual number of peptide-HLA hits for the design is 9.736, 8.454, and 6.860 for White, Black, and Asian341

populations, respectively (Table 1).342

3.4 EvalVax evaluation of public vaccine designs for SARS-CoV-2343

We used EvalVax to evaluate peptide vaccines proposed by other publications [52, 24, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,344

63, 64, 65, 66, 67, 68, 69] on metrics including EvalVax-Unlinked and EvalVax-Robust population coverage at different per-345

individual number of peptide-HLA hits thresholds, expected per-individual number of peptide-HLA hits in White, Black, and346

Asian populations, percentage of peptides that are predicted to be glycosylated, peptides observed to mutate with greater than347

0.001 probability, or peptides that sit on known cleavage sites. We define vaccine efficiency as the mean expected per-individual348

number of peptide-HLA hits for a vaccine divided by the number of peptides in the vaccine. This metric represents the mean349

probability of display of each peptide in a vaccine, and normalizes vaccine performance by vaccine peptide count.350

Figure 6. EvalVax population coverage evaluation for MHC class I vaccines. (a) EvalVax population coverage for
OptiVax-Unlinked and OptiVax-Robust proposed vaccine at different vaccine size (b) EvalVax-Robust population coverage
with n≥ 1 peptide-HLA hits per individual, OptiVax-Robust performance is shown by the blue curve and baseline performance
is shown by red crosses (labeled by first author’s name) (c) EvalVax-Robust population coverage with n≥ 5 peptide-HLA hits.
(d) EvalVax-Robust population coverage with n≥ 8 peptide-HLA hits.

Figure 7. Expectation of per individual number of peptide-HLA hits and vaccine efficiency for MHC class I vaccines. (a)
Expected number of peptide-HLA hits vs. peptide vaccine size for OptiVax-Robust and OptiVax-Unlinked, and efficiency (hits
/ vaccine size) at different vaccine size. (b) Comparison between OptiVax-Robust and baselines on expected number of
peptide-HLA hits. OptiVax-Robust performance is shown by the blue curve and baseline performance is shown by red crosses
(c) Comparison between OptiVax-Robust and baselines on efficiency.

Figures 6 to 9 show the comparison between OptiVax-Robust designed MHC class I and class II vaccines at all vaccine351

sizes (top solution in the beam up to the given vaccine size) from 1-35 peptides (blue curves) and baseline vaccines (red crosses)352

proposed by other publications. We observe superior performance of OptiVax-Robust designed vaccines on all evaluation353

metrics at all vaccine sizes for both MHC class I and class II. Most baselines achieve reasonable coverage at n≥ 1 peptide hits.354

However, many fail to show a high probability of higher hit counts, indicating a lack of predicted redundancy if a single peptide355

is not displayed. We also evaluate randomly selected peptide sets of size 19 from predicted binders of MHC class I and II,356

where a binder is defined as a peptide that is predicted to bind with ≤ 50nM to more than 5 of the alleles in the MHC class. We357

found that a random binder set can achieve coverage that outperforms some of the proposed vaccines that we use as baselines.358
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Table 1 summarizes EvalVax results for all baselines with a vaccine peptide count less than 150 peptides. We also included359

evaluation on peptide sets derived from taking all sliding windows with proper size for MHC class I and II from the S protein or360

S1 subunit, and evaluated an average of 500 random designs for MHC class I or class II that are comprised of 19 peptides that361

are predicted to bind either MHC class I and II. We found that the baseline methods all provide less coverage than OptiVax362

derived sets, and some contain peptides predicted to be glycosylated or have a high observed mutation probability (Table 1).363

We also observe some baselines contain peptides that sit on the cleavage sites or overlap with self-peptides. In addition, we364

found that for class II MHC coverage the S protein alone is unable to achieve more than 88% coverage for n≥ 0 and 75.9%365

coverage n≥ 5.366

Figure 8. EvalVax population coverage evaluation for MHC class II vaccines. (a) EvalVax population coverage for
OptiVax-Unlinked and OptiVax-Robust proposed vaccine at different vaccine sizes. (b) EvalVax-Robust population coverage
with n≥ 1 peptide-HLA hits per individual, OptiVax-Robust performance is shown by the blue curve and baseline performance
is shown by red crosses (labeled by first author’s name). (c) EvalVax-Robust population coverage with n≥ 5 peptide-HLA hits.
(d) EvalVax-Robust population coverage with n≥ 8 peptide-HLA hits.

Figure 9. Expectation of per individual number of peptide-HLA hits and vaccine efficiency for MHC class II vaccines. (a)
Expected number of peptide-HLA hits vs. peptide vaccine size for OptiVax-Robust and OptiVax-Unlinked, and efficiency (hits
/ vaccine size) at different vaccine size. (b) Comparison between OptiVax-Robust and baselines on expected number of
peptide-HLA hits. OptiVax-Robust performance is shown by the blue curve and baseline performance is shown by red crosses.
(c) Comparison between OptiVax-Robust and baselines on efficiency.

3.5 EvalVax results are robust to different binding prediction models367

We evaluated all Table 1 vaccine designs using eleven independent peptide-MHC binding prediction methods to ensure368

that the performance observed in Table 1 is not an artifact. For MHC class I prediction we validated using seven methods:369

NetMHCpan-4.0; NetMHCpan-4.1; MHCflurry 1.6.0; PUFFIN; the mean of NetMHCpan-4.0 and MHCflurry 1.6.0 with a370

50nM cutoff on predicted affinity; and NetMHCpan-4.0 and NetMHCpan-4.1 with a 99.5% cutoff on EL ranking. For MHC371

class II peptide-MHC binding prediction we validated using four different methods: NetMHCIIpan-3.2 and NetMHCIIpan-4.0,372

each with either a 50nM cutoff on predicted affinity or a 98% cutoff on EL ranking. The result of all eleven EvalVax evaluation373

metrics for all Table 1 designs are shown in Supplement Section S3. We find that all of the eleven methods we use for evaluation374

show that Table 1 is a conservative estimate of vaccine performance.375

4 Discussion376

The computational design of peptide vaccines for eliciting cellular immunity is built upon the imperfect science of predicting377

peptide presentation by MHC molecules. Peptide vaccine designs also need to ensure that individuals with rare MHC alleles378

display vaccine peptides to ensure a high rate of vaccine efficacy over the entire population.379
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To mitigate computational model uncertainty we have taken a very conservative view of peptide presentation, emphasizing380

precision over recall. To provide coverage for individuals with rare HLA types we use haplotype frequencies that include these381

types in our evaluations. We provide an evaluation tool, EvalVax, to permit the flexible analysis of vaccine proposals on key382

metrics, including population coverage and the expected number of peptides displayed. Not surprisingly, our OptiVax vaccine383

designs that are optimized with respect to EvalVax objective functions do well on the same metrics. We also find that OptiVax384

designs do well when evaluated on eleven computational models of peptide MHC binding, providing encouragement that their385

component peptides will be displayed.386

EvalVax can be used for vaccine designs that are focused on the expression of viral proteins or their subunits to evaluate387

the level of viral peptide MHC presentation that is predicted to result. We note for SARS-CoV-2 in Table 1 that S protein and388

the S1 subunit both are limited in their predicted ability to provide robust population coverage for MHC class II display of389

more than five viral epitopes. This suggests that vaccines that only employ the S protein or its subunits may require additional390

peptide components for reliable CD4+ T cell activation across the entire population.391

At present the World Health Organization lists 79 COVID-19 vaccine candidates in clinical or preclinical evaluation [70],392

and the precise designs of most of these vaccines are not public. We encourage the early publication of vaccine designs to393

enable collaboration and rapid progress towards safe and effective vaccines for COVID-19.394

All of our software and data are freely available as open source to allow others to use and extend our methods.395
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Study Vaccine
size

EvalVax-
Unlinked

EvalVax-
Robust

p(n≥ 1)

EvalVax-
Robust

p(n≥ 5)

EvalVax-
Robust

p(n≥ 8)

Efficiency
(Exp. #
peptide-

HLA
hits /

vaccine
size)

Exp. #
peptide-

HLA
hits

(White)

Exp. #
peptide-

HLA
hits

(Black)

Exp. #
peptide-

HLA
hits

(Asian)

Peptides
Glyco-
sylated

Peptides
Muta-

tion Rate
> 0.001

On
cleavage

site
Protein origins

In
SARS-
CoV

MHC Class I Peptide Vaccine Evaluation
S-protein 3795 99.96% 100.00% 99.17% 98.29% 0.91% 30.845 32.139 41.134 15.57% 29.99% 0.63% S1, S2 29.30%
OptiVax-Unlinked (Ours) 19 99.79% 99.99% 89.15% 49.59% 40.72% 7.340 6.899 8.971 0.00% 0.00% 0.00% ORF1a/b, ORF3a, S1 42.11%
S1-subunit 2055 99.88% 99.99% 98.73% 93.52% 0.74% 14.990 15.186 15.585 17.08% 30.02% 1.17% S1 10.17%
OptiVax-Robust (Ours) 19 99.39% 99.91% 93.21% 67.75% 49.26% 9.358 8.515 10.206 0.00% 0.00% 0.00% ORF1a/b, ORF3a, S1, ORF9b 52.63%
OptiVax-Robust (Ours)_len15 15 99.07% 99.89% 86.69% 54.36% 54.47% 8.175 7.196 9.140 0.00% 0.00% 0.00% ORF1a/b, S1, ORF9b 53.33%

Srivastava-Mangalayatan [58] 37 95.86% 99.75% 52.94% 16.00% 13.51% 5.365 4.986 4.645 8.11% 37.84% 0.00%
ORF1a/b, ORF3a, N, E, S1,
ORF10, ORF7ab, ORF8, M,

ORF6
45.95%

OptiVax-Robust (Ours)_SMN only 26 97.49% 98.15% 67.37% 26.24% 22.31% 5.313 5.643 6.448 0.00% 0.00% 0.00% N, S2, S1, M 57.69%
Herst-FlowPharma [59] 52 90.89% 95.82% 56.52% 19.99% 9.88% 5.204 4.437 5.767 7.69% 34.62% 0.00% N 55.77%
Herst-FlowPharma-top16 [59] 16 80.41% 93.46% 9.47% 0.03% 15.73% 2.747 2.602 2.203 12.50% 12.50% 0.00% N 68.75%
Random subset of binders 19 81.04% 90.33% 25.02% 4.58% 16.74% 3.012 2.834 3.695 0.00% 29.89% 0.00% N/A 40.37%
Baruah-Gauhait [55] 5 71.91% 90.10% 0.55% 0.00% 33.60% 1.928 1.441 1.672 0.00% 40.00% 0.00% S1, S2 40.00%
Fast-Stanford [24] 13 78.66% 85.29% 58.51% 30.56% 44.25% 5.587 4.977 6.693 7.69% 30.77% 0.00% N, S1, S2, ORF1a, E, M 23.08%
Poran-NEON [53] 10 69.12% 85.13% 3.21% 0.01% 19.23% 1.683 1.721 2.366 0.00% 30.00% 0.00% ORF3a, ORF1a/b, ORF8, S1 20.00%
Vashi-Guwahati [60] 51 68.63% 80.80% 1.52% 0.00% 3.12% 1.898 1.702 1.175 12.77% 46.81% 6.38% S1, S2 6.38%
Abdelmageed-Khartoum [56] 10 66.91% 78.49% 23.49% 2.72% 28.34% 2.933 2.501 3.069 10.00% 10.00% 0.00% E 80.00%
Lee-Oxford [52] 13 64.96% 75.75% 39.82% 37.09% 34.15% 4.771 3.685 4.862 0.00% 7.69% 0.00% ORF1a/b, S2, E, N 53.85%
Akhand-Sylhet [61] 31 49.46% 71.24% 0.08% 0.00% 3.47% 1.091 1.109 1.025 3.23% 35.48% 0.00% E, M, N, S1 41.94%
Singh-Kolkata [69] 7 53.91% 66.59% 1.38% 0.00% 19.87% 1.341 1.298 1.534 0.00% 28.57% 0.00% N, S2, E, M, S1 71.43%
Bhattacharya-Hallym [54] 13 44.56% 61.09% 0.00% 0.00% 5.67% 0.792 0.688 0.731 23.08% 46.15% 7.69% S2, S1 23.08%
Ahmed-HKUST [57] 16 45.25% 52.30% 35.61% 4.15% 15.57% 2.558 2.182 2.735 12.50% 25.00% 0.00% S2, N 100.00%
Saha-Tripura [67] 5 29.90% 41.77% 0.00% 0.00% 8.86% 0.563 0.358 0.408 0.00% 20.00% 0.00% S1 20.00%
Gupta-Jaipur [66] 7 30.23% 38.91% 21.08% 1.41% 23.92% 1.325 0.548 3.150 0.00% 42.86% 0.00% S2, S1 14.29%
Khan-JMI [63] 3 27.14% 34.98% 0.00% 0.00% 17.33% 0.762 0.556 0.241 0.00% 66.67% 0.00% S2, S1 0.00%
Mitra-Rajashtan [62] 9 13.97% 23.86% 0.00% 0.00% 2.83% 0.149 0.081 0.535 22.22% 11.11% 0.00% S1, S2 11.11%

MHC Class II Peptide Vaccine Evaluation
OptiVax-Unlinked (Ours) 19 91.67% 93.23% 70.19% 45.87% 43.95% 9.736 8.454 6.860 0.00% 0.00% 0.00% M, ORF1a/b, S2 52.63%
OptiVax-Robust (Ours) 19 90.59% 93.21% 90.17% 45.99% 48.45% 10.703 9.405 7.509 0.00% 0.00% 0.00% ORF1a/b, S2, M 57.89%
Ramaiah-UCIrvine [65] 134 87.28% 92.69% 71.65% 65.68% 17.86% 32.343 26.538 12.928 20.15% 44.78% 0.00% S1, M, E, N, S2 30.60%
S-protein 16315 89.80% 92.13% 88.84% 88.62% 1.49% 340.102 250.938 138.248 30.01% 57.50% 1.43% S1, S2 16.06%
OptiVax-Robust (Ours)_SMN only 22 85.76% 91.79% 59.64% 32.08% 28.16% 7.659 6.291 4.636 0.00% 0.00% 0.00% S1, S2, N, M 36.36%
S1-subunit 8905 86.34% 89.66% 75.29% 72.74% 1.24% 171.489 107.331 52.472 32.39% 54.28% 2.63% S1 0.71%
Fast-Stanford [24] 13 67.29% 74.48% 10.04% 2.00% 15.42% 2.943 1.751 1.319 30.77% 38.46% 0.00% ORF1a, N, S2, S1, M, E 0.00%
Random subset of binders 19 72.66% 71.16% 32.84% 17.76% 19.26% 4.627 4.022 2.329 0.00% 63.16% 0.00% N/A 24.29%
Banerjee-Midnapore [64] 9 56.73% 67.24% 8.91% 0.35% 19.81% 2.378 1.670 1.299 22.22% 44.44% 0.00% S2, S1 55.56%
Akhand-Sylhet [61] 31 43.90% 49.82% 4.85% 0.21% 4.40% 1.868 1.708 0.520 3.33% 50.00% 0.00% E, N, M, S1 30.00%
Poran-NEON [53] 10 42.30% 47.58% 0.00% 0.00% 6.20% 0.925 0.602 0.331 20.00% 90.00% 0.00% ORF1a/b, S2, ORF3a 20.00%
Singh-Kolkata [69] 7 41.48% 47.03% 0.87% 0.00% 11.57% 1.227 0.853 0.351 0.00% 28.57% 0.00% M, N, S1, E, S2 71.43%
Ahmed-HKUST [57] 5 27.69% 46.01% 0.00% 0.00% 10.18% 0.600 0.517 0.409 0.00% 20.00% 0.00% S2, N 100.00%

Qamar-Guangxi [68] 11 39.44% 43.71% 0.03% 0.00% 6.85% 1.075 0.911 0.273 0.00% 72.73% 0.00% N, ORF10, ORF7a, M, ORF8,
ORF6, E 36.36%

Mitra-Rajashtan [62] 5 25.46% 39.49% 0.00% 0.00% 10.32% 0.754 0.425 0.369 60.00% 20.00% 0.00% S2, S1 0.00%
Abdelmageed-Khartoum [56] 10 19.15% 28.39% 0.96% 0.00% 4.79% 0.919 0.274 0.244 60.00% 70.00% 0.00% E 30.00%
Vashi-Guwahati [60] 20 20.78% 22.17% 0.02% 0.00% 2.08% 0.595 0.376 0.280 15.79% 36.84% 5.26% S1, S2 0.00%
Baruah-Gauhait [55] 3 0.00% 0.00% 0.00% 0.00% 0.00% 0.000 0.000 0.000 66.67% 100.00% 0.00% S1 0.00%

Table 1. Comparison of existing baselines, S-protein peptides, and OptiVax designed peptide vaccines (using full set of
proteins or S/M/N proteins only) on various population coverage evaluation metrics and vaccine quality metrics (percentage of
peptides with larger than 0.1% probability of mutating or with non-zero probability of being glycosylated). The list is sorted by
EvalVax-Robust p(n≥ 1). Random subsets are generated 200 times.The binders used for generating random subsets are
defined as peptides that is predicted to bind with ≤ 50nM to more than 5 of the alleles.
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Supplementary Information for:594

Robust computational design and evaluation of peptide vaccines for cellular595

immunity with application to SARS-CoV-2596

S1 Validation of Computational Peptide-MHC Prediction Models597

S1.1 Criteria for Predicted Binding598

NetMHCpan-4.0 [18] and NetMHCIIpan-4.0 [36] output predicted binding affinity (BA), percentile rank of predicted BA599

compared to a set of random natural peptides, and percentile rank of an eluted ligand (EL) score compared to a set of random600

natural peptides. Default parameters for these methods suggest EL percentile rank thresholds of 0.5% and 2% rank for601

classifying peptides as strong and weak binders, respectively, for MHC class I and thresholds of 2% and 10% for strong and602

weak binders, respectively, for MHC class II.603

To identify binders for our vaccine designs, we use a 50nM predicted binding affinity threshold (Section 2.2). We find604

binders selected with this criterion are also considered binders under alternative criteria based on percentile rank. Across our605

set of all candidate SARS-CoV-2 MHC class I peptides (Section 2.1), we find that 91.0% of peptide-MHC hits with ≤ 50nM606

predicted binding affinity by NetMHCpan-4.0 are also considered binders using BA percentile rank ≤ 0.5% (100.0% have607

BA percentile rank ≤ 2%). Using percentile rank for EL scores, 67.6% of peptide-MHC hits with ≤ 50nM predicted binding608

affinity have EL percentile rank ≤ 0.5% (92.6% have EL percentile rank ≤ 2%). Across all candidate SARS-CoV-2 MHC class609

II peptides, we find that 86.1% of peptide-MHC hits with ≤ 50nM predicted binding affinity by NetMHCIIpan-4.0 are also610

considered binders using BA percentile rank ≤ 2% (100.0% have BA percentile rank ≤ 10%). Using percentile rank for EL611

scores, 26.1% of peptide-MHC hits with ≤ 50nM predicted binding affinity have EL percentile rank ≤ 2% (63.1% have EL612

percentile rank ≤ 10%).613

S1.2 Validation on SARS-CoV-2 and SARS-CoV Experimental Data614

We evaluate peptide-MHC binding predictions on a set of experimentally assessed SARS-CoV-2 peptides whose peptide-MHC615

complex stability was assessed in vitro across 11 MHC allotypes (5 HLA-A, 1 HLA-B, 4 HLA-C, 1 HLA-DRB1) [38]. Prachar616

et al. [38] suggest that peptides with low (< 60%) stability are unlikely to elicit an immune response and are unsuitable for617

vaccine development. For MHC class I alleles, the dataset contains 912 unique peptides-MHC pairs, of which 185 peptides618

are considered stable (≥ 60% stability). For MHC class II, the dataset contains 93 total peptides, of which 22 are stable. We619

use our computational models to predict peptide-MHC binding and evaluate them using various binding criteria against the620

experimental peptide stability measurement (Table S1). AUROC and average precision are computed using raw predictions, and621

the remaining metrics are computed using binarized predictions based on the respective binding criteria (using scikit-learn [71]).622

We compare classification performance using different binding criteria (see Section S1.1) and find in general that classifying623

binders using predicted binding affinity using a 50nM threshold maximizes AUROC and precision (Table S1). We find that our624

mean ensemble of NetMHCpan-4.0 and MHCflurry further improves classification AUROC and precision over the individual625

models for predicting MHC class I epitopes. On MHC class II data, we note NetMHCIIpan-4.0 achieves AUROC 0.848 and626

precision 0.625 using a 500nM threshold (Table S1). While NetMHCIIpan-4.0 with a 50nM threshold does not identify any627

peptides in this dataset as binders, we use this stricter threshold in our vaccine designs as it is more conservative and less likely628

to admit false positive binders. In general, we find performance of PUFFIN with a 50nM binding threshold comparable to629

alternative methods on both MHC class I and class II data and use PUFFIN as part of our vaccine design evaluation.630

We additionally validate our computational models using previously reported SARS-CoV T cell epitopes from experimental631

studies [39, 40, 41] as provided by Fast et al. [24]. For MHC class I, this dataset contains 17 experimentally-determined632

HLA-A*02:01 associated CD8 T cell epitopes and 1236 non-epitope 9-mer peptides from the rest of the SARS-CoV Spike (S)633

protein. Table S2 shows the performance of our peptide-MHC binding prediction models on these SARS-CoV peptides.634
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MHC Model Binding Criterion AUROC Precision Sensitivity Specificity Avg. Precision

Class I

NetMHCpan-4.0 BA ≤ 50nM 0.845 0.516 0.714 0.829 0.486
NetMHCpan-4.0 BA ≤ 500nM 0.845 0.308 0.968 0.446 0.486
NetMHCpan-4.0 BA % Rank ≤ 0.5 0.746 0.249 0.968 0.257 0.416
NetMHCpan-4.0 BA % Rank ≤ 2 0.746 0.212 1.000 0.054 0.416
NetMHCpan-4.0 EL % Rank ≤ 0.5 0.757 0.256 0.930 0.312 0.479
NetMHCpan-4.0 EL % Rank ≤ 2 0.757 0.214 0.989 0.077 0.479
NetMHCpan-4.1 BA ≤ 50nM 0.853 0.504 0.719 0.820 0.499
NetMHCpan-4.1 BA ≤ 500nM 0.853 0.304 0.984 0.428 0.499
NetMHCpan-4.1 EL % Rank ≤ 0.5 0.776 0.278 0.903 0.403 0.490
NetMHCpan-4.1 EL % Rank ≤ 2 0.776 0.219 0.989 0.103 0.490
MHCflurry 1.6.0 BA ≤ 50nM 0.724 0.404 0.422 0.842 0.411
PUFFIN BA ≤ 50nM 0.768 0.526 0.492 0.887 0.485
PUFFIN BA ≤ 500nM 0.768 0.272 0.870 0.406 0.485
Ensemble Mean BA ≤ 50nM 0.862 0.683 0.514 0.939 0.650

Class II

NetMHCIIpan-4.0 BA ≤ 50nM 0.848 0.000 0.000 1.000 0.762
NetMHCIIpan-4.0 BA ≤ 500nM 0.848 0.625 0.682 0.873 0.762
NetMHCIIpan-4.0 EL % Rank ≤ 2 0.908 1.000 0.182 1.000 0.785
NetMHCIIpan-4.0 EL % Rank ≤ 10 0.908 0.789 0.682 0.944 0.785
NetMHCIIpan-3.2 BA ≤ 50nM 0.766 1.000 0.045 1.000 0.544
NetMHCIIpan-3.2 BA ≤ 500nM 0.766 0.253 0.909 0.169 0.544
NetMHCIIpan-3.2 BA % Rank ≤ 2 0.766 0.380 0.864 0.563 0.536
NetMHCIIpan-3.2 BA % Rank ≤ 10 0.766 0.253 1.000 0.085 0.536
PUFFIN BA ≤ 50nM 0.704 0.667 0.091 0.986 0.430
PUFFIN BA ≤ 500nM 0.704 0.275 0.864 0.296 0.430

Table S1. Classification performance of computational methods for predicting peptide-MHC binding evaluated on
experimental SARS-CoV-2 peptide stability data across 11 MHC allotypes (5 HLA-A, 1 HLA-B, 4 HLA-C, 1 HLA-DRB1).
Ensemble outputs the mean predicted binding affinity of NetMHCpan-4.0 and MHCflurry (see Section 2.2). (BA = binding
affinity, EL = eluted ligand)

Model Binding Criterion AUROC Precision Sensitivity Specificity Avg. Precision

NetMHCpan-4.0 BA ≤ 50nM 0.977 0.474 0.529 0.992 0.470
NetMHCpan-4.0 BA ≤ 500nM 0.977 0.250 0.706 0.971 0.470
NetMHCpan-4.0 BA % Rank ≤ 0.5 0.977 0.538 0.412 0.995 0.470
NetMHCpan-4.0 BA % Rank ≤ 2 0.977 0.324 0.647 0.981 0.470
NetMHCpan-4.0 EL % Rank ≤ 0.5 0.985 0.500 0.706 0.990 0.536
NetMHCpan-4.0 EL % Rank ≤ 2 0.985 0.269 0.824 0.969 0.536
MHCflurry 1.6.0 BA ≤ 50nM 0.987 0.360 0.529 0.987 0.406
NetMHCpan-4.1 BA ≤ 50nM 0.979 0.438 0.412 0.993 0.466
NetMHCpan-4.1 BA ≤ 500nM 0.979 0.267 0.706 0.973 0.466
NetMHCpan-4.1 EL % Rank ≤ 0.5 0.990 0.480 0.706 0.989 0.521
NetMHCpan-4.1 EL % Rank ≤ 2 0.990 0.298 1.000 0.968 0.521
PUFFIN BA ≤ 50nM 0.976 0.467 0.412 0.994 0.425
PUFFIN BA ≤ 500nM 0.976 0.231 0.706 0.968 0.425
Ensemble Mean BA ≤ 50nM 0.980 0.474 0.529 0.992 0.427

Table S2. Classification performance of computational methods for predicting peptide-MHC binding evaluated on 17
experimentally determined HLA-A*02:01 associated CD8 T-cell epitopes from SARS-CoV vs. rest of SARS-CoV Spike (S)
protein. Ensemble outputs the mean predicted binding affinity of NetMHCpan-4.0 and MHCflurry (see Section 2.2). (BA =
binding affinity, EL = eluted ligand)
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S2 Details on S, M, N protein only vaccine design635

Figure S1. OptiVax-Robust designed vaccine using peptides from S, M, and N proteins only. (A) Results for MHC class I.
(B) Results for MHC class II. (a) EvalVax-Robust population coverage at different minimum number of peptide-HLA hit
cutoffs. (b) EvalVax-Unlinked population coverage. (c) Binding of vaccine peptides to each of the available alleles in MHC I
and II. (d) Distribution of peptide origin. (e) Distribution of the number of per-individual peptide-HLA hits in
White/Black/Asian populations. (f) Peptide presence in SARS-CoV.
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S3 Evaluation of baseline and OptiVax vaccines using different prediction tools/binder636

calling strategies637

See supplementary table in Supplementary_S3_evaluation_on_different_tools.xlsx.638

S4 Detailed GISAID accessions639

See table in GISAID_Acknowledgements.xlsx for acknowledgements.640
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