Abstract
Ascending visual projections similar to the mammalian thalamocortical pathway are found in a wide range of vertebrate species, but their homologous relationship is debated. To get better insights into their evolutionary origin, we examined the developmental origin of a visual relay nucleus in zebrafish (a teleost fish). Similarly to the tectofugal visual thalamic nuclei in amniotes, the lateral part of the preglomerular complex (PG) in teleosts receives tectal information and projects to the pallium. However, our cell lineage study reveals that the majority of PG cells are derived from the midbrain, not from the forebrain. We also demonstrate that the PG projection neurons develop gradually until juvenile stage, unlike the thalamic projection neurons. Our data suggest that teleost PG is not homologous to the amniote thalamus and that thalamocortical-like projections can evolve from a non-forebrain cell population. Thus, sensory pathways in vertebrate brains exhibit a surprising degree of variation.
Competing Interest Statement
The authors have declared no competing interest.