
Advancing Divide-and-Conquer Phylogeny
Estimation using Robinson-Foulds Supertrees?

Xilin Yu1[0000−0002−6323−3755], Thien Le1[0000−0001−5476−8451], Sarah A.
Christensen1[0000−0001−5790−6266], Erin K. Molloy1[0000−0001−5553−3312], and

Tandy Warnow1[0000−0001−7717−3514]

University of Illinois at Urbana-Champaign warnow@illinois.edu

Abstract. One of the Grand Challenges in Science is the construction of
the Tree of Life, an evolutionary tree containing several million species,
spanning all life on earth. However, the construction of the Tree of Life
is enormously computationally challenging, as all the current most ac-
curate methods are either heuristics for NP-hard optimization problems
or Bayesian MCMC methods that sample from tree space. One of the
most promising approaches for improving scalability and accuracy for
phylogeny estimation uses divide-and-conquer: a set of species is divided
into overlapping subsets, trees are constructed on the subsets, and then
merged together using a “supertree method”. Here, we present Exact-
RFS-2, the first polynomial-time algorithm to find an optimal supertree
of two trees, using the Robinson-Foulds Supertree (RFS) criterion (a
major approach in supertree estimation that is related to maximum like-
lihood supertrees), and we prove that finding the RFS of three input
trees is NP-hard. We also present GreedyRFS (a greedy heuristic that
operates by repeatedly using Exact-RFS-2 on pairs of trees, until all the
trees are merged into a single supertree). We evaluate Exact-RFS-2 and
GreedyRFS, and show that they have better accuracy than the current
leading heuristic for RFS. Exact-RFS-2 and GreedyRFS are available in
open source form on Github at github.com/yuxilin51/GreedyRFS.

Keywords: Phylogenomics · Divide-and-conquer · Robinson-Foulds Su-
pertrees.

? Supported by The University of Illinois at Ubana-Champaign

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://github.com/yuxilin51/GreedyRFS
https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 1

1 Introduction

Supertree construction (i.e., the combination of a collection of trees, each on a
potentially different subset of the species, into a tree on the full set of species) is
a natural algorithmic problem that has important applications to computational
biology; see [7] for a 2004 book on the subject and [9, 10, 14, 16–18, 27, 40] for
some of the recent papers on this subject. Supertree methods are particularly
important for large-scale phylogeny estimation, where it can be used as a final
step in a divide-and-conquer pipeline [48]: the species set is divided into two or
more overlapping subsets, unrooted leaf-labelled trees are constructed (possibly
recursively) on each subset, and then these subset trees are combined into a
tree on the full dataset, using the selected supertree method. Furthermore, pro-
vided that optimal supertrees are computed, divide-and-conquer pipelines can
be provably statistically consistent under stochastic models of evolution: i.e., as
the amount of input data (e.g., sequence lengths when estimating gene trees, or
number of gene trees when estimating species trees) increases, the probability
that the true tree is returned converges to 1 [26,47].

Unfortunately, the most accurate supertree methods are typically heuristics
for NP-hard optimization problems [4,16,27,29,31,35,36,40], and so are compu-
tationally intensive. However, divide-and-conquer strategies, especially recursive
ones, may only need to apply supertree methods to two trees at a time, and
hence the computational complexity of supertree estimation given two trees is
of interest. One optimization problem where optimal supertrees can be found
on two trees is the NP-hard Maximum Agreement Supertree (SMAST) prob-
lem (also known as the Agreement Supertree Taxon Removal problem), which
removes a minimum number of leaves so that the reduced trees have an agree-
ment supertree [14,17]. Similarly, the Maximum Compatible Supertree (SMCT)
problem, which removes a minimum number of leaves so that the reduced trees
have a compatibility supertree [5, 6], can also be solved in polynomial time on
two trees (and note that SMAST and SMCT are identical when the input trees
are fully resolved). Because SMAST and SMCT remove taxa, methods for these
optimization problems are not true supertree methods, because they do not re-
turn a tree on the entire set of taxa. However, solutions to SMAST and SMCT
could potentially be used as constraints for other supertree methods, where the
deleted leaves are added into the computed SMAST or SMCT trees, so as to
optimize the desired criterion.

When restricting to methods that return trees on the full set of taxa, much
less seems to be understood about finding supertrees on two trees. However,
if the two input trees are compatible (i.e., there is a supertree that equals or
refines each tree when restricted to the respective leaf set), then finding that
compatibility supertree is solvable in polynomial time, using (for example) the
well known BUILD algorithm [1], but more efficient algorithms exist (e.g., [3,6]).

Since compatibility is a strong requirement (rarely seen in biological datasets),
optimization problems are more relevant. One optimization problem worth dis-
cussing is the Maximum Agreement Supertree Edge Contraction problem (which
takes as input a set of rooted trees and seeks a minimum number of edges to col-

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

2 X. Yu et al.

lapse so that an agreement supertree exists). This problem is NP-hard, but the
decision problem can be solved in O((2k)pkn2) time when the input has k trees
and p is the allowed number of number of edges to be collapsed [14]. Note that
this analysis means that their algorithm for AST-EC may be exponential even
for two trees, when the number of edges that must be collapsed is Ω(n) (e.g.,
imagine two caterpillar trees, where one is obtained from the other by moving
the left-most leaf to the rightmost position).

In sum, while supertree methods are important and well studied, when re-
stricted to the major optimization problems that do not remove taxa, polynomial
time methods do not seem to be available, even for the special case where the
input contains just two trees. This restriction has consequences for large-scale
phylogeny estimation, as without good supertree methods, divide-and-conquer
pipelines are not guaranteed to be statistically consistent, are not fast, and do
not have good scalability [47].

In this paper we examine the well known Robinson-Foulds Supertree (RFS)
problem [2], which seeks a supertree that minimizes the total Robinson-Foulds
[32] distance to the input trees. Although RFS is NP-hard [22], it has several
desirable properties: it is closely related to maximum likelihood supertrees [38]
and, as shown very recently, has good theoretical performance for species tree
estimation in the presence of gene duplication and loss [25]. Because of its im-
portance, there are several methods for RFS supertrees, including PluMiST [18],
MulRF [8], and FastRFS [44]. A comparison between FastRFS and other su-
pertree methods (MRL [27], ASTRAL, ASTRID [43], PluMiST, and MulRF) on
simulated and biological supertree datasets showed that FastRFS matched or
improved on the other methods with respect to topological accuracy and RFS
criterion scores [44]. Hence, FastRFS is currently the leading method for the
RFS optimization problem.

The main contributions of this paper are:

– We prove that RFS is solvable in O(n2|X|) time for two trees, where n is
the number of leaves and X is the number of shared leaves (Theorem 1) and
NP-hard for three or more trees (Lemma 6).

– We present Exact-RFS-2, a polynomial time algorithm for the RFS problem
when given only two source trees, and explore its performance on simu-
lated data, both within a natural divide-and-conquer pipeline and within a
greedy heuristic (Section 3). We show that Exact-RFS-2 outperforms Fas-
tRFS [44] on two trees, the current most accurate method for RFS, and that
GreedyRFS is better than FastRFS for small to moderate numbers of source
trees (Section 4).

– We prove that divide-and-conquer pipelines using Exact-RFS-2 are statisti-
cally consistent methods for phylogenetic tree estimation (both gene trees
and species trees) under standard sequence evolution models (Theorem 2).

– We establish equivalence between RFS and some other supertree problems
(Lemma 1).

– We show critical differences between RFS and SMAST/SMCT problems,
that establish that methods for SMAST or SMCT cannot provably be used
to constrain the search for RFS supertrees (Lemma 23).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 3

The remainder of the paper is organized as follows. In Section 2, we provide
terminology and define the optimization problems we consider. We present the
Exact-RFS-2 algorithm and establish theory related to the algorithm in Sec-
tion 3. Our experimental performance study is presented in Section 4, and we
conclude in Section 5 with a discussion of trends and future research directions.

The details of the performance study and commands necessary to reproduce
the study are omitted from the main paper but available in the appendices;
the proofs are also available in [50]. All datasets used in this study are publicly
available from prior studies, and the scripts and codes necessary to reproduce
the study are available at http://github.com/yuxilin51/GreedyRFS.

2 Terminology and Problem Statements

We let [N] = {1, 2, . . . , N} andA = {Ti | i ∈ [N]} denote the input to a supertree
problem, where each Ti is a phylogenetic tree on leaf set L(Ti) = Si ⊆ S (where
L(t) denotes the leaf set of t) and the output is a tree T where L(T) is the set of
all species that appear as a leaf in at least one tree in A, which we will assume
is all of S. We use the standard supertree terminology, and refer to the trees in
A as “source trees” and the set A as a “profile”.

Robinson-Foulds Supertree Each edge e in a tree T defines a bipartition πe :=
[A|B] of the leaf set, and each tree is defined by the set C(T) := {πe | e ∈
E(T)}. The Robinson-Foulds distance [32] (also called the bipartition distance)
between trees T and T ′ with the same leaf set is RF(T, T ′) := |C(T)\C(T ′)| +
|C(T ′)\C(T)|. We extend the definition of RF distance to allow for T and T ′ to
have different leaf sets as follows: RF (T, T ′) := RF (T |X , T ′|X), where X is the
shared leaf set and t|X denotes the homeomorphic subtree of t induced by X.
Letting TS denote the set of all phylogenetic trees such that L(T) = S and T BS
denote the binary trees in TS , then a Robinson-Foulds supertree [2] of a profile
A is a binary tree

TRFS = argmin
T∈T B

S

∑
i∈[N]

RF(T, Ti).

We let RF(T,A) :=
∑
i∈[N] RF(T, Ti) denote the RFS score of T with respect to

profile A. Thus, the Robinson-Foulds Supertree problem takes as input the
profile A and seeks a Robinson-Foulds (RF) supertree for A, which we denote
by RFS(A).

Split Fit Supertree The Split Fit (SF) Supertree problem was introduced in
[49], and is based on optimizing the number of shared splits (i.e., bipartitions)
between the supertree and the source trees. For two trees T , T ′ with the same
leaf set, the split support is the number of shared bipartitions, i.e., SF(T, T ′) :=
|C(T)∩C(T ′)|. For trees with different leaf sets, we restrict them to the shared
leaf set before calculating the split support. The Split Fit supertree for a profile

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

http://github.com/yuxilin51/GreedyRFS
https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

4 X. Yu et al.

A of source trees, denoted SFS(A), is a tree TSFS ∈ T BS such that

TSFS = argmax
T∈T B

S

∑
i∈[N]

SF(T, Ti).

Thus, the split support score of T with respect toA is SF(T,A) :=
∑
i∈[N] SF(T, Ti).

The Split Fit Supertree (SFS) problem takes as input the profile A and
seeks a Split Fit supertree (the supertree with the maximum split support score),
which we denote by SFS(A).

Nomenclature for variants of RFS and SFS problems

– The relaxed versions of the problems where we do not require the output to
be binary (i.e., we allow T ∈ TS) are named Relax-RFS and Relax-SFS.

– We append “-N” to the name to indicate that we assume there are N source
trees. If no number is specified then the number of source trees is uncon-
strained.

– We append “-B” to the name to indicate that the source trees are required
to be binary; hence, we indicate that the source trees are allowed to be
non-binary by not appending -B.

Thus, the RFS problem with two binary input trees is RFS-2-B and the relaxed
SFS problem with three (not necessarily binary) input trees is Relax-SFS-3.

Other notation For any v ∈ V (T), we let NT (v) denote the set of neighbors of v
in T . A tree T ′ is a refinement of T iff T can be obtained from T ′ by contracting
a set of edges. Two bipartitions π1 and π2 of the same leaf set are said to be
compatible if and only if there exists a tree T such that πi ∈ C(T), i = 1, 2. A
bipartition π = [A|B] restricted to a subset R is π|R = [A ∩ R|B ∩ R]. For a
graph G and a set F of vertices or edges, we use G + F to represent the graph
obtained from adding the set F of vertices or edges to G, and G− F is defined
for deletions, similarly.

3 Theoretical Results

In this section we establish the main theoretical results, with detailed proofs
provided in [50] or in the appendix of the full version on bioRxiv.

3.1 Solving RFS and SFS on two trees

Lemma 1. Given an input set A of source trees, a tree T ∈ T BS is an optimal
solution for RFS(A) if and only if it is an optimal solution for SFS(A).

The main result of this paper is Theorem 1 (correctness is proved later within
the main body of the paper, and the running time is established in the Ap-
pendix):

Theorem 1. Let A = {T1, T2} with Si the leaf set of Ti (i = 1, 2) and X :=
S1∩S2. The problems RFS-2-B(A) and SFS-2-B(A) can be solved in O(n2|X|)
time, where n := max{|S1|, |S2|}.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 5

(a) T1

v1
v2 v3 v4

l1

l2

l3 l4 l5
l6

l7

a1 a2

a3 a4 a5

a6

e

(b) T2

l1

l2

l3l4
l5

l6

l7

b1

b2

b3

b4

b5 b6

e′

Fig. 1: T1 and T2 depicted in (a) and (b) have an overlapping leaf set X =
{l1, l2, . . . , l7}. Each of a1, . . . , a6 and b1, . . . , b6 can represent a multi-leaf ex-
tra subtree. Using indices to represent the shared leaves, let π = [12|34567];
then e1(π) = e and e2(π) = e′. P (e) is the path from v1 to v4, so w(e) = 3.
T R(e) = {a1, a2}, T R(e′) = {b2}, so T R∗(π) = {a1, a2, b2}. Let A = {1, 2, 3},
B = {4, 5, 6, 7}. Ignoring the trivial bipartitions, we have BP(A) = {[12|34567]}
and BP(B) = {[1234|567], [12345|67], [12346|57]}. T RS(A) = {a1, a2, b2} and
T RS(B) = {b4, b5, b6}.

Exact-RFS-2: Polynomial time algorithm for RFS-2-B and SFS-2-B
The input to Exact-RFS-2 is a pair of binary trees T1 and T2. Let X denote the
set of shared leaves. At a high level, Exact-RFS-2 constructs a tree Tinit that
has a central node that is adjacent to every leaf in X and to the root of every
“rooted extra subtree” (a term we define below) so that Tinit contains all the
leaves in S. It then modifies Tinit by repeatedly refining it to add specific desired
bipartitions, to produce an optimal Split Fit (and optimal Robinson-Foulds)
supertree (Figure 3). The bipartitions that are added are defined by a maximum
independent set in a bipartite “weighted incompatibility graph” we compute.

Additional notation Let Π = 2X denote the set of all bipartitions of X; any
bipartition that splits a single leaf from the remaining |X|−1 leaves will be called
“trivial” and the others will be called “non-trivial”. Let C(T1, T2, X) denote
C(T1|X) ∪ C(T2|X), and let Triv and NonTriv denote the sets of trivial and
non-trivial bipartitions in C(T1, T2, X), respectively. We refer to Ti|X , i = 1, 2 as
backbone trees (Figure 2). Recall that we suppress degree-two vertices when
restricting a tree Ti to a subset X of the leaves; hence, every edge e in Ti|X will
correspond to an edge or a path in T (see Fig. 1 for an example). We will let
P (e) denote the path associated to edge e, and let w(e) := |P (e)| (the number
of edges in P (e)). Finally, for π ∈ C(Ti|X), we define ei(π) to be the edge that
induces π in Ti|X (Fig. 1).

The next concept we introduce is the set of extra subtrees, which are rooted
subtrees of T1 and T2, formed by deleting X and all the edges and vertices on
paths between vertices in X (i.e., we delete Ti|X from Ti). Each component in
Ti − Ti|X is called an extra subtree of Ti, and note that the extra subtree t is
naturally seen as rooted at the unique vertex r(t) that is adjacent to a vertex in
Ti|X . Thus, Extra(Ti) = {t | t is a component in Ti − Ti|X}.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

6 X. Yu et al.

(a) T1|X

e1 e2 e3 e4

l1

l2 l6

l7

l3 l4 l5

(b) T2|X

e5 e6 e7 e8

l1

l2
l4 l3 l6

l5

l7

(c) incompatibility
graph

π1
π2
π3
π4

π5
π6
π7
π8

Fig. 2: We show (a) T1|X , (b) T2|X , and (c) their incompatibility graph, based on
the trees T1 and T2 in Figure 1 (without the trivial bipartitions). Each πi is the
bipartition induced by ei, and the weights for π1, . . . , π8 are 3, 4, 1, 1, 2, 2, 2, 3,
in that order. We note that π1 and π5 are the same bipartition, but they have
different weights as they are induced by different edges; similarly for π3 and π7.
The maximum weight independent set in this graph has all the isolated vertices
(π1, π3, π5, π7) and also π2, π8, and so has total weight 15.

We can now define the initial tree Tinit computed by Exact-RFS-2: Tinit has
a center node that is adjacent to every x ∈ X and also to the root r(t) for every
extra subtree t ∈ Extra(T1) ∪ Extra(T2). Note that Tinit has a leaf for every
element in S, and that Tinit|Si is a contraction of Ti, formed by collapsing all
the edges in the backbone tree Ti|X .

We say that an extra subtree t is attached to edge e ∈ E(Ti|X) if the root
of t is adjacent to an internal node of P (e), and we let T R(e) denote the set
of such extra subtrees attached to edge e. Similarly, if π ∈ C(T1, T2, X), we let
T R∗(π) refer to the set of extra subtrees that attach to edges in a backbone
tree that induce π in either T1|X or T2|X . For example, if both trees T1 and T2

contribute extra subtrees to π, then T R∗(π) :=
⋃
i∈[2] T R(ei(π)).

For any Q ⊆ X, we let BPi(Q) denote the set of bipartitions in C(Ti|X) that
have one side being a strict subset of Q, and we let T RSi(Q) denote the set
of extra subtrees associated with these bipartitions. In other words, BPi(Q) :=
{[A|B] ∈ C(Ti|X) | A (Q or B (Q}, and T RSi(Q) :=

⋃
π∈BPi(Q) T R(ei(π)).

Intuitively, T RSi(Q) denotes the set of extra subtrees in Ti that are “on the
side of Q”. By Corollary 2, which appears in the Appendix, for any π = [A|B] ∈
C(Ti|X), BPi(A)∪BPi(B) is the set of bipartitions in C(Ti|X) that are compati-
ble with π. Finally, let BP(Q) = BP1(Q)∪BP2(Q), and T RS(Q) = T RS1(Q)∪
T RS2(Q). We give an example for these terms in Figure 1.

The incompatibility graph of a set of trees, each on the same set of leaves,
has one vertex for each bipartition in any tree (and note that bipartitions can
appear more than once) and edges between bipartitions if they are incompatible
(see [30]). We compute a weighted incompatibility graph for the pair of trees
T1|X and T2|X , in which the weight of the vertex corresponding to bipartition π
appearing in tree Ti|X is w(ei(π)), as defined previously. Thus, if a bipartition is
common to the two trees, it produces two vertices in the weighted incompatibility
graph, and each vertex has its own weight (Figure 2).

We divide C = C(T1) ∪ C(T2) into two sets: ΠX = {[A|B] ∈ C | A ∩ X 6=
∅ and B∩X 6= ∅}, and ΠY = {[A|B] ∈ C | A∩X = ∅ or B∩X = ∅}. Intuitively,

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 7

Algorithm 1 Exact-RFS-2: Computing a Robinson-Foulds supertree of two
trees (see Figure 3)

Input: two binary trees T1, T2 with leaf sets S1 and S2 where S1 ∩ S2 = X 6= ∅
Output: a binary supertree T on leaf set S = S1 ∪ S2 that maximizes the split support score

1: compute C(T1|X) and C(T2|X)
2: for each π = [A|B] ∈ C(T1, T2, X) do
3: for i ∈ [2] do
4: compute T R(ei(π)), w(ei(π))

5: compute BP(A), BP(B), T RS(A), T RS(B), and T R∗(π),

6: construct T as a star tree with leaf set X and center vertex v̂ and with the root of each t ∈
Extra(T1) ∪ Extra(T2) connected to v̂ by an edge . let Tinit = T

7: construct the weighted incompatibility graph G of T1|X and T2|X
8: compute the maximum weight independent set I∗ in G
9: let I be the set of bipartitions associated with vertices in I∗

10: for each π = [{a}|B] ∈ Triv do
11: detach all extra subtrees in T R∗(π) from v̂ and attach them onto (v̂, a) such that T R(e1(π))

are attached first with their ordering matching their attachments on e1(π) and T R(e2(π)) are
attached to the right of all subtrees in T R(e1(π)) with the ordering of them also matching their
attachments on e2(π)

. let T̃ = T after for loop
12: H(v̂) = NonTriv, set sv(π) = v̂ for all π ∈ NonTriv
13: for each π ∈ NonTriv ∩ I (in any order) do
14: T ← Refine(T, π,H, sv) . let T∗ = T after for loop

15: arbitrarily refine T to make it a binary tree
16: return T

ΠX is the set of bipartitions from the input trees that are induced by edges in
the minimal subtree of T1 or T2 spanning X, and ΠY are all the other input tree
bipartitions. We define pX(·) and pY (·) on trees T ∈ TS by:

pX(T) =
∑
i∈[2]

|C(T |Si) ∩ C(Ti) ∩ΠX |, pY (T) =
∑
i∈[2]

|C(T |Si) ∩ C(Ti) ∩ΠY |.

Note that pX(T) and pY (T) decompose the split support score of T into the score
contributed by bipartitions in ΠX and the score contributed by bipartitions in
ΠY ; thus, the split support score of T with respect to T1, T2 is pX(T) + pY (T).
As we will show, the two scores can be maximized independently and we can use
this observation to refine Tinit so that it achieves the optimal total score.

Overview of Exact-RFS-2 Exact-RFS-2 (Algorithm 1) has four phases. In the
pre-processing phase (lines 1–5), it computes the weight function w and the
mappings T R, T R∗,BP, and T RS for use in latter parts of Algorithm 1 and
Algorithm 2. In the initial construction phase (line 6), it constructs a tree Tinit

(as described earlier), and we note that Tinit maximizes pY (·) score (Lemma 2).
In the refinement phase (lines 7–14), it refines Tinit so that it attains the maxi-
mum pX(·) score. In the last phase (line 15), it arbitrarily refines T to make it
binary. The refinement phase begins with the construction of a weighted incom-
patibility graph G of T1|X and T2|X (see Figure 2). It then finds a maximum
weight independent set of G that defines a set I ⊆ C(T1, T2, X) of compatible
bipartitions of X. Finally, it uses these bipartitions of X in I to refine Tinit to
achieve the optimal pX(·) score, by repeatedly applying Algorithm 2 for each
π ∈ I (and we note that the order does not matter). See Figure 3 for an example
of Exact-RFS-2 given two input source trees.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

8 X. Yu et al.

(a) Tinit: star with leaf set X
and all extra subtrees attached to
center

l1

l2

l3
l4 l5

l6

l7
a1
a2
a3
a4a5a6 b1 b2

b3
b4
b5
b6

(b) T̃ : after adding all Triv to T |X

l1

l2

l3
l4 l5

l6

l7
a1
a2
a3
a4 a5 b2

b3
b4
b5
b6

b1 a6

(c) After adding π2 = [123|4567]

va vb
l1

l2

l3
l4 l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4 b5 b6

b1 a6

(d) After adding π8 = [12346|57]

l1

l2

l3
l4

l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4

b5 b6

b1

a6

(e) After adding π1 = π5 = [12|34567]

l1

l2

l3 l4
l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4

b5 b6

b1 a6

(f) After adding π3 = π7 = [1234|567]

l1

l2

l3 l4
l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4

b5 b6

b1 a6

Fig. 3: Algorithm 1 working on T1 and T2 from Figure 1 as source trees; the
indices of leaves in X = {l1, l2, . . . , l7} represent the leaves and the notation
of π1, . . . , π8 is from Figure 2. In (a) to (f), the pX(·) score of the trees are
14, 16, 20, 23, 27, 29, in that order. We explain how the algorithm obtain the tree
in (c) from T̃ by adding π2 = [123|4567] to the backbone of T̃ . Let A = {l1, l2, l3}
and B = {l4, l5, l6, l7}. The center vertex c of T̃ is split into two vertices va, vb
with an edge between them. Then all neighbors of c between c and A are made
adjacent to va while the neighbors between c and B are made adjacent to vb.
All neighbors of c which are roots of extra subtrees are moved around such that
all extra subtrees in T R∗(π2) are attached onto (va, vb); all extra subtrees in
T RS(A) = {a1, a2, b2} are attached to va and all extra subtrees in T RS(B) =
{b4, b5, b6} are attached to vb. We note that in this step, b3 can attach to either
va or vb because it is not in T RS(A) or T RS(B). However, when obtaining the
tree in (d) from the tree in (c), b3 can only attach to the left side because for
A′ = {l1, l2, l3, l4, l6}, [124|3567] ∈ BP(A′) and thus b3 ∈ T RS(A′).

Algorithm 2 refines the given tree T on leaf set S with bipartitions on X from
C(T1, T2, X)\C(T |X). Given bipartition π = [A|B] on X, Algorithm 2 produces
a refinement T ′ of T such that C(T ′|Si

) = C(T |Si
)∪{π′ ∈ C(Ti) | π′|X = π} for

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 9

Algorithm 2 Refine

Input: a tree T on leaf set S, a nontrivial bipartition π = [A|B] of X, two data structures H
and sv
Output: a tree T ′ which is a refinement of T such that for both i = 1, 2, C(T ′|Si

) = C(T |Si
)∪

{π′ ∈ C(Ti) | π′|X = π}
1: v ← sv(π)
2: T ′ ← T + va + vb + (va, vb)
3: compute NA := {u ∈ NT (v) | ∃a ∈ A s.t. u can reach a in T − v} and NB := {u ∈ NT (v) | ∃b ∈

B s.t. u can reach b in T − v}.
4: for each u ∈ NA ∪NB do
5: if u ∈ NA then connect u to va
6: else connect u to vb
7: detach all extra subtrees in T R∗(π) from v and attach them onto (va, vb) such that T R(e1(π))

are attached first with their ordering matching their attachments on e1(π) and T R(e2(π)) are
attached to the right of all subtrees in T R(e1(π)) with the ordering of them also matching their
attachments on e2(π)

8: for each t ∈ T RS(A) do
9: if t is attached to v, detach it and attach to va
10: for each t ∈ T RS(B) do
11: if t is attached to v, detach it and attach to vb
12: for each remaining extra subtree attached to v do
13: detach it from v and attach it to either va or vb
14: H(va)← ∅, H(vb)← ∅
15: for each π′ ∈ H(v) do
16: if π′ ∈ BP(A) then
17: sv(π′) = va, H(va)← H(va) ∪ {π′}
18: else if π′ ∈ BP(B) then
19: sv(π′) = vb, H(vb)← H(vb) ∪ {π′}
20: else
21: discard π′

22: return T ′ = T ′ − v

both i = 1, 2. To do this, we first find the unique vertex v such that no component
of T − v has leaves from both A and B. We create two new vertices va and vb
with an edge between them. We divide the neighbor set of v into three sets: NA is
the set of neighbors that split v from leaves in A, NB is the set of neighbors that
split v from leaves in B, and Nother contains the remaining neighbors. Then, we
make vertices in NA adjacent to va and vertices in NB adjacent to vb. We note
that Nother = ∅ if X = S and thus there are no extra subtrees. In the case where
X 6= S, Nother contains the roots of the extra subtrees adjacent to v and we
handle them in four different cases to make T ′ include the desired bipartitions:

– those vertices that root extra subtrees in T R∗(π) are moved onto the edge
(va, vb) (by subdividing the edge to create new vertices, and then making
these vertices adjacent to the new vertices)

– those vertices that root extra subtrees in T RS(A) are made adjacent to va
– those that root extra subtrees in T RS(B) are made adjacent to vb
– the remaining vertices can be made adjacent to either va or vb

Algorithms 1 and 2 also use two data structures (functions) H and sv: (1) For
a given node v ∈ V (T), H(v) ⊆ C(T1, T2, X) is the set of bipartitions of X that
can be added to T |X by refining T |X at v, and (2) Given π ∈ C(T1, T2, X),
sv(π) = v means ∃T ′, a refinement of T at v, so that C(T ′|X) = C(T |X) ∪ {π}.

Lemma 2. For any tree T ∈ TS, pY (T) ≤ |ΠY |. In particular, let Tinit be the
tree defined in line 6 of Algorithm 1. Then, pY (Tinit) = |ΠY |.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

10 X. Yu et al.

Lemma 2 formally states that the tree Tinit we build in line 6 of Exact-RFS-2
(Algorithm 1) maximizes the pY (·) score. This lemma is true because there are
only |ΠY | bipartitions that can contribute to pY (·) and Tinit contains all of them
by construction. We define the function w∗ : Π → N≥0 as follows:

w∗(π) =

0 if π 6∈ C(T1, T2, X),
w(e1(π)) if π ∈ C(T1|X) \ C(T2|X),
w(e2(π)) if π ∈ C(T2|X) \ C(T1|X),∑
i∈[2] w(ei(π)) else.

For any set F of bipartitions, we let w∗(F) =
∑
π∈F w

∗(π).

Lemma 3. Let π = [A|B] ∈ Π. Let T ∈ TS be any tree with leaf set S such
that π /∈ C(T |X) but π is compatible with C(T |X). Let T ′ be a refinement of
T such that for all π′ ∈ C(T ′|Si)\C(T |Si) for some i ∈ [2], π′|X = π. Then,
pX(T ′)− pX(T) ≤ w∗(π).

Lemma 4. For any compatible set F ⊆ Π, let T ∈ TS be any tree with leaf set
S such that C(T |X) = F . Then pX(T) ≤ w∗(F).

Lemma 3 shows that w∗(π) represents the maximum potential increase in
pX(·) as a result of adding bipartition π to T |X . The proof of Lemma 3 follows
the idea that for any bipartition π of X, there are at most w∗(π) edges in either
T1 or T2 whose induced bipartitions become π when restricted to X. Therefore,
by only adding π to T |X , at most w∗(π) more bipartitions get included in C(T |S1

)
or C(T |S2

) so that they contribute to the increase of pX(T). The proof of Lemma
4 uses Lemma 3 repeatedly by adding the compatible bipartitions to the tree in
an arbitrary order.

Proposition 1. Let T̃ be the tree constructed after line 11 of Algorithm 1, then
pX(T̃) = w∗(Triv).

The proof naturally follows by construction (Line 8 of Algorithm 1), and
implies that the algorithm adds the trivial bipartitions ofX (which are all in I) to
T |X so that pX(T) reaches the full potential of adding those trivial bipartitions.

Lemma 5. Let T be a supertree computed within Algorithm 1 at line 14 im-
mediately before a refinement step. Let π = [A|B] ∈ NonTriv ∩ I. Let T ′ be a
refinement of T obtained from running Algorithm 2 with supertree T , bipartition
π, and the auxiliary data structures H and sv. Then, pX(T ′)− pX(T) = w∗(π).

The idea for the proof of Lemma 5 is that for any non-trivial bipartition
π ∈ I of X to be added to T |X , Algorithm 2 is able to split the vertex correctly
and move extra subtrees around in a way such that each bipartition in T1 or
T2 that is induced by an edge in P (e1(π)) or P (e2(π)), which is not in T |S1

or
T |S2

before the refinement, becomes present in T |S1
or T |S2

after the refinement.
Since there are exactly w∗(π) such bipartitions, they increase pX(·) by w∗(π).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 11

Proposition 2. Let G be the weighted incompatibility graph on T1|X and T2|X ,
and let I be the set of bipartitions associated with vertices in I∗, which is a maxi-
mum weight independent set of G. Let F be any compatible subset of C(T1, T2, X).
Then w∗(I) ≥ w∗(F).

We now restate and prove Theorem 1:

Theorem 1. Let A = {T1, T2} with Si the leaf set of Ti (i = 1, 2) and X :=
S1∩S2. The problems RFS-2-B(A) and SFS-2-B(A) can be solved in O(n2|X|)
time, where n := max{|S1|, |S2|}.

Proof. First we claim that pX(T ∗) ≥ pX(T) for any tree T ∈ TS , where T ∗

is defined as from line 14 of Algorithm 1. Fix arbitrary T ∈ TS and let F =
C(T |X). Then by Lemma 4, pX(T) ≤ w∗(F). We know that w∗(π) = 0 for any
π /∈ C(T1, T2, X), so w∗(F) = w∗(F ∩ C(T1, T2, X)) and thus pX(T) ≤ w∗(F ∩
C(T1, T2, X)). Since F ∩C(T1, T2, X) is a compatible subset of C(T1, T2, X), we
have w∗(F ∩ C(T1, T2, X)) ≤ w∗(I) by Proposition 2. Then pX(T) ≤ w∗(I).
Since Triv ⊆ C(T1|X) ∩ C(T2|X) ⊆ I, we have I = (NonTriv ∩ I) ∪ (Triv ∩ I) =
(NonTriv ∩ I) ∪ Triv. Therefore, by Proposition 1 and Lemma 5, we have

pX(T ∗) = pX(T̃) +
∑

π∈NonTriv∩I
w∗(π) = w∗(Triv) + w∗(NonTriv ∩ I) = w∗(I).

Therefore, pX(T ∗) = w∗(I) ≥ pX(T).
From Lemma 2 and the fact that a refinement of a tree never decreases pX(·)

and pY (·), we also know that pY (T ∗) ≥ pY (Tinit) ≥ pY (T) for any tree T ∈ TS .
Since for any T ∈ TS , SF(T,A) = pX(T) + pY (T), T ∗ achieves the maximum
split support score with respect to A among all trees in TS . Thus, T ∗ is a solution
to Relax–SFS-2-B (Corollary 1). If T ∗ is not binary, Algorithm 1 arbitrarily
resolves every high degree node in T ∗ until it is a binary tree and then returns
a tree that achieves the maximum split support score among all binary trees of
leaf set S. See the Appendix for the running time analysis.

Corollary 1. Let A = {T1, T2} with Si the leaf set of Ti (i = 1, 2) and X := S1∩
S2. Relax–SFS-2-B can be solved in O(n2|X|) time, where n := max{|S1|, |S2|}.

Lemma 6. RFS-3, SFS-3, and Relax–SFS-3 are all NP-hard.

3.2 DACTAL-Exact-RFS-2

Let Φ be a model of evolution (e.g., GTR) for which statistically consistent
methods exist, and we have some data (e.g., sequences) generated by the model
and wish to construct a tree. We construct an initial estimate of the tree, divide
the dataset into two overlapping subsets (by removing an edge e, letting X be
the set of the p nearest leaves to e, and letting the subsets be A∪X and B ∪X,
where πe = [A|B]), re-estimate trees on the subsets (perhaps using a recursive
approach that is statistically consistent), and then combine the trees together

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

12 X. Yu et al.

using Exact-RFS-2. We call this the DACTAL-Exact-RFS-2 pipeline, due to its
similarity to the DACTAL pipeline [26].

Before we prove that DACTAL-Exact-RFS-2 can enable statistically consis-
tent pipelines, we begin with some definitions. Given a tree T and an internal
edge e in T , the deletion of the edge e and its endpoints defines four subtrees. A
short quartet around e is a set of four leaves, one from each subtree, selected
to be closest to the edge. Note that due to ties, there can be multiple short
quartets around some edges. The set of short quartets for a tree T is the set of
all short quartets around the edges of T . The short quartet trees of T is the
set of quartet trees on short quartets induced by T . It is well known that the
short quartet trees of a tree T define T , and furthermore T can be computed
from this set in polynomial time [11–13].

Lemma 7. Let T be a binary tree on leaf set S and let A,B ⊆ S. Let TA =
T |A and TB = T |B (i.e., TA and TB are correct induced subtrees). If every
short quartet tree is induced in TA or in TB, then T is the unique compatibility
supertree for TA and TB and Exact-2-RFS(TA, TB) = T .

Proof. Because TA and TB are true trees, it follows that T is a compatibility
supertree for TA and TB . Furthermore, because every short quartet tree appears
in at least one of these trees, T is the unique compatibility supertree for TA
and TB (by results from [12, 13], mentioned above). Finally, because T is a
compatibility supertree, the RFS score of T with respect to TA, TB is 0, which
is the best possible. Since Exact-2-RFS solves the RFS problem on two binary
trees, Exact-2-RFS returns T given input TA and TB .

Thus, Exact-2-RFS is guaranteed to return the true tree when given two
correct trees that have sufficient overlap (in that all short quartets are included).
We continue with proving that these pipelines are statistically consistent.

Theorem 2. The DACTAL-Exact-RFS-2 pipeline is statistically consistent un-
der any model Φ for which statistically consistent tree estimation methods exist.

Proof. Let Φ be the sequence evolution model. To establish statistical consis-
tency of the pipeline, we need to prove that as the amount of data increases
the tree that is returned by the pipeline converge to the true tree. Hence, let
F be the method used to compute the starting tree and let G be the method
used to compute the subset trees. Because F is statistically consistent under Φ,
it follows that as the amount of data increases, the starting tree computed by F
will converge to the true tree T . Now consider the decomposition into two sets
produced by the algorithm, when applied to the true tree. Let e be the edge that
is deleted and let the four subtrees around e have leaf sets A1, A2, B1, and B2.
Note in particular that all the leaves appearing in any short quartet around e
are placed in the set X. Now, subset trees are computed using G on A1∪A2∪X
and B1 ∪ B2 ∪ X, which we will refer to as TA and TB , respectively. Since G
is statistically consistent, as the amount of data increases, TA converges to the
true tree on its leaf set (T |L(TA)) and TB converges to the true tree on its leaf set

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 13

(T |L(TB)). When TA and TB are equal to the true trees on their leaf sets, then
every short quartet tree of T is in TA or TB , and by Lemma 7, T is the only
compatibility supertree for TA and TB and Exact-2-RFS(TA, TB) returns T .

Hence, DACTAL+Exact-2-RFS is statistically consistent under all standard
molecular sequence evolution models and also under the MSC+GTR model [33,
45] where gene trees evolve within species trees under the multi-species coalescent
model (which addresses gene tree discordance due to incomplete lineage sorting
[19]) and then sequences evolve down each gene tree under the GTR model.

Note that all that is needed for F and G to guarantee that the pipeline is
statistically consistent is that they should be statistically consistent under Φ.
However, for the sake of improving empirical performance, F should be fast so
that it can run on the full dataset but G can be more freely chosen, since it
will only be run on smaller datasets. Indeed, the user can specify the size of
the subsets that are analyzed, with smaller datasets enabling the use of more
computationally intensive methods.

For example, when estimating trees under the GTR [42] model, F could be a
fast but statistically consistent distance-based method such as neighbor joining
[34] and G could be RAxML [37], a leading maximum likelihood method. For the
MSC+GTR model, F and G could be polynomial time summary methods (i.e.,
methods that estimate the species tree by combining gene trees), with F being
ASTRID [43] (a very fast summary method) and G being ASTRAL [23,24,51],
which is slower than ASTRID but often more accurate. However, if the subsets
are chosen to be very small, then other choices for G include StarBeast2 [28],
a Bayesian method for co-estimating gene trees and species trees under the
MSC+GTR model.

Fig. 4: Results for Experiment 1: Exact-2-RFS has better RFS criterion scores
than FastRFS (lower is better) in ILS-based species tree estimation (using
ASTRAL-III [51], for 501 species with varying numbers of genes.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

14 X. Yu et al.

4 Experiments and Results

We performed two experiments: Experiment 1, where we used Exact-2-RFS
within a divide-and-conquer strategy for large scale phylogenomic species tree
estimation where gene trees differ from the species tree due to Incomplete Lin-
eage Sorting (ILS), and Experiment 2, where we used Exact-2-RFS as part of a
greedy heuristic, GreedyRFS, for large-scale supertree estimation.

4.1 Experiment 1: Phylogenomic species tree estimation

In this experiment, the input is a set of gene trees that can differ from the
species tree due to Incomplete Lineage Sorting [19], ASTRAL [23,24,51] is used
to construct species trees on the two overlapping subsets in the DACTAL pipeline
described above, and the two overlapping estimated species trees are then merged
together using either Exact-2-RFS or FastRFS. Because the divide-and-conquer
strategy produces two source trees, the RFS criterion score for Exact-2-RFS
cannot be worse than the score obtained by FastRFS; here we examine the
degree of improvement. The simulation protocol produced datasets with high
variability (especially for small numbers of genes), so that there was substantial
range in the optimal criterion scores for 25 and 100 genes (Figure 4). On average,
Exact-2-RFS produces better RFS scores than FastRFS for all numbers of genes,
and strictly dominates FastRFS for 1000 genes (Fig. 4), showing that divide-and-
conquer pipelines are improved using Exact-2-RFS compared to FastRFS.

4.2 Experiment 2: Exploring GreedyRFS for supertree estimation

We developed GreedyRFS, a greedy heuristic that takes a profile A as input, and
then merges pairs of trees until all the trees are merged into a single tree. The
choice of which pair to merge follows the technique used in SuperFine [41] for
computing the Strict Consensus Merger, which selects the pair that maximizes
the number of shared taxa between the two trees (other techniques could be
used, potentially with better accuracy [15]). Thus, GreedyRFS is identical to
Exact-2-RFS when the profile has only two trees.

We use a subset of the SMIDgen [39] datasets with 500 species and varying
numbers of source trees (each estimated using maximum likelihood heuristics)
that have been used to evaluate supertree methods in several studies [27,39–41,
44]. See Appendix (in the full version of the paper on arXiv) for full details of
this study.

We explored the impact of changing the number of source trees. The result
for two source trees is predicted by theory (i.e., GreedyRFS is the same as Exact-
2-RFS for two source trees, and so is guaranteed optimal for this case), but even
when the number of source trees was greater than two, GreedyRFS dominated
FastRFS in terms of criterion score, provided that the number of source trees
was not too large (Fig. 5).

This establishes that the advantage in criterion score is not limited to the
case of two source trees, suggesting that using Exact-2-RFS within GreedyRFS
(or some other heuristics) may be useful for supertree estimation more generally.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 15

Fig. 5: Results for Experiment 2: The percentage of datasets (y-axis) that each
method (FastRFS and GreedRFS) ties with or is strictly better than the other
in terms of RFS criterion score is shown for varying numbers of source trees (x-
axis), based on nine replicate supertree 500-leaf 20% scaffold datasets (from [41])
.

5 Conclusions

The main contribution of this paper is Exact-2-RFS, a polynomial time algorithm
for the Robinson-Foulds Supertree (RFS) of two trees that enables divide-and-
conquer pipelines to be provably statistically consistent under sequence evolution
models (e.g., GTR [42] and MSC+GTR [33]). Our experimental study showed
that Exact-2-RFS dominates the leading RFS heuristic, FastRFS, when used
within divide-and-conquer species tree estimation using genome-scale datasets,
a problem of increasing importance in biology. We also showed that a greedy
heuristic using Exact-2-RFS produced better criterion scores than FastRFS when
the number of source trees was small to moderate, showing the potential for
Exact-2-RFS to be useful in other settings. Overall, our study advances the the-
oretical understanding of several important supertree problems and also provides
a new method that should improve scalability of phylogeny estimation methods.

This study suggests several directions for future work. For example, although
we showed that Exact-2-RFS produced better RFS criterion scores than Fas-
tRFS when used in divide-and-conquer species tree estimation (and similarly
GreedyRFS was better than FastRFS for small numbers of source trees in su-
pertree estimation), additional studies are needed to explore its performance,
including additional datasets (both simulated and biological datasets) and other
leading supertree methods. Similarly, other heuristics using Exact-2-RFS besides
GreedyRFS should be developed and studied.

Acknowledgments

This research was supported by NSF grants 1458652, 1513629, and 1535977 to
TW, by the NSF Graduate Research Fellowship DGE-1144245 to EKM, and by

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

16 X. Yu et al.

the Ira and Debra Cohen Fellowship in Computer Science at the University of
Illinois to SAC and EKM. This research is part of the Blue Waters sustained-
petascale computing project, which is supported by the National Science Foun-
dation (awards OCI-0725070 and ACI-1238993) and the state of Illinois.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 17

References

1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions.
SIAM Journal on Computing 10(3), 405–421 (1981)

2. Bansal, M.S., Burleigh, J.G., Eulenstein, O., Fernández-Baca, D.: Robinson-foulds
supertrees. Algorithms for Molecular Biology 5(1), 18 (2010)

3. Baste, J., Paul, C., Sau, I., Scornavacca, C.: Efficient FPT algorithms for (strict)
compatibility of unrooted phylogenetic trees. Bulletin of Mathematical biology
79(4), 920–938 (2017)

4. Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic
inference, and the desirability of combining gene trees. Taxon pp. 3–10 (1992)

5. Berry, V., Nicolas, F.: Maximum agreement and compatible supertrees. In: Annual
Symposium on Combinatorial Pattern Matching. pp. 205–219. Springer (2004)

6. Berry, V., Nicolas, F.: Improved parameterized complexity of the maximum agree-
ment subtree and maximum compatible tree problems. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 3(3), 289–302 (2006)

7. Bininda-Emonds, O.R.: Phylogenetic supertrees: combining information to reveal
the tree of life, vol. 4. Springer Science & Business Media (2004)

8. Chaudhary, R., Fernández-Baca, D., Burleigh, J.G.: MulRF: a software package for
phylogenetic analysis using multi-copy gene trees. Bioinformatics 31(3), 432–433
(2014)

9. Cotton, J.A., Wilkinson, M.: Majority-rule supertrees. Systematic biology 56(3),
445–452 (2007)

10. De Oliveira Martins, L., Mallo, D., Posada, D.: A Bayesian supertree model for
genome-wide species tree reconstruction. Systematic biology 65(3), 397–416 (2016)

11. Erdős, P., Steel, M.A., Szekely, L.A., Warnow, T.J.: Local quartet splits of a binary
tree infer all quartet splits via one dyadic inference rule. Computers and Artifical
Intelligence 16(2), 217–227 (1997)

12. Erdős, P.L., Steel, M.A., Székely, L.A., Warnow, T.J.: A few logs suffice to build
(almost) all trees (I). Random Structures & Algorithms 14(2), 153–184 (1999)

13. Erdös, P.L., Steel, M.A., Székely, L.A., Warnow, T.J.: A few logs suffice to build
(almost) all trees (II). Theoretical Computer Science 221(1-2), 77–118 (1999)

14. Fernández-Baca, D., Guillemot, S., Shutters, B., Vakati, S.: Fixed-parameter al-
gorithms for finding agreement supertrees. SIAM Journal on Computing 44(2),
384–410 (2015)

15. Fleischauer, M., Böcker, S.: Collecting reliable clades using the greedy strict con-
sensus merger. PeerJ 4, e2172 (2016)

16. Fleischauer, M., Böcker, S.: Bad clade deletion supertrees: a fast and accurate
supertree algorithm. Molecular biology and evolution 34(9), 2408–2421 (2017)

17. Guillemot, S., Berry, V.: Fixed-parameter tractability of the maximum agreement
supertree problem. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics 7(2), 342–353 (2010)

18. Kupczok, A.: Split-based computation of majority-rule supertrees. BMC evolution-
ary biology 11(1), 205 (2011)

19. Maddison, W.P.: Gene trees in species trees. Systematic Biology 46(3), 523–536
(1997)

20. Mallo, D., de Oliveira Martins, L., Posada, D.: SimPhy: phylogenomic simulation
of gene, locus, and species trees. Systematic biology 65(2), 334–344 (2015)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

18 X. Yu et al.

21. McMorris, F.: On the compatibility of binary qualitative taxonomic characters.
Bulletin of Mathematical Biology 39(2), 133–138 (1977)

22. McMorris, F., Steel, M.A.: The complexity of the median procedure for binary
trees. In: New Approaches in Classification and Data Analysis, pp. 136–140.
Springer (1994)

23. Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S., Warnow,
T.: ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformat-
ics 30(17), i541–i548 (2014), special issue for ECCB (European Conference on
Computational Biology), 2014

24. Mirarab, S., Warnow, T.: ASTRAL-II: coalescent-based species tree estimation
with many hundreds of taxa and thousands of genes. Bioinformatics 31(12), i44–
i52 (2015), special issue for ISMB 2015

25. Molloy, E.K., Warnow, T.: FastMulRFS: fast and accurate species tree estimation
under generic gene duplication and loss models. Bioinformatics (2020), to appear,
special issue for ISMB 2020

26. Nelesen, S., Liu, K., Wang, L.S., Linder, C.R., Warnow, T.: DACTAL: divide-
and-conquer trees (almost) without alignments. Bioinformatics 28(12), i274–i282
(2012), special issue for ISMB 2012

27. Nguyen, N., Mirarab, S., Warnow, T.: MRL and SuperFine+MRL: new supertree
methods. Algorithms for Molecular Biology 7(1), 3 (2012)

28. Ogilvie, H.A., Heled, J., Xie, D., Drummond, A.J.: Computational performance
and statistical accuracy of *BEAST and comparisons with other methods. Sys-
tematic Biology 65(3), 381–396 (2016)

29. Page, R.D.: Modified mincut supertrees. In: Proceedings WABI (International
Workshop on Algorithms in Bioinformatics). pp. 537–551. Springer-Verlag (2002)

30. Phillips, C., Warnow, T.J.: The asymmetric median tree—a new model for building
consensus trees. Discrete Applied Mathematics 71(1-3), 311–335 (1996)

31. Ragan, M.A.: Phylogenetic inference based on matrix representation of trees.
Molecular Phylogenetics and Evolution 1(1), 53–58 (1992)

32. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical
biosciences 53(1-2), 131–147 (1981)

33. Roch, S., Nute, M., Warnow, T.: Long-branch attraction in species tree estimation:
Inconsistency of partitioned likelihood and topology-based summary methods. Sys-
tematic Biology 68(2), 281–297 (09 2018). https://doi.org/10.1093/sysbio/syy061,
https://doi.org/10.1093/sysbio/syy061

34. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular biology and evolution 4(4), 406–425 (1987)

35. Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Applied Math-
ematics 105(1-3), 147–158 (2000)

36. Snir, S., Rao, S.: Quartets MaxCut: a divide and conquer quartets algorithm.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB)
7(4), 704–718 (2010)

37. Stamatakis, A.: RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics 30(9), 1312–1313 (2014)

38. Steel, M., Rodrigo, A.: Maximum likelihood supertrees. Systematic biology 57(2),
243–250 (2008)

39. Swenson, M.S., Barbançon, F., Warnow, T., Linder, C.R.: A simulation study
comparing supertree and combined analysis methods using SMIDGen. Algorithms
for Molecular Biology 5(1), 8 (2010)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1093/sysbio/syy061
https://doi.org/10.1093/sysbio/syy061
https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 19

40. Swenson, M.S., Suri, R., Linder, C.R., Warnow, T.: An experimental study of
Quartets MaxCut and other supertree methods. Algorithms for Molecular Biology
6(1), 7 (2011)

41. Swenson, M.S., Suri, R., Linder, C.R., Warnow, T.: SuperFine: fast and accurate
supertree estimation. Systematic Biology 61(2), 214 (2011)

42. Tavaré, S.: Some probabilistic and statistical problems in the analysis of DNA
sequences. In: Miura, R. (ed.) Lectures on mathematics in the life sciences–DNA
sequences, vol. 17, pp. 57–86. American Mathematical Society, Providence, RI
(1986)

43. Vachaspati, P., Warnow, T.: ASTRID: accurate species trees from internode dis-
tances. BMC genomics 16(10), S3 (2015)

44. Vachaspati, P., Warnow, T.: FastRFS: fast and accurate robinson-foulds supertrees
using constrained exact optimization. Bioinformatics 33(5), 631–639 (2016)

45. Warnow, T.: Concatenation analyses in the presence of in-
complete lineage sorting. PLOS Currents Tree of Life (2015).
https://doi.org/10.1371/currents.tol.8d41ac0f13d1abedf4c4a59f5d17b1f7

46. Warnow, T.: Computational Phylogenetics: an introduction to designing methods
for phylogeny estimation. Cambridge University Press (2017)

47. Warnow, T.: Divide-and-conquer tree estimation: Opportunities and challenges.
In: Bioinformatics and Phylogenetics: Seminal contributions of Bernard Moret,
pp. 121–150. Springer (2019)

48. Wilkinson, M., Cotton, J.A.: Supertree methods for building the tree of life: divide-
and-conquer approaches to large phylogenetic problems. SYSTEMATICS ASSO-
CIATION SPECIAL VOLUME 72, 61 (2007)

49. Wilkinson, M., Cotton, J.A., Creevey, C., Eulenstein, O., Harris, S.R., Lapointe,
F.J., Levasseur, C., Mcinerney, J.O., Pisani, D., Thorley, J.L.: The Shape of Su-
pertrees to Come: Tree Shape Related Properties of Fourteen Supertree Methods.
Systematic Biology 54(3), 419–431 (2005)

50. Yu, X.: Computing Robinson-Foulds supertree for two trees. Master’s thesis, Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL (2019), available online at
http://hdl.handle.net/2142/105698

51. Zhang, C., Rabiee, M., Sayyari, E., Mirarab, S.: ASTRAL-III: polynomial time
species tree reconstruction from partially resolved gene trees. BMC Bioinformatics
19(6), 153 (2018), special issue for RECOMB-CG 2017

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1371/currents.tol.8d41ac0f13d1abedf4c4a59f5d17b1f7
http://hdl.handle.net/2142/105698
https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

20 X. Yu et al.

6 Notation

6.1 Standard Notation

– [k] := {1, 2, . . . , k}: the set of integers from 1 to k
– A := {T1, T2, . . . , TN}: a profile, i.e., a set of unrooted source trees
– N : the number of source trees in a profile
– Ti: a source tree in a profile for any i ∈ [N]
– V (T), E(T), L(T): vertex, edge, and leaf set of a tree T
– TS : the set of trees T such that L(T) = S
– T BS : the set of binary trees T such that L(T) = S
– NT (v): the set of neighbors of v in T
– πe: the bipartition of L(T) induced by deleting an edge e from a tree T
– C(T) := {πe | e ∈ E(T)}: the set of bipartitions that defines a tree T
– T |R: the subtree of a tree T induced on leaf set R ⊆ L(T), with degree-two

vertices suppressed
– [A|B]: a bipartition of the set A ∪B
– π|R: the bipartition restricted to R for π = [A|B], which is [A ∩R|B ∩R]

6.2 Notation for RFS and SFS

– RF(T, T ′): the Robinson-Foulds (RF) distance between trees T and T ′ (not
necessarily having the same leaf set), calculated by |C(T |X) \ C(T ′|X)| +
|C(T ′|X) \ C(T |X)|, where X is the shared leaf set.

– SF(T, T ′): the split support of trees T and T ′ (not necessarily having the
same leaf set), calculated by |C(T |X)∩C(T ′|X)|, where X is the shared leaf
set.

– RF(T,A): the Robinson-Foulds (RF) score of tree T with respect to a profile
A, calculated by

∑
i∈[N] RF(T, Ti).

– SF(T,A): the split support score of tree T with respect to a profile A, cal-
culated by

∑
i∈[N] SF(T, Ti).

6.3 Notation for Exact-RFS-2

We assume T1 and T2 are two binary trees with leaf set S1 and S2.

– X = S1 ∩ S2: the shared leaf set
– S = S1 ∪ S2: the union of leaf set
– Π = 2X : the set of all bipartitions of X
– C(T1, T2, X) := C(T1|X)∪C(T2|X): the set of bipartitions of X in the back-

bone trees of T1 and T2

– P (e): the path in Ti from which a backbone edge e ∈ Ti|X is obtained by
suppressing degree-two vertices

– w(e) = |P (e)|: the weight of edge e ∈ E(Ti|X)
– ei(π): the edge in Ti that induces the bipartition π ∈ C(T1, T2, X)
– w∗(π) :=

∑
i∈[2] w(ei(π)): the weight of bipartition π ∈ Π, which is the sum

of weights of edges in Ti|X that induces π

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 21

– Ti − Ti|X : the subgraph obtained by deleting all vertices and edges of the
subgraph of Ti induced on X

– Extra(Ti) := {t | t is a component in Ti− Ti|X}: the set of extra subtrees of
Ti

– r(t): the root of extra subtree t, which is the unique vertex in V (t) that is
adjacent to a vertex in the backbone tree

– T R(e): the set of extra subtrees attached to e ∈ Ti|X , i.e., the set of extra
subtrees whose roots are adjacent to internal vertices of P (e)

– T R∗(π) :=
⋃
i∈[2] T R(ei(π)): the set of extra subtrees that are attached to

edges in Ti|X that induce π
– BPi(Q) := {[A|B] ∈ C(Ti|X) | A (Q or B (Q}: the set of bipartitions in
C(Ti|X) with one side being a strict subset of Q

– BP(Q) := BP1(Q) ∪ BP2(Q): the set of bipartitions in C(T1, T2, X) with
one side being a strict subset of Q

– T RSi(Q) :=
⋃
π∈BPi(Q) T R(ei(π)): the set of extra subtrees attached to the

edges in Ti|X inducing bipartitions in BPi(Q)
– T RS(Q) := T RS1(Q) ∪ T RS2(Q): the set of extra subtrees attached to

edges in T1|X and T2|X inducing bipartitions in BP(Q), equivalent to
⋃
π∈BP(Q) T R

∗(π)

– C = C(T1) ∪ C(T2): the set of bipartitions from input trees T1 and
– ΠX := {[A|B] ∈ C | A∩X 6= ∅ and B ∩X 6= ∅}: the set of bipartitions from

input trees that are induced by edges on paths connecting vertices of X
– ΠY := {[A|B] ∈ C | A ∩X = ∅ or B ∩X = ∅}: the set of bipartitions from

input trees that are induced by edges not on paths connecting vertices of X,
i.e., edges in an extra subtree or connecting an extra subtree to the backbone
trees

– pX(T) :=
∑
i∈[2] |C(T |Si) ∩ C(Ti) ∩ ΠX |: the split support score of T con-

tributed by bipartitions in ΠX

– pY (T) :=
∑
i∈[2] |C(T |Si

) ∩ C(Ti) ∩ ΠY |: the split support score of T con-
tributed by bipartitions in ΠY

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

22 X. Yu et al.

7 General Theorems and Lemmas on Trees and
Bipartitions

The following theorem and corollary gives alternative characterizations of com-
patibility between two bipartitions.

Theorem 3. [21] A pair of bipartitions [A|B] and [A′|B′] of the same set is
compatible if and only if at least one of the four pairwise intersections A ∩ A′,
A ∩B′, B ∩A′, B ∩B′ is empty.

Corollary 2. A pair of bipartitions [A|B] and [A′|B′] on the same leaf set is
compatible if and only if one side of [A|B] is a subset of one side of [A′|B′].

We now provide a lemma and corollary that formalize the relationship be-
tween two distinct, yet closely related entities: bipartitions from a tree on leaf
set R ⊆ S and bipartitions restricted to R from a tree on leaf set S.

Lemma 8. Let T ∈ TS and let π = [A|B] ∈ C(T) be a bipartition induced by
e ∈ E(T). Let R ⊆ S.

1. If R ∩A = ∅ or R ∩B = ∅, then e /∈ P (e′) for any e′ ∈ E(T |R).
2. If R∩A 6= ∅ and R∩B 6= ∅, then for any π′ ∈ C(T |R) induced by e′ ∈ E(T |R),

π|R = π′ if and only if e ∈ P (e′).

Proof. Let TR be the minimal subtree of T that spans R. It follows that the
leaf set of TR is R and T |R is obtained from TR by suppressing all degree-two
vertices.

(Proof of 1) We first claim that if R ∩A = ∅ or R ∩B = ∅, then e /∈ E(TR).
Assume by way of contradiction that e ∈ E(TR). There are then two non-empty
components in TR−e. Since e induces [A|B] in T , the two components in TR−e
have leaf set R∩A and R∩B, which contradicts the fact that one intersection is
empty. Therefore, e /∈ E(TR). Furthermore, every edge e′ ∈ E(T |R) comes from
a path in TR. Since e /∈ E(TR), then e /∈ P (e′) for any e′ ∈ E(T |R).

(Proof of 2) If R∩A 6= ∅ and R∩B 6= ∅, then e is required to connect R∩A
with R∩B in T (since e connects A with B). Thus, e is in any subtree of T span-
ning R; in particular, e ∈ E(TR). Fix any π′ ∈ C(T |R) induced by e′ ∈ E(T |R).
Note that the bipartition induced by P (e′) in TR equals the bipartition induced
by e′ in T |R, i.e., π′. For one direction of the proof, suppose e ∈ P (e′). Because
internal vertices of P (e′) in TR do not connect to any leaves, the bipartition
induced by the path P (e′) in TR equals the bipartition induced by any of its
edges (in particular, e). Since e induces [A|B] in T , it induces [R ∩A|R ∩B] in
TR. Then π′ = [R ∩ A|R ∩ B] = π|R. On the other hand, if π|R = π′, then π′

induces [R ∩ A|R ∩ B] in T |R. It follows that P (e′) also induces [R ∩ A|R ∩ B]
in TR. Suppose e ∈ P (e∗) for some edge e∗ ∈ E(T |R) such that e∗ 6= e′. Then,
by the previous argument, πe∗ = [R ∩A|R ∩B], which contradicts the fact that
e∗ and e′ are different edges. Therefore, e ∈ P (e′).

The next corollary follows easily from Lemma 8.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 23

Corollary 3. Let T be a tree with leaf set S and let π = [A|B] ∈ C(T) be a
bipartition induced by e ∈ E(T). Let R ⊆ S such that R∩A 6= ∅ and R∩B 6= ∅.
Then π|R ∈ C(T |R).

In the following lemma, we characterize the vertex that we can split to add
a compatible bipartition into a tree. An example can be seen in Figure 6.

(a) T : before adding [abedfhl|cgijk]

v1 v2 v3 v4

b

e

f

a d c h i j l

g

k

(b) T ′: after adding [abedfhl|cgijk]

v1 v2 va vb v4

b

e

f

a d h l c i j

g

k

Fig. 6: Splitting a vertex in a tree T to add a compatible bipartition [A|B] =
[abedfhl|cgijk]. The vertex v3 satisfies the requirement that no component in
T − v3 has leaves from both A and B. Let NA (NB) denote the neighbors of v3

that are in a component containing a leaf in A (B) in T−v3. Then NA = {v2, h, l}
and NB = {c, i, j, v4}. We split v3 into va and vb. We then makeNA the neighbors
of va, and NB the neighbors of vb. Then (va, vv) induces [abedfhl|cgijk] in T ′.

Lemma 9. Let T be a tree with leaf set S. Let π = [A|B] be a bipartition of S
such that π /∈ C(T), but π is compatible with C(T). Then there exists a unique
vertex v ∈ V (T) such that no component of T −v has leaves from both A and B.
Furthermore, we can split the neighbors of v, NT (v), into two sets NA and NB,
where NA contains neighbors whose corresponding components contain a leaf in
A and NB contains neighbors whose corresponding components contain a leaf
from B. By replacing v with two vertices va and vb, making va adjacent to all
the vertices in NA and vb adjacent to all the vertices in NB, and then adding an
edge between va and vb, we create a tree T ′ such that C(T ′) = C(T) ∪ {π}.

Proof. By definition of compatibility, there exists a tree T ′ such that C(T ′) =
C(T) ∪ {π}. Let e = (va, vb) be the edge that induces π in T ′ such that the
component containing va in T ′ − (va, vb) has leaf set A and the component
containing vb in T ′ − (va, vb) has leaf set B. Since π /∈ C(T), when we contract
(va, vb), then T ′ becomes T . Let v be the vertex of T corresponding to the vertex
of T ′ created from contracting (va, vb). Let Na, Nb be the neighbors of va and
vb in T ′ − (va, vb), respectively. Let NA, NB be vertices in T corresponding to
Na and Nb. We note that NA ∪NB = NT (v). Since in T ′− (va, vb), no vertex in
Na can reach any vertex of B, the same is true in T ′− va− vb. Since va is in the
component of A in T ′ − (va, vb), so are all vertices of Na. Then each vertex in
Na must be able to reach some vertex of A in T ′− va− vb by either being a leaf
in A or in the same component of some leaf in A. Similarly, in T ′ − va − vb, no

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

24 X. Yu et al.

vertex of Nb can reach any vertex of A, but every vertex of Nb can reach some
vertex of B. By construction, T ′ − va − vb is identical to T − v, and thus NA
(and NB respectively) is a set of neighbors of v that can reach some vertex of A
(B) but no vertex of B (A). Therefore, v is the vertex desired.

To obtain T ′ from T , we can replace v by two new vertices va, vb with an
edge between them. We also connect all vertices in NA to va and all vertices in
NB to vb. Then it is easy to see that (va, vb) induces π in T ′.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 25

8 Proofs for Section 3

Lemma 1. Given an input set A of source trees, a tree T ∈ T BS is an optimal
solution for RFS(A) if and only if it is an optimal solution for SFS(A).

Proof. Let N ≥ 2 be any integer. Let T1, T2, . . . , TN and S1, S2, . . . , SN be de-
fined as from problem statement of RFS. Let T be any binary tree of leaf set
S. Then T |Si

is also binary and thus |C(T |Si
)| = 2|Si| − 3. For any i ∈ [N], we

have

RF(T, Ti) + 2SF(T, Ti)

=|C(T |Si)\C(Ti)|+ |C(Ti)\C(T |Si)|+ 2|C(T |Si) ∩ C(Ti)|
=|C(T |Si)\C(Ti) ∪ (C(T |Si) ∩ C(Ti))|+ |C(Ti)\C(T |Si) ∪ (C(T |Si) ∩ C(Ti))|
=|C(T |Si)|+ |C(Ti)|
=2|Si| − 3 + |C(Ti)|.

Taking the sum of the equations, we have∑
i∈[N]

(RF(T |Si
, Ti) + 2SF(T |Si

, Ti)) =
∑
i∈[N]

(2|Si| − 3 + |C(Ti)|),

which is a constant. Therefore, for any binary tree T and any profile A of source
trees, the sum of T ’s RFS score and twice T ’s split support score is the same,
independent of T . This implies that minimizing the RFS score is the same as
maximizing the split support score. Although this argument depends on the
output tree being binary, it does not depend on the input trees being binary.
Hence, we conclude that RFS and SFS have the same set of optimal supertrees.

Lemma 2. For any tree T ∈ TS, pY (T) ≤ |ΠY |. In particular, let Tinit be the
tree defined in line 6 of Algorithm 1. Then, pY (Tinit) = |ΠY |.

Proof. Since T1 and T2 have different leaf sets, C(T1) and C(T2) are disjoint.
Since ΠY ⊆ C(T1)∪C(T2), C(T1)∩ΠY and C(T2)∩ΠY form a disjoint decom-
position of ΠY . By definition of pY (·), for any tree T of leaf set S,

pY (T) =
∑
i∈[2]

|C(T |Si) ∩ C(Ti) ∩ΠY | ≤
∑
i∈[2]

|C(Ti) ∩ΠY | = |ΠY |.

Fix any π = [A|B] ∈ ΠY . Suppose π ∈ C(Ti) and is induced by e ∈ E(Ti)
for some i ∈ [2]. By definition of ΠY , either A ∩ X = ∅ or B ∩ X = ∅. By
Lemma 8, e /∈ P (e′) for any backbone edge e′ ∈ E(Ti|X). Therefore, either
e is an internal edge in an extra subtree in Extra(Ti), or e connects one extra
subtree in Extra(Ti) to the backbone tree. In either case, the construction of Tinit

ensures that e is also present in Tinit|Si
and thus π ∈ C(Tinit|Si

). Therefore, each
bipartition π ∈ ΠY contributes 1 to |C(Tinit|Si

) ∩ C(Ti) ∩ ΠY | for exactly one
index i ∈ [2] and thus it contributes 1 to pY (Tinit). Hence, pY (Tinit) = |ΠY |.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

26 X. Yu et al.

Lemma 3. Let π = [A|B] ∈ Π. Let T ∈ TS be any tree with leaf set S such
that π /∈ C(T |X) but π is compatible with C(T |X). Let T ′ be a refinement of
T such that for all π′ ∈ C(T ′|Si)\C(T |Si) for some i ∈ [2], π′|X = π. Then,
pX(T ′)− pX(T) ≤ w∗(π).

Proof. By definition of pX(·),

pX(T ′)− pX(T) =
∑
i∈[2]

|C(T ′|Si) ∩ C(Ti) ∩ΠX | −
∑
i∈[2]

|C(T |Si) ∩ C(Ti) ∩ΠX |

=
∑
i∈[2]

|(C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩ΠX |.

Therefore, we only need to prove that∑
i∈[2]

|(C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩ΠX | ≤ w∗(π).

We perform a case analysis, as follows: Case (1): π /∈ C(T1, T2, X), Case (2):
π ∈ C(T1|X)∆C(T2|X) = (C(T1|X) \C(T2|X))∪ (C(T2|X) \C(T1|X)), and Case
(3): π ∈ C(T1|X) ∩ C(T2|X).

Case (1): Let π /∈ C(T1, T2, X). We recall that w∗(π) = 0. Assume by way of
contradiction that there exists a bipartition π′ ∈ (C(T ′|Si

)\C(T |Si
))∩C(Ti)∩ΠX

for some i ∈ [2]. Since π /∈ C(T1, T2, X) and π′|X = π, by Corollary 3, π′ /∈ C(Ti)
for any i ∈ [2]. This contradicts the fact that π′ ∈ C(Ti) for some i ∈ [2].
Therefore, the assumption that there exists such a bipartition π′ is wrong and∑
i∈[2] |(C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩ΠX | = 0 ≤ w∗(π).

Case (2): Let π ∈ C(T1|X)∆C(T2|X). Assume without loss of generality that
π ∈ C(T1|X)\C(T2|X). Then, we have w∗(π) = w(e1(π)). Let π′ ∈ ΠX ∩C(Ti)∩
(C(T ′|Si

)\C(T |Si
)) for some i ∈ [2]. Then we have π′|X = π by assumption of

the lemma. Since π /∈ C(T2|X), by Corollary 3, we have π′ /∈ C(T2) and thus
π′ ∈ C(T1). By Lemma 8, the edge which induces π′ in T1 is an edge on P (e1(π)).
Since there are w(e1(π)) edges on P (e1(π)), there are at most w(e1(π)) distinct
bipartitions π′, proving the claim.

Case (3): Let π ∈ C(T1|X) ∩ C(T2|X). Then we have w∗(π) = w(e1(π)) +
w(e2(π)). Fix any π′ ∈ C(Ti) ∩ΠX ∩ (C(T ′|Si

)\C(T |Si
)) for any i ∈ [2]. Since

π′ ∈ C(Ti) and π′|X = π ∈ C(Ti|X), by Lemma 8, the edge e′ that induces π′

is an edge on P (ei(π)). Since there are w(ei(π)) edges on P (ei(π)), there are
at most w(ei(π)) distinct bipartitions π′ in C(Ti) ∩ ΠX ∩ (C(T ′|Si)\C(T |Si)).
Therefore,

|(C(T ′|Si
)\C(T |Si

)) ∩ C(Ti) ∩ΠX | ≤ w(ei(π)).

Hence, ∑
i∈[2]

|(C(T ′|Si
)\C(T |Si

)) ∩ C(Ti) ∩ΠX | ≤ w∗(π).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 27

Lemma 4. For any compatible set F ⊆ Π, let T ∈ TS be any tree with leaf set
S such that C(T |X) = F . Then pX(T) ≤ w∗(F).

Proof. Fix an arbitrary ordering of bipartitions in F and let them be π1, π2, . . . , πk,
where k = |F |. Let Fj = {π1, . . . , πj} for any j ∈ {0, 1, . . . , k}. In particular,
F0 = ∅ and Fk = F . Let T j be obtained by contracting all edges in P (e) for
any e ∈ E(T |X) such that πe /∈ Fj . Then, C(T j |X) = Fj . For each j ∈ [k],
C(T j |X)\C(T j−1|X) = {πj}. Fix j ∈ [k] and fix any π′ ∈ C(T j |Si

)\C(T j−1|Si
)

for some i ∈ [2]. By Lemma 8, we have π′|X ∈ C(T j |X). We also know π′|X /∈
C(T j−1|X) as otherwise π′ ∈ C(T j |Si) by construction, which is a contradiction.
Then π′|X ∈ C(T j |X)\C(T j−1|X) = {πj}. Therefore, for any j ∈ [k], T j is a
refinement of T j−1 such that for any π′ ∈ C(T j |Si

)\C(T j−1|Si
) for some i ∈ [2],

π′|X = πj . Hence we can apply Lemma 3 and we have pX(T j) − pX(T j−1) ≤
w∗(πj). Therefore, by telescoping sum,

pX(T)− pX(T 0) =
k∑
j=1

pX(T j)− pX(T j−1) ≤
k∑
j=1

w∗(πj).

Since C(T 0|X) = ∅, by Corollary 3, C(T 0|Si
) ∩ΠX = ∅ for both i ∈ [2]. Then,

C(T 0|Si
) ∩ C(Ti) ∩ ΠX = ∅ for both i ∈ [2], which implies pX(T 0) = 0. Thus,

pX(T) ≤
∑
π∈F w

∗(π), as desired.

Let Tinit be the tree defined in Algorithm 1. We have the following proposition
about pX(Tinit), which is needed for the proof of Proposition 1.

Proposition 3. pX(Tinit) = 2|X|.

Proof. For each v ∈ X, consider the bipartition πv = [{v} | S\{v}] of Tinit

induced by the edge that connects the leaf v to the center v̂. It is easy to see
that πv|Si

= [{v} | Si\{v}] ∈ C(Ti) for any i ∈ [2] as πv|Si
is a trivial bipartition

of Si. By construction, we also have πv|Si ∈ C(Tinit|Si). We also know πv|Si ∈
ΠX as both sides of πv have non-empty intersections with X. Thus, πv|Si ∈
C(Tinit|Si

)∩C(Ti)∩ΠX for any i ∈ [2]. So for each v ∈ X, πv|S1
and πv|S2

each
contributes 1 to pX(Tinit). Therefore, pX(Tinit) ≥ 2|X|.

Fix any bipartition π = [A|B] induced by any other edge e ∈ E(Tinit|Si) for
any i ∈ [2]. By construction of Tinit, e must be an edge in an extra subtree or
connecting an extra subtree to the center v̂, i.e., one component in T − e does
contain any leaf of X. Therefore, either A ⊆ S\X or B ⊆ S\X, which implies
π|Si

/∈ ΠX for any i ∈ [2]. Hence, there is no other bipartition of Tinit such that
when restrict to Si contributes to pX(Tinit). Therefore, pX(Tinit) = 2|X|.

Proposition 1. Let T̃ be the tree constructed after line 11 of Algorithm 1, then
pX(T̃) = w∗(Triv).

Proof. Let π = [{a}|B] be a trivial bipartition of X. We know both e1(π) and
e2(π) exist, and we abbreviate them with e1 and e2. We number the extra sub-
trees in T R(e1) as t1, t2, . . . , tp, where p = w(e1)− 1, such that t1 is the closest

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

28 X. Yu et al.

to a in T1. Similarly, we number extra subtrees in T R(e2) as t′1, t
′
2, . . . , t

′
q, where

q = w(e2) − 1, such that t′1 is the closest to a in T2. For each k ∈ [w(e1)], we
define

Ak :=
k−1⋃
i=1

L(ti) ∪ {a}, πk := [Ak|S1\Ak],

and for each k ∈ [w(e2)], we define

A′k :=
k−1⋃
i=1

L(t′i) ∪ {a}, π′k := [A′k|S2\A′k].

It follows by definition that πk for any k ∈ [w(e1)] is the bipartition induced by
the kth edge on P (e1) in T1, where the edges are numbered starting from the
side of a. This implies πk ∈ C(T1) for any k ∈ [w(e1)]. Similarly, π′k ∈ C(T2)
for any k ∈ [w(e2)]. In particular, we notice that π1 = [{a}|S1\{a}] and π′1 =
[{a}|S2\{a}]. Clearly, all these bipartitions (πk and π′k for any k) are in ΠX

because both sides have none empty intersection with X.
Recall that Algorithm 1 moves all extra subtrees in T R∗(π) onto the edge

(v̂, a) and orders them in a way to add our desired bipartitions. In particular, the
extra subtrees are ordered such that subtrees from T R(e1) and subtrees from
T R(e2) are side by side and the attachments of T R(ei) match their attachment
on ei exactly (i.e., t1 or t′1, respectively, is closest to a). It is easy to see that as a
result of such ordering of the extra subtrees, we have πk ∈ C(T |S1

) for any k ∈
[w(e1)] and π′k ∈ C(T |S2

) for any k ∈ [w(e2)], where T is the tree obtained after
adding π to the backbone through line 8 of Algorithm 1. Therefore, the algorithm
increases |C(T |S1) ∩ C(T1|X) ∩ΠX | by w(e1)− 1, because πk /∈ C(T |S1) before
the step for all k ∈ [w(e1)] except k = 1 (since π1 = [{a}|S1\{a}] ∈ C(T |S1)).
Similarly, the algorithm increases |C(T |S2

)∩C(T2|X)∩ΠX | by w(e2)−1. Overall
pX(T) is increased by w(e1) + w(e2)− 2 = w∗(π)− 2 by running one execution
of line 8 in Algorithm 1 on T and π.

It is easy to see that line 8 of Algorithm 1 never destroys bipartitions of S1

or S2 already in T , so we have

pX(T̃) = pX(Tinit) +
∑

π∈Triv

(w∗(π)− 2)

= 2|X|+
∑

π∈Triv

(w∗(π)− 2) (by Proposition 3)

=
∑

π∈Triv

w∗(π). (since |Triv| = |X|)

Lemma 10 proves that the auxiliary data structures of Algorithm 1 and 2 are
maintaining the desired information and that the algorithm can split the vertex
and perform the detaching and reattaching of the extra subtrees correctly. These
invariants are important to the proof of Lemma 5.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 29

Lemma 10. At any stage of the Algorithm 1 after line 12, we have the following
invariants of T and the auxiliary data structures H and sv:

1. For any bipartition π ∈ NonTriv, sv(π) is the vertex to split to add π to
C(T |X). For any internal vertex v, the set of bipartitions H(v) ⊆ NonTriv
is the set of bipartitions which can be added to C(T |X) by splitting v.

2. For any π = [A|B] ∈ H(v), for all t ∈ T R∗(π), the root of t is a neighbor of
v.

3. For any π = [A|B] ∈ C(T |X) induced by edge e, let C(A), C(B) be the
components containing the leaves of A and B in T |X − e. Then,
(a) all t ∈ T RS(A) are attached to an edge or a vertex in C(A)
(b) all t ∈ T RS(B) are attached to an edge or a vertex in C(B).

Proof. We prove the invariants by induction on the number of refinement steps
k performed on T . When k = 0, we have T = T̃ and T |X is a star with leaf
set X and center vertex v̂. Thus all bipartitions in NonTriv are compatible with
C(T |X). For any π ∈ NonTriv, v̂ is the vertex to refine in T |X to add π to
C(T |X). Therefore, it is correct that sv(π) = v̂ for every π ∈ NonTriv and
H(v̂) = NonTriv. The roots of all extra subtrees in T R∗(π) for any π ∈ NonTriv
are all neighbors of v̂, so invariant 2 also holds. For any π ∈ C(T |X) = Triv,
let π = [{a}|B]. It is easy to see that since a is a leaf, T RSi({a}) = ∅ and
T RSi(B) = Extra(Ti)\T R(ei(π)) for both i ∈ [2]. Then T RS({a}) = ∅ and
T RS(B) = (Extra(T1)∪Extra(T2))\T R∗(π). Therefore, invariant 3(a) trivially
holds as T RS({a}) = ∅. Since C({a}) is the vertex a and C(B) is the rest of
the star of T |X , all t ∈ T RS(B) are attached to an edge or a vertex in C(B),
then invariant 3(b) holds. This proves invariant 3 and thus concludes our proof
for the base case.

Assume that all invariants hold after any k′ < k steps of refinement. Let
π = [A|B] be the bipartition to add in the kth refinement step. We will show that
after the kth refinement step, i.e., one execution of Algorithm 2, the invariants
still hold for the resulting tree T ′. Since v = sv(π) at the beginning of Algorithm
2, π can be added to C(T |X) by splitting v. By Lemma 9, there exists a division
of neighbors of v in T |X into NA∪NB such that NA (or NB respectively) consists
of neighbors of v which can reach vertices of A (or B) but not B (or A) in T |X−v.
Then, the algorithm correctly finds NA and NB and connects NA to va and NB
to vb so the new edge (va, vb) induces the bipartition π = [A|B] in T |X . For any
vertex u other than v and any bipartition π′ ∈ H(u), the invariants 1 and 2 still
hold after Algorithm 2 as we do not change H(u), sv(π′), or the extra subtrees
attached to u. For any bipartition π′ =∈ H(v) such that π′ 6= π, if π′ is not
compatible with π, then it cannot be added to C(T ′|X) since π is added, so the
algorithm correctly discards π′ and does not add it to H(va) or H(vb). If π′ is
compatible with π, we will show that the invariants 1 and 2 still hold for π′.

Fix any π′ = [A′|B′] ∈ H(v) s.t. π′ 6= π and π′ is compatible with π. By
Corollary 2, one of A′ and B′ is a subset of one side of [A|B]. Assume without loss
of generality that A′ ⊆ A (other cases are symmetric). Then we have B ⊆ B′.
In this case, Algorithm 2 adds π′ to H(va) and set sv(π) = va. We will show
that this step preserves the invariants. Since π′ ∈ H(v), before adding π we

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

30 X. Yu et al.

can split v to add π′ to C(T |X). Then there exists a division of neighbors of
v in T |X into NA′ and NB′ such that NA′ (or NB′ , respectively) consists of
neighbors of v which can reach vertices of A′ (or B′) in T |X − v. It is easy to
see that NA′ ⊆ NA and NB ⊆ NB′ . Since NA ∪ NB = NA′ ∪ NB′ = NT |X (v),
we have NA\NA′ = NB′\NB . Since all vertices in NB are connected to vb in T ′

while vertices in NB′\NB are connected to va, NB′\NB ∪ {vb} is the set of all
neighbors of va which can reach leaves of B′ in T ′|X − va. Then NT ′|X (va) =
NA ∪ {vb} = NA′ ∪ (NA\NA′ ∪ {vb}) = NA′ ∪ (NB′\NB ∪ vb) implies that NA′
and NB′\NB ∪ {vb} gives an division of neighbors of va such that NA′ are the
neighbors that can reach leaves of A′ in T ′|X − va and NB′\NB ∪ {vb} are the
neighbors that can reach leaves ofB′ in T ′|X−va. Such a division proves that va is
the correct vertex to refine in T ′|X to add π′ to C(T ′|X) after the kth refinement.
Therefore, invariant 1 holds with respect to π′. Since π′ ∈ H(v) before adding
π, we also have for all t ∈ T R∗(π′), the root of t is a neighbor of v before adding
π. Since A′ ⊆ A, π′ ∈ BP(A) and thus T R∗(π) ⊆ T RS(A). Then, Algorithm
2 correctly attaches roots of all trees in T R∗(π′) to va. Therefore invariant 2
holds for π′.

We have shown that invariants 1 and 2 hold for the tree T ′ with the auxiliary
data structures H and sv. Next, we show that invariant 3 holds. Since π is the
only bipartition in C(T ′|X) that is not in C(T |X), we only need to show two
things: i) for any π′ ∈ C(T |X), the invariant 3 still holds, ii) invariant 3 holds
for π. We first show i). Fix π′ = [A′|B′] ∈ C(T |X). Since π is compatible with
π′, by Corollary 2, one of A′ and B′ is a subset of one of A and B. We assume
without loss of generality that A′ ⊆ A. Therefore, B ⊆ B′. Let C(A′), C(B′) be
the components containing the leaves of A′ and B′ in T |X − e′, where e′ induces
π′. Since C(A′) is unchanged after the refinement, invariant 3(a) is trivially
true. Since B ⊆ B′, C(B) is a subgraph of C(B′) and v ∈ C(B′). During the
refinement, v is split into va and vb, both of which are still part of C(B′). Since
all t ∈ T RS(B) are attached to an edge or a vertex in C(B′) before refinement
and any extra subtree attached to v before is now on either va, or vb, or (va, vb),
they are all still attached to an edge or a vertex in C(B′). Thus, the invariant 3
holds with respect to π′.

For ii), we show invariant 3(a) holds for π and 3(b) follows the same argument.
For any extra subtree in t ∈ T RS(A), if it was attached to v before refinement,
then it is now attached to va, which is in C(A). If it was not attached to v before
refinement, then let NB be as defined from Algorithm 2. For any bipartition
π′ = [A′|B′] induced by (v, u) where u ∈ NB . We know that (v, u) ∈ C(B)
and thus either A′ ⊆ B or B′ ⊆ B. Assume without loss of generality that
B′ ⊆ B. Then we have BP(B′)∪{π′} ⊆ BP(B) and thus T RS(B′)∪T R∗(π′) ⊆
T RS(B). We note that T RS(A) and T RS(B) are disjoint. Since t ∈ T RS(A),
we know t /∈ T RS(B), then t /∈ T RS(B′) ∪ T RS∗(π′). Let C(A′), C(B′) be
the components containing the leaves of A′ and B′ in T |X − (v, u). Then C(A′)
contains v and C(B′) contains u. Since t /∈ T R∗(π′), it cannot be attached to
(v, u). Also by the invariant 3 with respect to π′, t is not attached any vertex
or edge in C(B′). Since this is true for every neighbor of v in NB , t /∈ C(B)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 31

as C(B) consists of only edges connecting v to a neighbor u ∈ NB and the
component containing u. Since t was not attached to v before the refinement, t
is not attached to (va, vb) or C(B) after the refinement, then t must be attached
to some edge or vertex in C(A). This proves invariant 3(a) for π and thus the
inductive proof.

Lemma 5. Let T be a supertree computed within Algorithm 1 at line 14 im-
mediately before a refinement step. Let π = [A|B] ∈ NonTriv ∩ I. Let T ′ be a
refinement of T obtained from running Algorithm 2 with supertree T , bipartition
π, and the auxiliary data structures H and sv. Then, pX(T ′)− pX(T) = w∗(π).

Proof. Since I corresponds to an independent set in the incompatibility graph
G, all bipartitions in I are compatible. Since C(T |X) ⊆ Triv∪(NonTriv∩I) = I,
π ∈ NonTriv∩ I must be compatible with C(T |X), then there is a vertex to split
to add π to C(T |X). By invariant 1 of Lemma 10, v = sv(π) is the vertex to
split to add π to T |X and thus Algorithm 2 correctly splits v into va and vb and
connects them to appropriate neighbors such that in T ′|X , (va, vb) induces π.

We abbreviate e1(π) and e2(π) by e1 and e2. We number the extra subtrees
attached to e1 as t1, t2, . . . , tp, where p = w(e1) − 1 and t1 is the closest to A
in T1. Similarly, we number the extra subtrees attached to e2 as t′1, t

′
2, . . . , t

′
q,

where q = w(e2)− 1 and t′1 is the closest to A in T2.
For any set T of trees, let L(T) denote the union of the leaf set of trees in

T . We note that if ei exists, Extra(Ti) = T RSi(A)∪T RSi(B)∪T R(ei). Thus,
A ∪ L(T RSi(A)) ∪ L(T R(ei)) ∪ L(T RSi(B)) ∪B = Si for i ∈ [2].

For each k ∈ [w(e1)], we define

Ak :=
k−1⋃
i=1

L(ti) ∪ L(T RS1(A)) ∪A, πk := [Ak|S1\Ak],

and for each k ∈ [w(e2)], we define

A′k :=
k−1⋃
i=1

L(t′i) ∪ L(T RS2(A)) ∪A, π′k := [A′k|S2\A′k].

We know that for each k ∈ [w(e1)],

S1\Ak =

p⋃
i=k

L(ti) ∪ L(T RS1(B)) ∪B.

Thus, for any k ∈ [w(e1)], πk is the bipartition induced by the kth edge on P (e1)
in T1, where the edges are numbered from the side of A. Therefore, πk ∈ C(T1)
for any k ∈ [w(e1)]. Similarly, π′k ∈ C(T2) for any k ∈ [w(e2)].

Since for any k ∈ [w(e1)], Ak∩X = A 6= ∅ and (S1\Ak)∩X = B 6= ∅, we have
πk|X = π and πk ∈ ΠX . Similarly, for each k ∈ [w(e2)], π′k ∈ ΠX and π′k|X = π.
We also know that since π /∈ C(T |X), by Corollary 3, πk /∈ C(T |S1

) for any
k ∈ [w(e1)] and π′k /∈ C(T |S2) for any k ∈ [w(e2)]. We claim that πk ∈ C(T ′|S1)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

32 X. Yu et al.

for all k ∈ [w(e1)] and π′k ∈ C(T ′|S2
) for all k ∈ [w(e2)]. Then assuming the

claim is true, we have |C(T ′|S1
)∩C(T1)∩ΠX |−|C(T |S1

)∩C(T1)∩ΠX | = w(e1)
and |C(T ′|S2) ∩ C(T2) ∩ ΠX | − |C(T |S2) ∩ C(T2) ∩ ΠX | = w(e2), and thus
pX(T ′)− pX(T) = w(e1) + w(e2) = w∗(π).

Now we only need to prove the claim. Fix k ∈ [w(e1)], we will show that πk ∈
C(T ′|S1

). The claim of π′k ∈ C(T ′|S2
) for any k ∈ [w(e2)] follows by symmetry.

By invariant 2 of Lemma 10, we know that all extra subtrees of T R(e1) were
attached to v at the beginning of Algorithm 2 and thus the algorithm attaches
them all onto (va, vb) in the order of t1, t2, . . . , tp, such that t1 is closest to A.
Let the attaching vertex of ti onto (va, vb) be ui for any i ∈ [w(e1)]. Then we
note P ((va, vb)) is the path from va to u1, u2, . . . , up and then to vb. For any
t ∈ T RS1(A), by invariant 3 of Lemma 10, t attached to C(A), the component
containing A in T ′|X − (va, vb). Therefore, if we delete any edge of P ((va, vb))
from T ′, t is in the same component as A. Similarly, for any t ∈ T RS1(B), t
is in the same component as B if we delete any edge of P ((va, vb)) from T . In
particular, consider T ′|S1 − (uk−1, uk). The component containing uk−1 and A
contains all of T RS1(A) and {ti | i ∈ [k−1]}, thus the leaves of that component
is

A ∪ L(T RS1(A)) ∪
k−1⋃
i=1

L(ti) = Ak.

Therefore, the edge (uk−1, uk) induces the bipartition [Ak|S1\Ak] in T ′|S1 . Hence,
πk ∈ C(T ′|S1) as desired.

Proposition 2. Let G be the weighted incompatibility graph on T1|X and T2|X ,
and let I be the set of bipartitions associated with vertices in I∗, which is a maxi-
mum weight independent set of G. Let F be any compatible subset of C(T1, T2, X).
Then w∗(I) ≥ w∗(F).

Proof. Let weight(U) denote the total weight of any set U of vertices of G. We
first claim that w∗(I) = weight(I∗). Since all bipartitions in C(T1|X)∩C(T2|X)
are compatible with all bipartitions in C(T1, T2, X), each of them become two
isolated vertices in the weighted incompatibility graph, all of which are included
in the maximum weight independent set I∗. For each π ∈ C(T1|X) ∩ C(T2|X),
the two vertices associated with it in G has total weight w(e1(π)) + w(e2(π)),
which is exactly w∗(π). For each π ∈ C(T1|X)∆C(T2|X), the vertex associated
with it also has weight exactly w∗(π). Therefore, the weight(I∗) = w∗(I).

Fix any compatible subset F of C(T1, T2, X). Let F ′ = F\(C(T1|X)∩C(T2|X)),
and let F ′′ be a set of vertices constructed by combining the vertices associated
with F ′ and the two vertices associated with each of π ∈ C(T1|X)∩C(T2|X). Then
weight(F ′′) = w∗(F ′) + w∗(C(T1|X) ∩ C(T2|X)) ≥ w∗(F ′) + w∗(F ∩ C(T1|X) ∩
C(T2|X)) = w∗(F). Since F is compatible, F ′ is also compatible, and thus F ′′ is
an independent set in G. Therefore, weight(F ′′) ≤ weight(I∗), since I∗ is a max-
imum weight independent set in G. We conclude that w∗(F) ≤ weight(F ′′) ≤
weight(I∗) = w∗(I).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 33

We now present a lemma with the running time analysis for Algorithm 1,
which complete the proof of Theorem 1.

Lemma 11. Algorithm 1 runs in O(n2|X|) time.

Proof. First we analyze the running time of Algorithm 2, i.e., one refinement
step. Dividing the neighbors of v and connecting them to va and vb appropriately
in line 3− 6 take O(|X|2) time. We can do a depth-first-search in T |X − v from
every neighbor u of v and check in O(|X|) time if any newly discovered vertex
is in A or B and connect u to va or vb accordingly. Moving extra subtrees in
T R∗(π) in line 7 takes O(n) time as Ti has at most n leafs and thus there are
O(n) extra subtrees in total, so |T R∗(π)| is O(n). Line 8− 13 take O(n) time as
the mappings are pre-calculated and there are again O(n) extra subtrees to be
moved. Updating the data structures in line 15− 21 takes O(|X|2) time as there
are at most O(|X|) bipartitions in H(v) and each of the containment conditions
is checkable in O(|X|) time by checking whether one side of π′ is a subset of
one side of π (assuming that labels of leaves in both sides of the bipartitions are
stored as pre-processed sorted lists instead of sets). The rest of the algorithm
takes constant time. Overall, Algorithm 2 runs in O(n+ |X|2) time.

Next we analyze the running time for Algorithm 1, i.e., Exact-RFS-2. Com-
puting C(T1|X) and C(T2|X) in line 1 takes O(n2 + n|X|2) time as we need to
compute πe|X for all e ∈ E(T1) ∪ E(T2) and then take the union. There are
O(n) edges in E(T1)∪E(T2). Computing πe|X for each edge takes O(n) time by
running DFS on Ti− e to obtain πe and then taking intersection of both sides of
πe with X, separately. Together it takes O(n2) time. Taking union of the bipar-
titions takes O(n|X|2) time as there are O(n) bipartitions to add and whenever
we add a new bipartition, it needs to be compared to the O(|X|) distinct existing
ones in the set. Since all bipartitions have size O(|X|), the comparison can be
done in O(|X|) time (if each of them is represented by two sorted lists instead
of two sets). In this step, we can always maintain a set of edges in Ti for each
bipartition π ∈ C(T1, T2, X) such that πe|X = π.

Line 2 − 5 compute the mappings and values we need in latter part of the
algorithm. We analyze the running time for each π = [A|B] ∈ C(T1, T2, X) first.
We can compute the path P (ei(π)) by assembling the set of edges associated with
π in Ti from the last step into a path. This takes O(n2) time by counting the
times any vertex appear as an end vertex in the set of edges. The two vertices
appearing once are the end vertices of the path while those appearing twice
are internal vertices of the path. Then w(ei(π)) = |P (ei(π))| can be found in
constant time. Then we can find T R(ei(π)) by DFS in Ti − v for every internal
node v of P (ei(π)), starting the search from the unique neighbor u of v such that
u does not appear in the path. This takes O(n) time. We compute BPi(A) and
BPi(B) by iterating over O(|X|) bipartitions in C(Ti|X) and check if one side
of any bipartition is a subset of A or B in O(|X|) time, this takes O(|X|2) time
together. Next, we compute T RSi(A) (or T RSi(B)) by taking unions of extra
subtrees in T R(ei(π)) for any π ∈ BPi(A) (or BPi(B)) in O(n) time. Extra
subtrees are unique identified by their roots and T R(ei(π)) is disjoint from the

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

34 X. Yu et al.

set of extra subtrees associated with other edges, so taking union of at most
O(n) extra subtrees takes O(n) time. Therefore, all the mappings and values
can be computed in O(n2) time for each bipartition and thus it takes O(n2|X|)
time overall. With all the extra subtrees calculated for each partition, we can
compute Extra(Ti) in O(n2) time.

Constructing Tinit in line 6 takes O(n) time. Line 7 constructs an incom-
patibility graph with O(|X|) vertices and O(|X|2) edges in O(|X|3) time as
compatibility of any pair of bipartitions of size O(|X|) can be checked in O(|X|)
time. For line 8, we can reduce Maximum Weight Independent Set to Minimum
Cut problem in a directed graph with a dummy source and sink. Then the Mini-
mum Cut problem can be solved by a standard Maximum Flow Algorithm. Since
the best Maximum Flow algorithm runs in O(|V ||E|) time and the graph has
O(|X|) vertices and O(|X|2) edges, this line runs in O(|X|3) time. Line 10-11
essentially runs line 7 of Algorithm 2 O(|X|) times using a total of O(n|X|) time.
Line 12 initiates the data structure H and sv in O(|X|) time. Line 13− 14 runs
Algorithm 2 O(|X|) times with a total of O(n|X| + |X|3) time. Since |X| ≤ n,
|X|3 ≤ n|X|2 ≤ n2|X|, and thus, the overall running time of the algorithm is
dominated by the running time of line 2− 5, which is O(n2|X|).

We present additional results on the relationship between Relax–RFS and
Relax–SFS and the hardness of RFS, SFS, and Relax–RFS.

Lemma 12. There exist instances of Relax–RFS and Relax–SFS in which
an optimal solution to Relax–RFS is not an optimal solution to Relax–SFS,
and vice-versa.

Proof. Let n ≥ 5 be any integer. Let Si = [n] be the leaf set of Ti for all
i ∈ [n − 3]. Let πi = [1, 2, . . . , i + 1 | i + 2, . . . , n] for any i ∈ [n − 3]. We let Ti
denote the tree with leaf set [n] that contains a single internal edge defining πi,
and let A = {T1, T2, . . . , Tn−3}. Let T be the star tree with leaf set [n] (i.e., T
has no internal edges) and let T ′ be the unique tree defined by C(Ti) ⊆ C(T ′)
for all i ∈ [n] (i.e., T ′ is a compatibility supertree for A). Note that T ′ is the
caterpillar tree on 1, 2, . . . , n (i.e., T ′ is formed by taking a path of length n− 2
with vertices v2, v3, . . . , vn−1 in that order, and making leaf 1 adjacent to v2,
leaf i adjacent to vi, and leaf n adjacent to vn−1).

We will show that (1) T is an optimal solution for Relax–RFS(A), but not
an optimal solution for Relax–SFS(A), and (2) that T ′ is an optimal solution
for Relax–SFS(A), but not an optimal solution for Relax–RFS(A).

(1) We first show that T is not an optimal solution for Relax–SFS(A). Let
Π[n] denote the set of trivial bipartitions of [n]. Then C(T) = Π[n]. Let Π ′ =
{πi | i ∈ [n − 3]} (i.e., Π ′ contains the nontrivial bipartitions from the trees in
profile A). Note that the set Π ′∪Π[n] is compatible and that the caterpillar tree
T ′ (defined above) satisfies C(T ′) = Π ′∪Π[n]. Then C(T ′)∩C(Ti) = Π[n]∪{πi}
and thus SF(T ′, Ti) = n+ 1 for all i ∈ [n− 3]. Overall, the split support score of
T ′ is

SF(T ′,A) =
∑

i∈[n−3]

SF(T ′, Ti) = (n− 3)(n+ 1).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 35

Since C(T) ∩ C(Ti) = Π[n], we have

SF(T,A) =
∑

i∈[n−3]

SF(T, Ti) = (n− 3)n < (n− 3)(n+ 1)

for any n ≥ 5. Therefore, T is not an optimal solution for Relax–SFS(A).
Since |C(T)\C(Ti)|+ |C(Ti)\C(T)| = 1 for all i ∈ [n− 3], the RFS score of

T is
RF (T,A) =

∑
i∈[n−3]

RF(T, Ti) = n− 3.

Now consider any tree t 6= T with leaf set [n], and suppose t contains p
bipartitions in Π ′ and q bipartitions in 2[n]\(Π ′ ∪ Π[n]) where p, q ∈ N. Since
t 6= T , at least one of p and q is nonzero. Therefore,

RF(t,A) =
∑

i∈[n−3]

RF(t, Ti)

=
∑

i∈[n−3]

|C(t)\C(Ti)|+ |C(Ti)\C(t)|

=q(n− 3) + (p− 1)p+ p(n− 3− p) + (n− 3− p)
=(n− 3) + q(n− 3) + p(n− 5).

Since n ≥ 5 and both p and q are non-negative with at least one of them
nonzero, we know the RFS score of t is strictly greater than that of T . Therefore,
T is an optimal solution to Relax–RFS(A).

For (2), the analysis above shows that T ′ (since it is a compatibility supertree
for A) has the largest possible split support score. Hence, T ′ is an optimal
solution to the relaxed Split Fit Supertree problem. However, the RFS score for
T ′ is (n− 4)(n− 3), which is strictly larger than n− 3 for n > 5, and the RFS
score for the star tree T is n − 3; hence, T ′ is not an optimal solution for the
relaxed RF supertree problem.

We show that the Split Fit Supertree problem and the Asymmetric Median
Supertree (AMS) problem, which was introduced in [46] and which we will
present below, have the same set of optimal solutions and thus the hardness of
one implies hardness of another. The input to the AMS problem is a profile
A = {Ti | i ∈ [N]} and the output is a binary tree

TAMS = argmin
T∈T B

S

∑
i∈[N]

|C(Ti) \ C(T |Si)|.

Thus, TAMS minimizes the total number of bipartitions that are in the source
trees and not in the supertree (i.e., TAMS minimizes the total number of false
negatives).

Lemma 13. Given profile A = {T1, T2, . . . , TN} and S :=
⋃
i∈[N] L(Ti), tree

T ∈ TS is a Split Fit Supertree for A iff T is an Asymmetric Median Supertree
for A.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

36 X. Yu et al.

Proof. Let FN(T,A) =
∑
i∈[N] |C(Ti) \ C(T |Si

)|. Then,

SF(T,A) + FN(T,A) =
∑
i∈[N]

|C(Ti) ∩ C(T |Si
)|+ |C(Ti)\C(T |Si

)| =
∑
i∈[n]

|C(Ti)|.

Hence, T is an Asymmetric Median supertree for A iff T is a Split Fit supertree
for A.

Lemma 6. RFS-3, SFS-3, and Relax–SFS-3 are all NP-hard.

Proof. By Lemmas 1 and 13, for any profile A, the Robinson-Foulds, Split Fit,
and Asymmetric Median supertree problems all have the same set of optimal
solutions. Also, the Asymmetric Median Supertree problem is NP-hard for three
trees when they have the same leaf set [30]; therefore, SFS-3 and RFS-3 are
both NP-hard. Since refining a tree never decreases its split support score, SFS-3
trivially reduces to Relax–SFS-3, and thus Relax–SFS-3 is also NP-hard.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 37

9 Relationship between SMAST, SMCT, and RFS
supertree problems

The SMAST and SMCT problems seek trees that are obtained after deleting
minimal numbers of leaves from the input trees so that an agreement supertree
or compatible supertree can be constructed from the reduced input trees. Here,
we examine the possibility of using these output trees as constraint trees on the
search for RFS supertrees, so that the removed taxa could be introduced into
the constraint trees. We show that exact solutions to the SMAST and SMCT
(Maximum Agreement Supertree and Maximum Compatible Supertree) prob-
lems are not directly relevent to solving the Robinson-Foulds supertree problem.

Lemma 14. There exists a pair of binary trees T1 and T2 for which some op-
timal SMAST or SMCT supertree cannot be extended to any optimal RFS su-
pertree through the insertion of missing taxa.

Proof. Consider the following two trees (both unrooted binary trees): Let T1 be
given by the Newick string (A, ((B, x), ((C, y), (D,E)))) and let T2 be given by
the Newick string (A, (C, (z, (B, (D,E))))).

An RFS supertree for this pair T1, T2 is given by (A, ((C, y), (z, ((B, x), (D,E))))),
and has total RF distance to T1 and T2 equal to 2.

Note that at least one of A,B,C must be deleted to form an agreement
supertree. Suppose C is deleted. Then ((A, z), ((B, x), (y, (D,E)))) is an optimal
SMAST.

Observe that any way of adding C into this tree produces a supertree that
has total RFS score greater than 2. Hence, for this pair T1 and T2 of input
trees, for at least one optimal SMAST supertree, there is no way to extend that
optimal supertree into an optimal RFS supertree.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

38 X. Yu et al.

10 Maximum Weight Independent Set in Bipartite
Graphs

Given an undirected bipartite graph G, with vertices V = A ∪B, edges E, and
vertex weights w : V → N, the Maximum Weighted Independent Set problem
tries to find a independent set I ⊆ V that maximizes w(I), where w(S) =∑
v∈S w(v) for any S ⊆ V . It is well known (in folklore) that maximum weight

independent set can be solved in polynomial time through reduction to the
maximum flow problem. We reproduce a proof for completeness.

We first turn the graph into a directed flow network G′ = (V ∪ {s, t}, E′)
where s and t are the newly added source and sink, respectively. To obtain E′,
we direct all edges in E from A to B, add an edge from s to each vertex u ∈ A
and add an edge from each vertex v ∈ B to t. We set the capacities c : E′ → N
such that c(e) = ∞ if e ∈ E, c(e) = w(u) if e = (s, u) and c(e) = w(v) if
e = (v, t). We claim that any s, t-cut (S, T) in G′ has a finite capacity k if and
only if (S ∩A) ∪ (T ∩B) is an independent set of weight w(V)− k in G.

We first observe that (S∩A)∪(T ∩B)∪(S∩B)∪(T ∩A) = (S∪T)∩(A∪B) =
A∪B = V . Suppose (S∩A)∪(T ∩B) is an independent set of weight w(V)−k in
G. Since (S∩A)∪(T ∩B)∪(S∩B)∪(T ∩A) = V , the weight of (S∩B)∪(T ∩A)
is w(V)− (w(V)− k) = k. Since (S ∩A) ∪ (T ∩B) is an independent set, there
is no edge from S ∩A to T ∩B. There is also no edge from S ∩B to T ∩A since
edges in E are directed from A to B. Thus, the cut (S, T) consists of only edges
from s to T ∩A and from S∩B to t. Together the capacities of those edges equal
the weight of the set (S ∩B) ∪ (T ∩A), which is k.

For the other direction of the proof, suppose (S, T) is an s, t-cut of finite
capacity k. Since the cut has finite capacity, it does not contain any edge derived
from E. In particular, there is no edge from S ∩A to T ∩B in G′, which implies
there is no edge between S∩A and T ∩B in G. Since there is also no edge among
S ∩A and T ∩B in G, (S ∩A)∪ (T ∩B) is an independent set. Since the edges
in (S, T) solely consist of edges from s to T ∩A and from S ∩B to t, the sum of
their capacities is k. Therefore, the weight of the set (S ∩B) ∪ (T ∩A) is k and
the weight of (S ∩A) ∪ (T ∩B) is w(V)− k.

Since w(V) is a fixed constant, we conclude that any s, t-cut (S, T) is a
minimum cut in G′ if and only if (S ∩ A) ∪ (T ∩ B) is an maximum weight
independent set in G. By the standard Max-flow Min-cut theorem, a minimum
s, t-cut in a directed graph is equivalent to the maximum s, t-flow. Thus, we
can solve the Maximum Weighted Independent Set problem on bipartite graphs
using a maximum flow algorithm in polynomial time.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 39

11 Experimental study

We present additional details about the experimental performance study.

11.1 Datasets

Experiment 1 To produce the datasets for the experiment on multi-locus datasets,
we used SimPhy [20] to generate species trees and gene trees with 501 species
under the multi-species coalescent model, producing a set of true gene trees that
differ from the true species tree by 68% of their branches on average due to
ILS [19]. The number of genes varied from 25 to 1000 with ten replicate datasets
per number of genes.

For each replicate dataset, we used the model species tree and a technique
similar to DACTAL [26] (described below) to divide the species set into two
overlapping subsets, each containing slightly more than half the species. AS-
TRAL [23, 24, 51] is a leading method for species tree estimation in the pres-
ence of ILS for large numbers of species, and so we used ASTRAL v5.6.3 (i.e.,
ASTRAL-III) to construct subset trees on the model gene trees, restricted to the
relevant subset of species. Finally, the two ASTRAL subset trees were merged
together using Exact-2-RFS and FastRFS. The following steps describe the pro-
cedure in details.

1. Identify a centroid edge (a, b) in the true species tree (i.e., an edge that, upon
deletion, creates two subtrees Ta and Tb with leaf sets A and B of roughly
equal size)

2. Let X be the set of 25 closest (in term of path distance on the weighted tree)
leaves in Ta to a and in Tb to b

3. Let A′ = A ∪X and B′ = B ∪X
4. Restrict all 1000 true gene trees to leaf set A′ and use ASTRAL-III [51] to

compute a tree A1 on the restricted true gene trees
5. Restrict all 1000 true gene trees to leaf set B′ and use ASTRAL-III to

compute a tree B1 on the restricted true gene trees
6. Apply supertree methods FastRFS and Exact-2-RFS to input pair A1 and
B1, and compare to the true species tree

We vary the number of true gene trees by selecting the first 100 and 25 true
gene trees from the datasets with 1000 true gene trees.

Experiment 2 Each source tree is computed using maximum likelihood heuristics,
with several clade-based source trees and a single scaffold source tree (i.e., species
sampled randomly from across the tree). We selected the hardest of these 500-
leaf conditions, where the scaffold tree has only 20% of the leaves. Because all
the source trees miss some leaves, the number of leaves per supertree dataset
varied. The source trees were then given to FastRFS and GreedyRFS to combine
into a supertree.

We use the first 10 replicates out of a total of 30 replicates. Note that since
replicate number 8 requires combining two trees with less than 2 shared taxa,

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

40 X. Yu et al.

supertree construction does not make sense on this replicate. After eliminating
this replicate, we end up with 9 replicates in total. To make inputs with k source
trees, for k ∈ {2, 4, 6, 8, 10, 12, 14}, we take the first k source trees in each repli-
cate. Since the first tree is always the scaffold tree, all of our replicates contain
the scaffold tree. The average number of leaves per each source tree per replicate
for these datasets is (rounded to the nearest integer) {87, 79, 78, 73, 74, 73, 73},
for each corresponding k.

11.2 Scripts and Commands

Our scripts and other utilities (developed by the authors of this paper) are avail-
able at http://github.com/yuxilin51/GreedyRFS.

– GreedyRFS on a set of source trees

GreedyRFS.py -t <source_trees> -o <output_tree>

Note that when the input has two source trees, then GreedyRFS is identical
to Exact-2-RFS.

– RFS criterion score To compute the RFS criterion score for a supertree T
with respect to a profile A, we add the RF distances between T and every
tree t ∈ A, as follows:

compare_trees.py <tree1> <tree2>

– Centroid decomposition (1 round)

split_tree.py -t <input_tree> -o <output_directory>

– Find overlapping leaf set X

find_x.py -t <input_tree> -o <output_directory>

– Restricting tree to a leaf set (Newick Utilities v1.6.0)

nw_prune -v <input_tree> $(cat <label_of_leaves>) /

> <output_tree>

11.3 External software

FastRFS v1.0

FastRFS -i <source_trees> -o <output_prefix>

SimPhy v1.0.2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

Advancing Divide-and-Conquer Phylogeny Estimation 41

simphy -rs 10 -rl F:1000 -rg 1 -st F:500000 /

-si F:1 -sl F:500 -sb F:0.0000001 /

-sp F:200000 -hs LN:1.5,1 -hl LN:1.2,1 /

-hg LN:1.4,1 -su E:10000000 -so F:1/

-od 1 -v 3 -cs 293745 /

-o <output_directory>

ASTRAL v5.6.3

java -jar <path_to_astral_jar> -i <input_gene_trees> /

-o <output_est_species_tree>

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.16.099895doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.16.099895
http://creativecommons.org/licenses/by/4.0/

	Advancing Divide-and-Conquer Phylogeny Estimation using Robinson-Foulds Supertrees

