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 37 

Abstract 38 

Admixed populations are routinely excluded from medical genomic studies due to concerns over 39 

population structure. Here, we present a statistical framework and software package, Tractor, to facilitate the 40 

inclusion of admixed individuals in association studies by leveraging local ancestry. We test Tractor with 41 

simulations and empirical data focused on admixed African-European individuals. Tractor generates ancestry-42 

specific effect size estimates, can boost GWAS power, and improves the resolution of association signals. 43 

Using a local ancestry aware regression model, we replicate known hits for blood lipids in admixed 44 

populations, discover novel hits missed by standard GWAS procedures, and localize signals closer to putative 45 

causal variants.  46 

 47 

  48 
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 3 

Introduction 49 

Admixed groups, whose genomes contain more than one ancestral population such as African 50 

American and Hispanic/Latino individuals, make up more than a third of the US populace, and the population 51 

is becoming increasingly mixed over time1. Many common, heritable, diseases including prostate cancer2–5, 52 

asthma6–9, and several cardiovascular disorders such as atherosclerosis10,11 are enriched in admixed 53 

populations of the US. However, only a minute proportion of association studies address the genetic 54 

architecture of complex traits in such groups12,13; admixed individuals are systematically removed from many 55 

studies due to the lack of methods and pipelines to effectively account for their ancestry such that population 56 

substructure can infiltrate analyses and bias results14–21. Large-scale efforts to collect genetic data alongside 57 

medically-relevant phenotypes are beginning to focus more on non-Eurasian ethnic groups that contain higher 58 

amounts of admixture22–27, motivating the timely development of scalable methods to allow well-calibrated 59 

statistical genomic work on these populations. If not addressed, this inability to analyze admixed people will 60 

limit the clinical utility of large-scale data-collection efforts for minorities, exacerbating the concerning health 61 

disparities that already exist28–32.  62 

 In GWAS, the specific concern regarding including admixed participants is obtaining false positive hits due 63 

to alleles being at different frequencies across populations. Most studies currently attempt to control for this by 64 

using Principle Components (PCs) in a linear or linear mixed model framework. However, PCs capture broader 65 

admixture fractions, and individuals’ local ancestry makeup may differ between case and control cohorts even 66 

if their global fractions are identical. Even including PCs as covariates, then, still leaves open the possibility for 67 

false positive associations, as well as absorbing power.  68 

 Studying diverse populations in gene discovery efforts not only reduces disparities but also benefits 69 

genetic analysis for individuals of all ancestries. Perhaps the most notable example of this is in multi-ethnic 70 

fine-mapping, which can dramatically reduce the variant credible set by leveraging the differing LD structures  71 

observed across populations33–38. This is particularly helpful in populations of African descent, where LD blocks 72 

are the shortest and individuals have nearly a million more variants per person than individuals outside of the 73 

continent39. We find that with admixed populations we not only can utilize the LD patterns from multiple 74 
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ancestries, but have further disrupted LD blocks within each one, offering a more refined LD landscape with 75 

which to localize GWAS signal. 76 

 To help ensure that advances in genomic medicine will apply globally, we have developed a scalable 77 

framework that allows for the easy incorporation of admixed individuals into psychiatric genomics efforts by 78 

using local ancestry inference (LAI). Our framework, distributed as a scalable software package named 79 

Tractor, generates ancestry dosages at each site from input LAI calls, extracts painted haplotype segments for 80 

correction at the genotype level and runs a local ancestry-aware regression model, producing ancestry-specific 81 

effect size estimates and p values. Through testing in simulations and with empirical data on phenotypes with 82 

differing levels of polygenicity, we demonstrate that Tractor produces accurate results in admixed cohorts and 83 

boosts GWAS power across many genetic contexts. We further demonstrate improvements in association 84 

signal localization from the higher resolution of haplotype breakpoints in admixed genomes. These efforts fill a 85 

gap in existing resources and will improve our understanding of complex diseases across diverse populations. 86 

 The incorporation of local ancestry into variant identification for admixed populations is a concept that has 87 

been discussed previously40–50, particularly with regard to ‘admixture mapping,’ whereby researchers associate 88 

an elevation of a given ancestry at a locus in the genome with increased risk of a disease that is known to be 89 

stratified in prevalence across ancestries51–55. Admixture mapping has proven successful in diseases which are 90 

highly stratified across populations, such as asthma and cardiovascular phenotypes56–61. We build upon this 91 

important work by modeling the local ancestry haplotype dosage for each person at each variant in a way that 92 

allows for the generation of ancestry-specific effect size estimates while allowing for differences in minor allele 93 

frequency (MAF) across populations without an increased false positive risk.  94 

 The statistical model built into Tractor for binary phenotypes tests each SNP for an association with the 95 

phenotype using the logistic regression model:  logit(Y) = 	 𝑏, + 	𝑏.𝑋. + 𝑏0𝑋0 + 𝑏1𝑋1 …+ 𝑏3𝑋3   96 

where X1 is the number of haplotypes of the index ancestry present at that locus for each individual, X2 is the 97 

number of copies of the risk allele coming from the first ancestry, X3 is the number of copies coming from the 98 

second ancestry, and X4 to Xk are other covariates such as PCs, age, sex, etc. The significance of the risk 99 

allele is evaluated with a likelihood ratio test comparing the full model to a model fit without the risk allele, thus 100 
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allowing estimation of the aggregated effects in the presence of effect size heterogeneity. To further test if a 101 

risk allele is ancestry-specific, we evaluate if the difference between b2 and b3 is non-zero using a Z-test. The 102 

model presented is for a 2-way admixed scenario but can be scaled to an arbitrary number of ancestries. We 103 

have built pipelines to implement this joint model as well as generate genotype files containing extracted 104 

ancestry portions. These tools can be implemented in python and Hail either locally or on the cloud. 105 

 106 

Results 107 

LAI has high accuracy for African Americans  108 

We ran LAI using the program RFmix, a discriminative approach which estimates local ancestry by using 109 

conditional random fields parameterized with random forests62. RFmix can run on multi-way admixture 110 

populations, outperforms other local ancestry inference methods for minority populations, and leverages the 111 

ancestry components in admixed reference panel individuals, highly important when there is a lack of 112 

homogenous reference panels – often the case for understudied groups63,64. As Tractor relies heavily on LAI 113 

calls, we first ran simulations to ensure that RFmix called local ancestry accurately. LAI was highly accurate in 114 

a realistic demographic model for African American (AA) individuals (one pulse of admixture 9 generations ago 115 

with 84% contribution of haplotypes from Africa (AFR) and 16% from Europe (EUR); see Methods), assigning 116 

the correct ancestry ~98% of the time (Table S1). To ensure that Tractor performed well across demographic 117 

models, we varied demographic parameters including admixture fractions and pulse timings. Specifically, we 118 

varied the pulse of admixture in time to 3 generations and 20 generations ago and changed the admixture 119 

fractions to 30/70% and 50/50% EUR and AFR ancestry, respectively (Figure S1). We also checked the 120 

ancestry-specific accuracy in the realistic demographic scenario to assess if there was a bias in calling 121 

dependent on ancestry. Across all demographic models and ancestries, site-wise LAI calls were similarly 122 

accurate, with the correct call being obtained ~98% of the time (Table S1). While we refer solely to continental 123 

level ancestry here, we appreciate the high level of diversity and admixture within the continents and 124 

particularly in Africa. As reference panels for diverse groups grow in size, we will have increased ability to 125 

examine more geographically refined groups and deconvolve ever more specific haplotypes.  126 
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 127 

Recovery of long-range haplotypes disrupted by statistical phasing 128 

 While errors in statistical phasing can lead to errors in LAI, we found that iterating between LAI and 129 

statistical phasing improved the accuracy of both. Errors in statistical phasing are a major concern65,66, but few 130 

methods to recover disrupted haplotypes exist. Taking advantage of the unique ability to visualize tracts 131 

offered by admixed individuals, we additionally improve long-range haplotype resolution by correcting 132 

chromosome strand switch errors from phasing, which we find to be common in admixed cohorts. We 133 

demonstrate that using local ancestry information, we are able to consistently correct switch errors and recover 134 

disrupted haplotypes, making tract distributions look significantly more realistic (Figures 1, 2). 135 

 To replicate standard analytical procedures employed on cohort data, we statistically phased our truth 136 

dataset using SHAPEIT267 software with a balanced reference panel composed of EUR and AFR continental 137 

individuals from the 1000 Genomes Project39. We then examined the distribution and lengths of the EUR 138 

tracts. Analyzing the less common ancestry tracts allows for more precise quantification of tract counts 139 

because it is less likely that recombination will mask their phase switch errors. The probability of obtaining the 140 

observed number of tracts after phasing (131 after phasing vs 42 in the truth dataset) given the input 141 

demographic model was extremely unlikely, p=5.0x10-26. After correcting phase switch errors, the likelihood of 142 

the tract distribution improved, albeit still with significantly more switches than in the truth data (p=2.7x10-11, 96 143 

tracts) – approximately half the excess tracts without phase error correction. After then implementing one 144 

additional round of LAI on the corrected genotype files, the number of excess tracts was further reduced 145 

(p=0.009, 62 tracts). Thus, our procedure for correcting phase switch errors successfully recovers long-range 146 

haplotypes and better approximates the true tract length distributions (Figure 2).  147 

 To ensure that phase switch error correction performs well across different population histories, we ran 148 

simulations to assess how closely the tract length distributions approximated the truth for a range of 149 

demographic models. Specifically, we checked performance varying the timing of admixture pulses (including 150 

3, 9, and 20 generations ago) and the admixture proportions in the simulation (70/30, and 50/50 AFR/EUR, 151 

respectively). Under all scenarios, our tract recovery procedure improves strand flips in painted karyograms 152 
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(Figures 1, S1) and decreases the significance of the difference between the observed versus true tract length 153 

distributions (Figure 2, Table S2). We note that running an additional round of LAI after recovering haplotypes 154 

produced the most accurate tract length distributions. This is due to the improved ability of the model to 155 

recognize ancestry switch points once more complete haplotypes have been recovered, resulting in smoothing 156 

over previous short miscalls. 157 

 158 

Evaluating the landscape of GWAS power gains from Tractor  159 

We simulated individuals’ likelihoods of being cases as a function of AFR admixture fraction, the ancestral 160 

haplotype of each copy of the risk allele, and the risk allele dosage (See Methods, Supplementary 161 

Information). This framework is equivalent to modifying the marginal effect sizes due to a tag SNP for a shared 162 

causative mutation being monomorphic in EUR but variable in AFR, which is plausible as individuals from 163 

Africa contain almost a million more variants than other populations68. This also incorporates the clinically 164 

observed phenomenon of disease prevalence differing as a function of ancestry. We then ran association tests 165 

and compared the power across the odds ratio spectrum under the traditional GWAS model and under our 166 

model. Compared to the traditional model, there is a significant gain in power using the Tractor framework with 167 

similar improvements across sample sizes and disease prevalences (Figure 3). Power increases further when 168 

there is a difference in MAF across ancestries.  169 

We ran similar sets of simulations varying the paraments of the effect size difference, the absolute 170 

MAF, MAF difference across ancestries, and admixture fractions (Figures 3, S2, S3). The biggest power gain 171 

comes if an allelic effect is present in the smaller fraction ancestry only. For example, in a realistic AA 172 

demographic model, EUR ancestry makes up only ~20% of the sample. If we model an allele with an effect 173 

only active in the EUR background (Figure 3D), analyzing the tracts together without LAI information will have 174 

essentially no power to detect an association due to the higher noise relative to signal from uninformative 175 

tracts. However, Tractor is able to recover the effective sample size and power that one would have had if 176 

analyzing just the effect haplotypes, i.e. the EUR segments alone. 177 
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The scenario where Tractor is most powerful is when there is heterogeneity in the apparent effect size for 178 

the same variant across ancestries. Such heterogeneity in effect sizes may be a consequence of the same 179 

variant having different effects in different populations (e.g., in the context of gene-environment interactions) or 180 

may arise from differences in the indirect association evidence of the variant (i.e., the contribution to the 181 

estimated effect size from tagging other causal genetic variants). Differences in indirect association can come 182 

from ancestry-specific variation or from different patterns of linkage disequilibrium. Moreover, under the 183 

converse scenarios where there is predicted to be no benefit, the power loss is minimal—we lose a degree of 184 

freedom, resulting in a less precise error estimate for each SNP effect (Figure S2,3). In no case does Tractor 185 

dramatically underperform compared to the traditional GWAS model. See Supplementary Information for 186 

additional simulations and detail about power results. 187 

 188 

No increase in false positive rate with the Tractor model 189 

We quantified the false positive rate of the Tractor model by simulating a variant with no effect and counting 190 

the spurious significant associations identified in a simulated realistic AA population given 𝝰 = 0.05. Across our 191 

tests at various MAFs and between-ancestry MAF differences, we observe no clear difference in false positive 192 

rate between Tractor and traditional GWAS (Figure S4). In addition, we calculated the genomic inflation factor, 193 

λGC, of null phenotypes across GWAS permutations and confirmed no significant inflation using the Tractor 194 

GWAS model (Figure S5b). Therefore, there does not appear to be an elevation in false positive rates with the 195 

Tractor framework, suggesting that the observed power increases are from improved detection of true 196 

biological signal. 197 

 198 

Tractor replicates known associations and identifies hits for blood lipids in admixed individuals 199 

missed by standard GWAS 200 

To ensure that our Tractor joint-analysis GWAS model also performs well on empirical data, we ran the 201 

method for three well characterized blood lipid phenotypes which have been demonstrated to have ancestry-202 

specific effects: Total Cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density 203 
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lipoprotein cholesterol (LDL-C). We constructed a pseudo-cohort of 4309 two-way African-European admixed 204 

individuals from the UK Biobank (UKBB) with biomarker phenotype data to serve as our sample (Figure S4). 205 

Tractor GWAS replicated previously implicated associations for blood lipids in this cohort45,69–71, reaching the 206 

standard genome-wide significance level of 5x10-8 at previous top associations, including in genes PCSK9, 207 

LDLR, and APOE (Figure 4). In some cases, Tractor improved the observed top hit significance. 208 

 Our LAI-incorporating model was also able to identify hits in these admixed UKBB individuals that 209 

standard GWAS was not when using the traditional genome-wide significance threshold (Figure 4). For 210 

example, we identify a hit missed by standard GWAS on the same dataset that is present only on the AFR 211 

background on chromosome 1 (rs12740374, p=3.46x10-8). This locus has previously been shown to affect 212 

blood lipid levels, metabolic syndrome, and coronary heart disease risk in independent AA cohorts69,72–77, and 213 

was determined to be the causal variant for affecting LDL-C in a multi-ethnic fine-mapping study78. Had we not 214 

deconvolved ancestral tracts for our GWAS, we would have missed this site with a demonstrated effect on our 215 

phenotype and population of interest.  216 

 We additionally identify a novel peak on chr15 that only reached significance in the AFR tracts in this 217 

UKBB cohort. The lead SNP (rs12594517, p= 1.915x10-8) lies in an intergenic area and is uncharacterized. 218 

The closest gene neighboring it is MEIS2, lying ~70kb upstream, followed by C15orf41. While the precise role 219 

and mechanism this locus plays in affecting blood lipids remains unclear, MEIS2 has previously been found to 220 

be associated to body mass index and waist circumference and C15orf41 was a significant hit in a previous 221 

GWAS of cholesterol 79,80. Though further follow-up is needed to clarify any direct relationship to TC, this 222 

association highlights the utility of Tractor to identify signals that would be undetectable in admixed cohorts 223 

without accounting for local ancestry. 224 

 Tractor is also able to refine the location of GWAS signals to closer to the causal variant than is 225 

possible using standard GWAS procedures. TC has previously been mapped to the gene DOCK6 in AA 226 

cohorts69, a finding we replicate for the suggestive GWAS threshold with standard GWAS on UKBB admixed 227 

individuals in the same intronic area as previously found. However, when we run the Tractor model, we identify 228 

a lead DOCK6 SNP 20kb downstream in the AFR samples, as well as in a meta-analysis of hits from 229 
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deconvolved AFR and EUR tracts. This new lead SNP (rs2278426) is a missense mutation spanning both 230 

DOCK6 as well as ANGPTL8, a gene which may play a key role in blood lipid regulation (see Discussion, 231 

Figure 5). To assess whether our improved ability to localize to this variant was due to a true effect size 232 

differences between the EUR and AFR or to a marginal effect size difference driven by MAF or LD differences 233 

across the ancestries, we further attempted validating its association by fine-mapping TC in other large-scale 234 

populations: 345,235 white British individuals from UKBB and 135,808 Japanese individuals from Biobank 235 

Japan (81, Ulirsch, JC., Kanai, M. et al., in prep., Kanai, M. et al., in prep). rs2278426 was successfully fine-236 

mapped to a 95% credible set in both populations, with maximum posterior inclusion probability of 0.993 in 237 

Biobank Japan. This variant is at 26% frequency in the gnomAD 82 East Asian ancestry individuals, 18% in 238 

African, and 4% frequency in the non-Finish Europeans. These frequency patterns suggest higher power in 239 

non-European population to localize a causal variant compared to Europeans. Though below the traditional 240 

genome-wide significance level in our sample of ~4300 individuals, this locus highlights the improved ability to 241 

localize GWAS signal thanks to leveraging additional breakpoints in admixed genomes. 242 

 243 

Discussion 244 

 Despite the recent advances in understanding the genetics of complex diseases, major limitations 245 

remain in our knowledge of the architecture of such disorders in minority and admixed populations. Here, we 246 

present an analytical framework and statistical gene discovery method distributed as a scalable software 247 

package named Tractor, which allows admixed samples to be appropriately included alongside homogenous 248 

ones in a well calibrated manner in statistical genomics efforts. We test our framework in a simulation model 249 

designed to emulate real AA cohorts. We also apply it to empirical data from admixed African-descent 250 

individuals of the UKBB. We observe a gain in power to detect risk loci across sample sizes, demographic 251 

models, and disease prevalences using the Tractor framework, particularly when effect sizes are 252 

heterogeneous across populations. Our approach incorporates a local-ancestry aware GWAS method that can 253 

extend the traditional GWAS model. Tractor generates ancestry specific p values and effect size estimates, 254 

which admixture mapping cannot, and which can be extremely helpful in post-GWAS efforts such as 255 
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constructing genetic risk scores for understudied populations. We demonstrate that our framework also gives 256 

increased precision in localizing GWAS signal by leveraging the disrupted LD blocks visible with ancestral 257 

chromosome painting in recently admixed groups. This reduces the credible set of SNPs and aids in the 258 

prioritization of variants for subsequent functional testing.  259 

 The Tractor pipeline requires several inputs, most importantly accurate local ancestry calls. Users 260 

should ensure good LAI performance in their target cohorts. A major determinant of accurate LAI calls is a 261 

comprehensive and well-matched reference panel49,83. Of relevance is that reference panels are more plentiful 262 

for Eurasian populations than for other groups, underscoring the need to expand sequencing efforts in more 263 

global populations. To ensure LAI was unbiased across regions of the genome in our GWAS, we examined the 264 

distribution of local ancestry across the genome. Local ancestry inference appears relatively evenly distributed 265 

across the genome and proportional to global admixture proportions (Figures 1, S6). However, we caution that 266 

calls around centromeres and at the ends of chromosomes are most likely to include error, as these genomic 267 

regions do not have anchor points on one edge. We similarly recommend that LAI ideally to be conducted on 268 

whole genome sequencing data to avoid the introduction of biases. We also note that we have thoroughly 269 

tested Tractor here in the two-way admixture model that reflects AA demographic history. The analytic 270 

infrastructure, however, can currently also run on a three-way admixed model and our statistical model can 271 

scale to an arbitrary number of ancestries. Future work will test power and optimize the code in a variety of 272 

multi-way admixed demographic scenarios. A final consideration is to ensure consistent phenotyping across 273 

ancestry groups, as is standard in multi-ethnic GWAS. 274 

We thoroughly evaluated the landscape of when Tractor does and does not add power to association 275 

studies in simulated data modeled after AA cohorts of the PGC-PTSD (Figures 3, S2, S3). In situations where 276 

there are differences across ancestries, Tractor recovers the power that would be lost from analyzing 277 

populations together. In particular, power gains are greatest when there is an effect size difference at a locus 278 

between ancestries coupled with differing MAF. For example, our simulated case of a 20% MAF difference for 279 

an allele with an effect only in the AFR genetic background would allow for identification of risk variants with an 280 

odds ratio ~0.1 smaller than would be possible with traditional GWAS. This allows for detection of additional 281 
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loci that would have been undetected without modeling local ancestry. Tractor can also boost power when 282 

there is an effect only on one haplotype background or an allele only present in one ancestry, again most 283 

dramatically when that ancestry is less frequent in the dataset. In such an instance in a standard GWAS 284 

setting, the signal would be dramatically reduced due to noise from the uninformative majority haplotypes, 285 

resulting in extremely low power to detect the locus (Figure 3D). Power can be recovered, however, by 286 

deconvolving local ancestry and analyzing genotypes on ancestry-specific haplotypes, thus controlling for 287 

population structure as well as identifying risk variants that would otherwise be undetectable. 288 

Conversely, we find that it is not generally necessary to include local ancestry in a GWAS model when 289 

there is no effect size difference between groups. Notably, we are referring here to detection of marginal effect 290 

sizes as well as true effect sizes. There is evidence suggesting that in most cases (with some notable 291 

exceptions8,69,84), the true effect sizes of causative variants are likely to be equal across ancestries33,38,85–90. 292 

However, the marginal effect size of a tag SNP might routinely be different across ancestries due to 293 

differences in ancestral MAF and the LD patterns resulting from each ancestral population’s demographic 294 

history91,92. We underscore that power gains appear to be from true biological signal rather than false positives, 295 

as we quantified the Tractor false positive rate to be no higher than standard GWAS (Figures S4, S5). 296 

We would like to highlight that Tractor benefits from power gains to detect the marginal beta (pertaining to, 297 

for example, an allele which is only present in one population and tags a nearby causal variant), in addition to 298 

the rarer case of variants with true effects only on one haplotypic backbone. Our framework therefore will 299 

improve power at substantially more locations across the genome than only at sites which have ancestry-300 

specific causal effect differences. Tractor also benefits from increased power in cases where functionally 301 

important (and likely rare) alleles only present in one population are missed by genotyping or imputation. In 302 

such situations the common alleles in LD, despite being shared across populations, would be associated to the 303 

phenotype as a function of which haplotypic background they are found on, and thus would have a haplotype-304 

specific effect. Another relevant scenario to consider would be the presence of LD in regions where there are 305 

ancestry-specific markers intermingled with shared ones. This would affect the univariate scan results such 306 
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that considering the haplotypic background on which alleles fall would particularly aid in localizing signal 307 

through improved marginal beta estimates, even when the causal effect is the same in both ancestries. 308 

 Tractor was also able to replicate established GWAS hits, discover new ones, and aid in the 309 

localization of GWAS signal with empirical data. We replicated known hits for well-characterized blood lipid 310 

phenotypes when testing Tractor on a dataset consisting of ~4300 2-way admixed African-European 311 

individuals from the UKBB (Figure 4). We further demonstrate an improved ability to localize GWAS signal to 312 

putative causal SNPs previously identified in another diverse collection, Biobank Japan81 (Figure 5). 313 

Specifically, previous analyses of blood lipid phenotypes in an admixed AA cohort had pinpointed the TC top 314 

hit to lie within the gene DOCK669, nearby the lead SNP for this region in standard GWAS on the admixed 315 

UKBB individuals (rs4804576). The Tractor AFR ancestry, as well as results from a meta-analyses of summary 316 

statistics from AFR and EUR deconvolved genotype files, identified a different top association ~20kb 317 

downstream (rs2278426) which additionally lies over the ANGPTL8 gene on the positive strand while spanning 318 

an intronic area of DOCK6 on the minus strand. ANGPTL8, also known as lipasin and betatrophin, has been 319 

shown to regulate plasma lipid levels in mice by inhibiting the enzyme lipoprotein lipase93–96. In humans, 320 

ANGPTL8 levels correlate with metabolic phenotypes including type 2 diabetes and obesity97–100 and HDL-C 321 

expression levels across diverse ancestry groups have been demonstrated to better correlate with than 322 

DOCK6101. Together these make ANGPTL8 a more promising candidate gene than DOCK6, which has no 323 

clear tie to blood lipid phenotypes. Intriguingly, the Tractor lead SNP, rs2278426, is a missense mutation in 324 

ANGPTL8 (p.Arg59Trp) that is predicted to be possibly damaging and deleterious by polyphen and SIFT, 325 

respectively102,103. This variant is at 18% frequency in gnomAD82 AFR individuals but at 4% frequency in the 326 

non-Finnish Europeans. These frequency differences highlight how leveraging different diverse populations 327 

allows for the improved identification of risk variants as well as how employing multi-ethnic mapping methods 328 

aids in the resolution of association signals.  329 

 The Tractor infrastructure released here may be helpful in multiple statistical genetics use cases 330 

beyond GWAS. For example, correcting for population structure should be a key early step in evolutionary 331 

genomic studies on admixed populations running analyses such as genome-wide scans of selection to avoid 332 
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bias in selection statistics104–106. Within medical genetics, accounting for the ancestral background on which an 333 

allele appears will be key in admixed populations, particularly in studies of rarer variants which are more 334 

population specific107,108. For example, because AFR and EUR haplotypes have different rates of background 335 

variation68, controlling for the local ancestral background may help pinpoint the differences between cases and 336 

controls in burden testing that would previously have been overwhelmed by uninformative markers.  337 

 In sum, Tractor allows users to account for genotype-level ancestry in a precise manner, allowing for 338 

the well-calibrated inclusion of admixed individuals in large-scale gene discovery efforts. This approach 339 

provides a number of benefits over traditional GWAS, including the production of ancestry-specific effect size 340 

estimates a p values, improved localization of GWAS signal, and power boosts in genetic scenarios such as 341 

when there are effect size or MAF differences across ancestries. This infrastructure is designed as a series of 342 

steps to be flexible and easily ported into other statistical genomics activities. We freely provide Tractor code in 343 

python and Hail109, a scalable cloud-compatible framework, as well as examples of implementation in a Jupyter 344 

notebook110. Tractor advances the existing methodologies for studying the genetics of complex disorders in 345 

admixed populations. 346 

 347 

Online Methods 348 

QC and LAI Pipeline 349 

 The core feature of the Tractor framework relies on accounting for fine-scale population structure as 350 

informed by local ancestry (i.e. ancestral chromosome painting). Tractor then uses this information to (i) 351 

correct for individuals’ ancestral dosage at all variant sites, (ii) recover long-range tracts in admixed individuals; 352 

and (iii) extract the tracts and ancestry dosage counts from each ancestry component for use in ancestry-353 

specific association tests. We have tested and built this framework around LAI calls from RFmix versions 1 and 354 

262, and have built an automated pipeline (https://github.com/eatkinson/Post-QC) to perform all necessary 355 

post-genotyping QC, data harmonization, phasing, and LA inference to consistently prepare the data for 356 

downstream analysis. The main code is in bash, subscripts are written in python (See Supplementary 357 

Information for additional details).  358 
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 In all tests shown here, we ran RFmix_v2 with 1 EM iteration and a window size of 0.2 cM. We used the 359 

HapMap b37 recombination map111 to inform switch locations. The -n 5 flag (terminal node size for random 360 

forest trees) was included to account for an unequal number of reference individuals per reference population. 361 

We additionally used the --reanalyze-reference flag, which recalculates admixture in the reference samples 362 

themselves for improved ability to distinguish ancestries. This is especially important when the reference 363 

samples are themselves admixed. As a reference panel for our 2-way admixed simulated African-European 364 

cohorts, we used relevant populations of the 1000G reference panel given a priori knowledge of AA’s 365 

demographic history112–114 consisting of 108 YRI and 99 CEU. Painted karyogram plots were produced using a 366 

modified version of publicly available code (https://github.com/armartin/ancestry_pipeline). We have optimized 367 

this pipeline under the two-way admixed AA demographic scenario. Tractor additionally supports 3-way 368 

admixture calls with an expanded set of scripts (also at https://github.com/eatkinson/Tractor). In all cases we 369 

recommend conducting tests of LAI accuracy to ensure reliability, as accurate LAI calls are required for good 370 

performance. 371 

 372 

LAI Accuracy 373 

 We validated that LAI was performing well in the AA use case. To do this, we generated a truth dataset by 374 

simulating individuals with known phase and LA from empirical data. Our simulation reference panel consisted 375 

of haplotypes from homogenous PGC-PTSD individuals who had ≥95% EUR or AFR ancestry as inferred by 376 

SNPweights115. We simulated admixture between these reference individuals with admix-simu116 using a 377 

realistic demographic scenario for the AA population 113,114 of 1 pulse of admixture 9 generations ago with 84% 378 

contribution from Africa and 16% from Europe. The resultant population mixes amongst itself until the present 379 

day, copying haplotypes from the previous generation with break points informed by the HapMap combined 380 

recombination map111. This retains the LD structure and genetic variation present in real genomic data and 381 

ensures that the truth dataset resembles cohort data as closely as possible. We then called LA with the 1000 382 

Genomes68 AFR and EUR superpopulations as our reference panel, and calculated LAI accuracy as how often 383 

the ancestry call was correct in the simulated truth data.  384 
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 385 

Correcting Switch Errors from Statistical Phasing using Local Ancestry 386 

 Despite LAI calling ancestry dosage accurately, frequent chromosomal switches were visible in painted 387 

karyograms (Figure 1), which we determined were due to phasing errors. It is important to retain complete 388 

tracts, as spurious breakpoints will reduce the accuracy haplotype-based test. Tractor detects and fixes phase 389 

switches using the most likely ancestry assignment of subpopulations as determined by a conditional random 390 

field from RFmix. We define phase switches as a swap of ancestry across a chromosome within a 1 cM 391 

window at a region with heterozygous ancestry dosage.  392 

 To ensure that correcting phase switch errors improved results compared to the truth expectations for 393 

the input demographic scenario, we modeled the expected distributions of EUR tract lengths within AA 394 

individuals using a Poisson process with rate=9, the number of generations ago when the pulse of admixture 395 

occurred (Figure 2). The waiting time until a recombination event disrupts a tract is expected to follow this 396 

distribution, with a slight shortening of tracts proportional to the percent admixture due to the inability to 397 

visualize tract switches that occur across regions of the same ancestry. The overall proportion of the genome 398 

in the realistic scenarios was within range of expectations given the simulation model of 16% European, 84% 399 

African ancestry (15.1% and 84.9%, respectively). 400 

 401 

GWAS power simulations incorporating local ancestry 402 

We assessed the improvements in GWAS power from using Tractor through simulations. We 403 

formulated our simulation framework on the suggestions of Skotte et al (2019)117.  Power calculations were 404 

based on a simulation framework that initially models an AA population assuming a bi-allelic disease risk allele 405 

with a 20% overall MAF and an additive effect in the AFR genetic background but not in the EUR. Specifically, 406 

the overall admixture proportions were drawn from a beta distribution with shape parameters 7.76 and 2.17, 407 

the fitted parameters to this distribution for AFR ancestry proportions observed in the PGC-PTSD Freeze 2 AA 408 

cohorts. The genotype of each copy of the allele was drawn from a binomial distribution with the probability of 409 

having the minor allele set to the MAF. We simulated a disease phenotype with individuals’ risk drawn from a 410 
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binomial distribution assuming a 10% disease prevalence. Risk of developing the phenotype was modified on 411 

a log-additive scale according to the admixture proportions and the presence of the minor allele on an AFR 412 

background using a logit model. In this model, the probability of disease was set to -2.19 + log of allelic risk 413 

effect size*number of copies of the minor allele coming an AFR ancestral background + 0.5*AFR admixture 414 

proportion. -2.19 was chosen as it represents a 10% probability of disease given no AFR admixture or copies 415 

of the minor allele from either ancestral background. The 0.5 value in 0.5*AFR Admixture was set in order to 416 

induce stratification in the simulated population, as is observed in empirical data. In other words, all of our 417 

simulations modeled increasing disease prevalence with admixture fractions, reflective of clinical observation.  418 

With this simulation design, individuals with higher AFR ancestry proportions are more likely to be cases 419 

whereas those with higher EUR ancestry proportions are more likely to be controls. Subjects’ disease status 420 

was then drawn from a binomial distribution with the probability parameterized to their individual disease risk 421 

according to the logit model. Cases and controls were sampled at random from the simulated population at a 422 

2.5:1 control to case ratio, the approximate ratio of controls to cases in PGC-PTSD freeze 2.   423 

Under each simulation, we fit three logistic regression models of disease status that included: M1) 424 

admixture only, M2) number of copies of the risk allele only, and M3) admixture + number of copies of the risk 425 

allele on a EUR background + number of copies on an AFR background. M1 serves as a null comparison to 426 

evaluate the significance of including the SNP as a predictor. The significance of M2 and M3 are evaluated by 427 

likelihood ratio tests comparing them to M1. For each 100 simulations at a given effect size and sample size, 428 

for both M2 and M3 we estimated power as the proportion of the time that the likelihood ratio test was 429 

significant (p < 5e-8). We performed 100 rounds of simulation with this model at each level of allelic effect size 430 

ranging from Odds Ratio (OR) 1.05 to 1.3 and case sample size N=4000 and 12000.  431 

 432 

Characterizing the landscape of Tractor power across genomic and disease contexts 433 

To evaluate Tractor power gains, we ran similar sets of simulations varying effect size differences across 434 

ancestries, MAF differences, admixture fractions, and disease prevalence (Figures 3, S2, S3).  435 
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Varying effect size across populations: To examine the effect of modifying the effect sizes, we introduced 436 

an effect on EUR haplotypes as well, rather than just on AFR. All these simulations assumed 80% admixture, 437 

10% disease prevalence, and 20% MAF in both groups. We modeled cases across the OR spectrum where 438 

there was an effect of equal size in both ancestries, a 30% larger effect size on the EUR background, an effect 439 

size 30% larger on the AFR haplotype, and an effect size only in the EUR. 440 

Varying absolute MAF: We next fixed all other parameters and modified the absolute MAF of the 441 

simulated risk allele, with the relative difference in MAF between ancestries remaining constant. We changed 442 

our MAF from 20% to 10% and 40% under both the models of an effect only in the AFR background and with 443 

matching effect sizes between EUR and AFR. 444 

MAF differences between groups: To see if having a difference in the MAF between the two ancestral 445 

groups affected GWAS power, we varied the MAF in the EUR background to be 10, 20, and 30% while 446 

keeping the AFR MAF set to 20%. 447 

 False positive rate: We quantified the false positive rate by simulating a variant with no effect and 448 

counting significant associations identified in a simulated realistic AA population given 𝝰 = 0.05.  449 

 450 

Selection of two-way admixed African-European empirical individuals 451 

 To select individuals with 2-way admixture with European and West African ancestry, we took a two-452 

pronged approach. First, we combined genetic reference data from the 1000 Genomes Project39 and Human 453 

Genome Diversity Panel118, then harmonized meta-data according to consistent continental ancestries. We 454 

then ran PCA on unrelated individuals from the reference dataset. To partition individuals in the UKBB based 455 

on their continental ancestry, we used the PC loadings from the reference dataset to project UK Biobank 456 

individuals into the same PC space. We trained a random forest classifier given continental ancestry meta-data 457 

based on the top 6 PCs from the reference training data. We applied this random forest to the projected UK 458 

Biobank PCA data and assigned AFR ancestries if the random forest probability was >50%, otherwise 459 

individuals were dropped from further analysis.  460 

 For those individuals classified by their genetic data to have AFR ancestry, we then combined the 1000 461 
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Genomes and Human Genome Diversity Panel reference data with genetic data from the African Genome 462 

Variation Project as well as these UKBB individuals. To restrict to only two-way admixed West African-463 

European ancestry individuals, we restricted to individuals with at least 12.5% European ancestry, at least 10% 464 

African ancestry, and who did not deviate more than 1 standard deviation from the AFR-EUR cline (Figure 465 

S6A, B). This resulted in approximately 4300 individuals per blood lipid trait. Global ancestry fraction estimates 466 

were obtained from running ADMIXTURE119 with k=2 (which was the best fit k value to this dataset based on 5-467 

fold cross-validation) on these individuals with 1000 Genomes Project39 EUR and AFR superpopulation 468 

individuals as reference data (Figure S6C). To ensure there were no major areas of the genome where local 469 

ancestry inference was skewing significantly from the expected global fractions, we also assessed the 470 

cumulative local ancestry calls across the genome for the UKBB admixed subset (Figure S6D).  471 

 472 

Software implementations 473 

 We developed separate scripts to deconvolve ancestry tracts and calculate haplotype dosages, correct 474 

phase switch errors, and run a Tractor GWAS to obtain ancestry-specific effect size estimates and p values. 475 

Pre-GWAS steps are available as independent python scripts. We separated steps to allow for maximum 476 

flexibility when using Tractor. To implement the joint modeling GWAS approach with the novel linear 477 

regression model described here, we have built a scalable pipeline in Hail109 which can be implemented locally 478 

or on the Google Cloud Platform120. Descriptions of the steps and an example Jupyter notebook 110 479 

demonstrating analytical steps and visualization of results of the Tractor joint-analysis GWAS are freely 480 

available on github (https://github.com/eatkinson/Tractor).  481 

 An alternative pipeline designed for use across environments where Hail may not be as readily 482 

implemented involves running the separate/meta-analysis GWAS version of Tractor. This pipeline requires the 483 

initial processing steps to optionally correct phase switch errors and deconvolve ancestry tracts into their own 484 

VCF files. Next, GWAS can be run for the deconvolved files containing different ancestral components with the 485 

user’s preferred GWAS software, such as plink121. In this implementation, a standard GWAS model can be run 486 

on each ancestral component separately using the ancestry-specific VCF output by Tractor, which contains 487 
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fully or partially missing data including only haplotypes from the ancestry in question. Results from the different 488 

ancestry runs could then be meta-analyzed to increase power by incorporating summary statistics from both 489 

populations, though we recommend preferentially using the joint-analysis method described in this manuscript 490 

to avoid any potential bias from combining multiple ancestral portions of the genome of the same individuals. 491 

This implementation is also compatible in large-scale collections where there are large numbers of 492 

homogenous individuals, for example many Europeans, but too limited a number of admixed individuals to be 493 

run in a GWAS alone. The EUR sections of the admixed cohorts could be analyzed alongside the 494 

homogenous European cohorts, making better use of the admixed samples even if other ancestry portions are 495 

not utilized, and increasing the effective sample size.  496 

 497 

Empirical test of Tractor on blood lipid phenotypes in European-African admixed UKBB individuals 498 

 To ensure that Tractor replicated well-established associations, we ran standard GWAS, the Tractor 499 

joint-analysis model, and a meta-analysis of summary statistics from EUR and AFR deconvolved tracts on 500 

~4300 admixed African-European individuals from the UKBB on the biomarker blood lipid traits of Total 501 

Cholesterol (TC), high-density lipoprotein cholesterol (HDLC), and low-density lipoprotein cholesterol (LDLC). 502 

We included covariates capturing global ancestry, age, sex, and blood dilution factor in all runs. We assessed 503 

meta-analysis performance using different metrics to capture global ancestry, namely the first 20 PCs versus 504 

the AFR fraction as determined by ADMIXTURE, which did not have substantive differences. In the joint-505 

analysis framework, we used the measure of global AFR ancestry fraction to more directly capture global 506 

ancestry and avoid any potential collinearity with local ancestry from PCs. We generated QQ plots alongside 507 

each trait and compared the inflation of test statistics in each GWAS case by looking at the genomic inflation 508 

factor, 𝝀GC. We then compared results to those obtained from the same individuals using a standard GWAS 509 

approach. No individuals overlap between the previous study of interest (Natarajan et al. 2018, which includes 510 

diverse TOPMed24 individuals) and the UKBB individuals included here. As expected, near-identical results 511 

were obtained from the meta- and joint-approaches. Gene visualizations were produced with LocusZoom122, 512 

Manhattan and QQ plots with bokeh123.    513 
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 514 

Statistical fine-mapping of top hits in independent cohorts 515 

 We conducted GWAS and statistical fine-mapping in two additional large-scale cohorts, 345,235 white 516 

British individuals from UKBB and 135,808 Japanese individuals from BBJ. For the UKBB white British, we 517 

used previously conducted fine-mapping results for TC (https://www.finucanelab.org/data). Briefly, we 518 

computed association statistics for the variants with INFO > 0.8, MAF > 0.01% (except for rare coding variants 519 

with MAC > 0), and HWE p-value > 1e-10 using BOLT-LMM124 with covariates including the top 20 PCs, sex, 520 

age, age2, sex * age, sex * age2, and blood dilution factor. We used FINEMAP v1.3.1125,126 and susieR 521 

v0.8.1.0521127 for fine-mapping using the GWAS summary statistics and in-sample dosage LD matrices 522 

computed by LDstore v2.0b. We defined regions based on 3 Mb window surrounding lead variants and 523 

merged them if overlapped. The maximum number of causal variants in a region was specified as 10. For BBJ, 524 

we additionally conducted fine-mapping using the same pipeline as we did for UKBB. The GWAS summary 525 

statistics of TC was computed for the variants with Rsq > 0.7 and MAF > 0.01% using BOLT-LMM with the 526 

covariates including top 20 PCs, sex, age, age2, sex * age, sex * age2, and disease status (affected versus 527 

non-affected) for the 47 target diseases in the BBJ. The details about genotyping and imputation was 528 

extensively described previously81,128. 529 

 530 

Assessment of the correct empirical p value for admixed individuals 531 

 To evaluate the appropriate p value threshold for Tractor associations, we estimated ancestry-specific 532 

empirical null p value distributions via permutation. Although the genome-wide significance threshold (p < 5 × 533 

10–8) is widely adopted in the current literature, previous work has shown that different ancestry groups have 534 

different numbers of independent variants68. Here, we permuted a null continuous phenotype 1,000 times 535 

using the same admixed African-European individuals from UKBB as in the Tractor cholesterol GWAS to 536 

assess the correct p value threshold for the admixed individuals in this study. We measured the minimum p 537 

values of associations (pmin) for each ancestry and derived an ancestry-specific empirical genome-wide 538 

significance threshold as the fifth percentile (α = 0.05) of pmin across permutations as previously described129. 539 
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We calculated this percentile using the Harrell–Davis distribution-free quantile estimator130 and calculated the 540 

95% confidence interval via bootstrapping. Based on the permutation results (Figure S5a), we defined a study-541 

wide significance threshold at a conservative level of p = 1 × 10–8 for both AFR- and EUR-specific 542 

associations. In addition, we calculated the genomic inflation factor, λGC, of null phenotypes across 543 

permutations and confirmed no significant inflation using the Tractor GWAS model (Figure S5b).  544 
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Figure 1. Painted karyograms of a 

simulated AA individual individual 

showing EUR (red) and AFR (blue) 

ancestral tracts across data 

treatments. The top panel shows the 

truth results for an example individual 

in our simulated AA cohort. A painted 

karyogram after statistical phasing is 

shown in the second row – note the 

disruption of long haplotypes. The 

third panel illustrates our recovery of 

tracts broken by switch errors in 

phasing. The bottom panel shows the 

smoothing and further improvement of 

tracts acquired through an additional 

round of LAI. The same section of 

chr13 showing an example tract at 

higher resolution is pictured on the 

right to highlight tract recovery. 
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 2 

Figure 2. Tractor recovers disrupted tracts, improving tract distributions. The top row (A-C) shows the 

improvements to the distributions of the number of discrete EUR tracts observed in simulated AA individuals 

under demographic models of 1 pulse of admixture at 3, 9 (realistic for AA population history) and 20 generations 

ago. The bottom row (D,E) shows the results from different initial admixture fractions, of 70% and 50% AFR, 

respectively, at the realistic 9 generations since admixture. These can be compared to the inferred demographic 

model in AA with ~80% AFR ancestry shown in B. In all panels, the simulated truth dataset is shown in black, 

after statistical phasing in purple, immediately after tract recovery procedures is in orange, and after one 

additional round of LAI after tract recovery in yellow. 
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Figure 3. GWAS power gains across sample sizes, ancestral MAF differences, admixture proportions, 

and effect size differences. In all scenarios shown, dashed lines correspond to the power from the Tractor 

model incorporating local ancestry, solid lines are for a traditional GWAS model. In all panels we modeled a 

10% disease prevalence. Unless otherwise noted, we used the parameters for a realistic demographic 

scenario for AA individuals: 80% AFR ancestry, an effect present only in the AFR genetic background, 12k 

cases and 30k controls, and 20% MAF. (A) There are similar gains in GWAS power when using the Tractor 

LAI-aware model across samples sizes of 4,000 (grey) and 12,000 (black) cases with 2x controls. (B) When 

there is a MAF difference between ancestries, the gains in power are even more pronounced. Gains vary 

across the allele frequency spectrum: black=MAF 10% AFR, 30% EUR; grey=MAF 20% AFR, 40% EUR. (C) 

Gains become more pronounced when the admixture fractions are modified to 50/50. (D) Dramatic gains are 

obtained when the effect is switched to instead only be present on the EUR background. 
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Figure 4. Tractor GWAS replicates established hits for Total Cholesterol in admixed African-European 

individuals and identifies new ancestry-specific loci. QQ and Manhattan plots for Total Cholesterol using 

the standard GWAS model (A) compared to Tractor joint-analysis results for the AFR (B) and EUR (C) 

backgrounds. 
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Figure 5. Tractor better localizes a top hit 

for Total Cholesterol. Previous hits for TC 

had pinpointed DOCK6 as the gene of 

interest. Comparing runs on UKBB admixed 

individuals with a standard GWAS model 

(A), AFR-specific GWAS with Tractor (B), 

and a meta-analysis of GWAS runs on 

deconvolved EUR and AFR tracts (C), both 

ancestry-specific runs pinpoint a lead SNP 

~20kb downstream in an intron of DOCK6 

spanning a better candidate gene ANGPTL8 

(also known as C19orf80) as the lead SNP. 

No significant signal was seen in the EUR 

segments. In all plots, point size is 

proportional to the number of samples 

included for that test, and color indicates r2 

to the named lead SNP. For B, the 

recombination rate line was generated from 

the AFR superpopulation of the 1000 

Genomes Project, for other panels the EUR 

superpopulation rate is shown.  

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.17.100727doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.17.100727
http://creativecommons.org/licenses/by-nc-nd/4.0/

