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Abstract  16 

 17 

Background 18 

Sowing time is commonly used as the temporal reference for Arabidopsis thaliana (Arabidopsis) experiments in 19 

high throughput plant phenotyping (HTPP) systems. This relies on the assumption that germination and seedling 20 

establishment are uniform across the population. However, individual seeds have different development 21 

trajectories even under uniform environmental conditions. This leads to increased variance in quantitative 22 

phenotyping approaches. We developed the Digital Adjustment of Plant Development (DAPD) normalization 23 

method. It normalizes time-series HTPP measurements by reference to an early developmental stage and in an 24 

automated manner. The timeline of each measurement series is shifted to a reference time. The normalization is 25 

determined by cross-correlation at multiple time points of the time-series measurements, which may include 26 

rosette area, leaf size, and number. 27 

 28 

Results 29 

The DAPD method improved the accuracy of phenotyping measurements by decreasing the statistical dispersion 30 

of quantitative traits across a time-series. We applied DAPD to evaluate the relative growth rate in A. thaliana 31 

plants and demonstrated that it improves uniformity in measurements, permitting a more informative comparison 32 

between individuals. Application of DAPD decreased variance of phenotyping measurements by up to 2.5 times 33 

compared to sowing-time normalization. The DAPD method also identified more outliers than any other central 34 

tendency technique applied to the non-normalized dataset. 35 
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 39 

Background 40 

Sowing-time is often taken as the initial time point for measuring plant phenotypic traits in HTPP systems [1]. 41 

Traits of a number of plants are typically measured between two defined timepoints, chosen relative to the time of 42 

sowing. However, the germination of individual seeds in a genetically identical population is normally distributed, 43 

even under uniform conditions [2]. Differences in the timing of germination and seed establishment increase the 44 

dispersion of time-series measurements because individual plants will be at different developmental stages at 45 

any given time point. This may create difficulty in drawing reliable conclusions from the data.  46 

 47 

Data normalization is often applied to analyze datasets that have high dispersion, but many methods are not 48 

suitable for time-series plant phenotyping data. Traditional methods such as the z-score, min-max, and decimal 49 

scaling are not appropriate because of statistical parameters such as mean and standard deviation change over 50 

time. Time-series normalization methods can numerically fit the time-series measurements to a single timeline 51 

and reduce dispersion. However, these methods do not take into consideration developmental information nor 52 

the effect of the allometric scaling of growth; individual seedlings can have similar trait values but maybe at 53 

different developmental stages.  54 

 55 

Plants progress through specific developmental stages that are consistent between genetically identical 56 

individuals grown in uniform conditions. For example, the adjusted BASF, Bayer, Ciba-Geigy (BBCH) scale 57 

describes A. thaliana developmental stages using seed germination, leaf development, rosette growth, 58 

inflorescence emergence, flower production, silique ripening and senescence as significant markers [3]. 59 

Considering the availability of clear developmental stage scales, development normalization could be an 60 

appropriate method to normalize HTPP data. Developmental normalization would arrange time-series plant 61 

phenotype measurements based upon plants being at similar developmental stages. However, developmental 62 

normalization has not previously been implemented in an automated manner suitable for image-based HTPP 63 

datasets, likely due to the technical difficulty [4]. 64 

 65 

Image-based plant phenotyping systems are now widely used [5]. However, image processing remains one of the 66 

most considerable difficulties for these systems, especially image segmentation of shoots and leaves. 67 

Performance depends heavily on the complexity of images, which frequently include interference, light reflection, 68 

leaf overlap, and foreign objects that must be removed (for example, pots, and soil) [6]. Furthermore, the 69 
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identification of multiple leaves at the same time (multi-instance segmentation) is difficult due to their similarity in 70 

shape and appearance [4]. Without algorithms that extract accurate measurements, it is more complicated to 71 

scale the principal environmental variables influencing the phenotype and underlying physiological processes [7].  72 

 73 

Several approaches have been developed to address the challenge of image segmentation. They can be 74 

categorized into four groups; shape analysis, watershed-based, machine learning, and graph-based. Shape 75 

analysis algorithms rely on assumptions regarding plant geometrical features and structure, but they may fail 76 

when encountering new data, which limits their applicability [8], [9]. Watershed-based methods consider a grey 77 

image as a topographic surface produced by its intensity gradients, where light pixels are represented as high-78 

intensity values and dark pixels as low-intensity values [4]. However, the performance of watershed algorithms is 79 

compromised due to over-segmentation when leaves overlap. Machine learning segmentation approaches can 80 

be unsupervised or supervised. Unsupervised learning algorithms are mainly used for pixel clustering. They 81 

identify individual leaves by grouping pixels which share a similar feature pattern such as color, texture, and 82 

others. Supervised learning algorithms analyze and compare the input plant images with annotated images or 83 

labels [10]. Graph-based methods segment individual leaves by applying graph-based noise removal and region 84 

growing techniques [8]. 85 

 86 

We developed DAPD, which combines time-series trait measurement with normalization by developmental stage 87 

in an automated manner. DAPD synchronizes the start-point of timelines for all plants in the population by their 88 

number of leaves. To achieve this, we also developed a new leaf segmentation algorithm that utilizes both shape 89 

analysis and supervised machine learning algorithms. This combined approach overcomes the limitations of 90 

individual segmentation methods. We applied DAPD to evaluate the rosette area in A. thaliana and demonstrated 91 

that it improved uniformity in measurements, enabling a more informative comparison between individuals. The 92 

algorithm allows users to select and define the starting leaf number relevant to their experiment. Our code is 93 

available for reuse at https://github.com/diloc/DAPD_Normalization.git. 94 

  95 

Results 96 

 97 

DAPD time normalization of plant phenomics data 98 

Our major aim was to produce an automated method for the developmental stage synchronization of HTPP data. 99 

To achieve this, we developed DAPD, which synchronizes shoot phenotypic measurements of multiple 100 

Arabidopsis plants by normalizing time-series measurements to a reference time point (i.e., a day). DAPD does 101 

so by identifying the highest cross-correlation score between leaf number and day-after-sowing (DAS) of 102 

seedlings of the same genotype. First, seedlings were grouped by genotype, then their leaf number was 103 
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assessed by applying the DAPD-Leaf Counting algorithm. Next, a daily leaf number was associated with a 104 

specific day in the DAS timeline, and the degree of similarity between them was calculated by cross-correlation. 105 

The highest score indicates the day where the leaf number of time-series are best aligned. We intended that the 106 

application of DAPD would decrease the dispersion of time-series phenotype measurements. 107 

 108 

We tested DAPD on two independent experiments comprised of many A. thaliana ecotype Col-0 and Cvi 109 

replicates. In the first experiment, we used 355 individuals of Col-0 only and, in the second experiment, 140 110 

individuals of each ecotype. Replicate plants of the same ecotype within experiments were at different 111 

developmental stages, as assessed by leaf number, despite being sown at the same time and having been 112 

grown from seeds of plants cultivated under conditions that would not result in seed dormancy (Figure 1). 113 

 114 

 115 

Figure 1 Developmental differences in two neighboring Arabidopsis seedlings (ecotype Col-0) grown under 116 

uniform environmental conditions. 117 

 118 

The rosette area measurements of all individual Col-0 and Cvi plants were obtained at different time points during 119 

the daytime from 12 to 32 days. The mean and standard deviation of these non-normalized measurements were 120 

calculated (Figure 2). The overall dispersion of the non-normalized datasets consistently grew from day 12 to day 121 

32, as assessed from the standard deviation of the rosette area measurements (Figure 2 a-c). 122 

 123 
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 124 

Figure 2 Mean and standard deviation of the non-normalized and normalized projected rosette area datasets. 125 

The top row shows the non-normalized datasets: (a) Col-0 plants in experiment 1, (b) Col-0 plants in experiment 126 

2, and (c) Cvi plants in experiment 2. The bottom row shows the normalized datasets: (d) Col-0 plants in 127 

experiment 1, (e) Col-0 plants in experiment 2, and (f) Cvi plants in experiment 2. The light purple strip indicates 128 

the standard deviation and the solid blue curve in the mean area. 129 

DAPD was applied to normalize the Col-0 and Cvi rosette area datasets. The standard deviation and mean 130 

values were calculated at multiple time points to assess the dispersion of the data (Figure 2d-f). The normalized 131 

data preserved the exponential growth pattern observed in the non-normalized data, but the overall statistical 132 

dispersion of the normalized data was considerably smaller. Daily oscillations in leaf area were also observed, 133 

most notably in the Cvi dataset. These occur due to the diurnal change in elevation angle of Arabidopsis leaves, 134 

which increases and decreases the angle of the leaves relative to the cameras. Notably, DAPD preserves these 135 

signals post-normalization because it shifts the time-series in whole day increments. 136 

 137 

Examining the standard deviation over the time-series confirmed the observation that DAPD time normalization 138 

reduces the dispersion of rosette area measurments (Figure 3). During the period from day 13 to day 32, the 139 

standard deviation of the non-normalized dataset exponentially increased in the three datasets whilst the 140 

standard deviation of the normalized dataset linearly increased. DAPD normalization reduced the dispersion of 141 

the measurements at day 32 by between 1.5 and 3.5 times. 142 

 143 
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 144 

Figure 3 Standard deviation (SD) comparison between the non-normalized and normalized datasets. (a) Col-0 145 

plants in experiment 1, (b) Col-0 plants in experiment 2, and (c) Cvi plants experiment 2. 146 

 147 

DAPD detects outliers with different growth traits amongst a population  148 

A powerful application of DAPD is detection of outliers in HTPP datasets. It is common in large-scale phenomic 149 

experiments to observe a small number of individual plants that develop abnormally, despite being of the same 150 

genotype as all other members of the population and being grown in uniform conditions. These individuals may 151 

have been affected by unintended stresses, and, in some situations, it is reasonable to remove them from 152 

datasets. We assessed the ability of DAPD to detect outliers on 24 wild-type Col-0 individuals grown two different 153 

trays (Figure 4). It was difficult to confidently identify outliers amongst the non-normalized growth curves by visual 154 

inspection or application of a central tendency metric (mean, median, mode of rosette area). However, after 155 

applying DAPD normalization, a putative outlier was identified clearly. This plant did not follow the same growth 156 

trajectory as the rest of the population, having a smaller rosette area from day 20 onwards.  Visual inspection 157 

determined that this plant was infected by a pathogen (Figure 5). These results demonstrate DAPD can be 158 

applied to detect outliers in HTPP datasets systematically. 159 

 160 
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 161 

Figure 4 Non-normalized and normalized rosette area curves of 24 Col-0 individuals in experiment 1, (a) non-162 

normalized Col-0 curves, and (b) normalized Col-0 curves. The red and thick curve represents the rosette area of 163 

a pathogen-infected individual (outlier) before and after normalization. 164 

 165 

 166 

Figure 5 A pathogen-infected plant with outlier growth traits detected automatically using DAPD. The pathogen 167 

infected plant had a smaller number of leaves and rosette area than the healthy plant. 168 

 169 

DAPD image segmentation out-performs other image segmentation methods 170 

DAPD depends upon a novel image segmentation method that we developed to improve accuracy and 171 

applicability across new datasets compared with existing methods. The method depends on an algorithm that 172 

combines shape analysis and supervised machine learning. We benchmarked the accuracy of the DAPD image 173 

segmentation algorithm on public datasets (A1, A2, A3, A4) and our in-house generated dataset using dice, 174 

precision, recall, and Jaccard metrics (Table 1) [11], [12]. These datasets contain ground-truth RGB and binary 175 

images of A. thaliana and tobacco plants. DAPD performed consistently well in all metrics across all five 176 

datasets. Notably, performance on the tobacco images (A3) comparable to performance on the A. thaliana 177 

images, indicating DAPD is adaptable to plants with different structure. 178 
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 179 

Table 1 Accuracy results of the DAPD image segmentation algorithm on four public datasets and our dataset. 180 

The numerical values in each cell represent the mean and standard deviation (in parentheses). The last row 181 

indicates the overall performance of our algorithm. 182 

 183 

Dataset 
Accuracy (%) 

Precision Recall Jaccard Dice 

A1 92.05 (3.65) 96.87 (4.81) 89.26 (4.43) 94.26 (2.59) 

A2 90.90 (8.60) 97.45 (6.76) 88.83 (10.43) 93.71 (6.69) 

A3 95.86 (5.14) 93.88 (14.48) 89.85 (13.85) 93.86 (10.97) 

A4 94.89 (4.29) 98.37 (2.50) 92.56 (5.09) 96.06 (2.87) 

Our dataset 96.05 (5.42) 98.57 (1.61) 93.29 (2.98) 96.58 (1.64) 

Mean 93.95 (5.42) 97.03 (6.03) 90.76 (7.36) 94.90 (5.78) 

  184 

 185 

We compared the performance of the DAPD image segmentation algorithm with three others (Table 2); the 186 

Rosette Tracker algorithm [13], the probabilistic parametric active contours algorithm [14], and the Image-based 187 

plant phenotyping with incremental learning and active contours [11]. The comparison was conducted by running 188 

all five algorithms on the same datasets (A1, A2, A3, A4, and our dataset) and calculating the mean of each 189 

performance metric. DAPD image segmentation strongly out-performed active contours and rosette tracker in 190 

three of four metrics. Incremental learning performed well but was still not as strong as DAPD image 191 

segmentation. These results demonstrated DAPD image segmentation performs well relative to other commonly 192 

used approaches.  193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 
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Table 2 Accuracy comparison between active contours, rosette tracker, incremental learning, graph 201 

segmentation, and DADP algorithm. Each cell shows the mean and standard deviation of the four metrics 202 

(precision, recall, Jaccard, and dice) across the five datasets (A1, A2, A3, A4, and our dataset). 203 

Method / Algorithm 
Accuracy (%) 

(A1, A2, A3, A4 and our dataset) 
Precision Recall Jaccard Dice 

Active contours 42.25 (26.05) 99.66 (26.18) 42.19 (25.66) 59.34 (26.20) 

Rosette Tracker 54.29 (18.11) 99.97 (17.79) 54.29 (19.22) 70.37 (15.00) 

Incremental learning 89.87 (13.68) 91.94 (2.96) 83.90 (14.44) 89.72 (12.36) 

DAPD 93.95 (5.42) 97.03 (6.03) 90.76 (7.36) 94.90 (5.78) 

 204 

 205 

Discussion 206 

Traditional growth analysis in HTPP systems relies on sowing-time as the temporal start point. This assumption 207 

could lead researchers to believe, for instance, that application of an experimental treatment elicits changes in 208 

growth at a given time point. However, these analyses may be confounded by differences in germination time or 209 

true leaf emergence between genotypes.  210 

 211 

We propose the DAPD method to control for temporal differences in development within plant phenotyping 212 

datasets. This method uses plant developmental stages to normalize the timeline of phenotyping measurements. 213 

We demonstrate the utility of DAPD to normalize rosette area measurements, but it can be similarly applied to 214 

normalize any phenotypic measurements. Furthermore, the analysis we present is on Arabidopsis plants, but 215 

DAPD could be used to normalize HTPP data from any species, with two contingencies: First, that a defined and 216 

relevant developmental scale can be provided to normalize to, and; second, that an algorithm is available to 217 

measure the phenotypic feature of interest in high throughput. 218 

 219 

DAPD normalization improved the detection of outliers. Typically a small proportion of plants develop abnormally 220 

in large-scale experiments. There are many causes, such as seed quality, low-frequency pathogen infection or 221 

unintended stress. The DAPD method enabled clear, systematic detection of anomalous individuals (outliers) 222 

within datasets, which is not possible by inspecting central tendency metrics of the non-normalized datasets. 223 

DAPD includes a new algorithm to extract the rosette area and count the number of leaves from top-view images. 224 

This method outperformed other image segmentation methods when accuracy metrics were assessed on five 225 

different ground-truth datasets.  226 

 227 
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Comparisons between traditional analysis, where sowing time is taken as the reference point, with DAPD 228 

normalization illustrated that DAPD decreased dispersion of measurements. The difference in data dispersion 229 

between the two approaches gradually increased from the start of experiments to the end. This occurred because 230 

dispersion increased more rapidly over the plant lifecycle in the traditional (non-normalized) analysis than the 231 

DAPD normalized data. In principle DAPD normalization will enable more sensitive detection of significant 232 

differences in trait values between plant lines or ecotypes, due to this decreased variance in measurements. 233 

DAPD normalization might also identify differences in germination phenotypes that might otherwise go unnoticed. 234 

For example, a mutant with an apparently greater rosette area than wild type during an early growth stage might 235 

either have a higher growth rate or germinate earlier. Assuming development was otherwise unchanged, DAPD 236 

normalization would eliminate the former possibility, allowing researchers to focus on subsequent experiments. 237 

Our code is available for reuse at https://github.com/diloc/DAPD_Normalization.git. 238 

 239 

Methods 240 

Plant material and growth conditions  241 

Seeds were sterilized in a desiccator using chlorine gas for 150 minutes then stratified for three days in 0.1% 242 

agarose in the dark at 4⁰C. Afterwards the seeds were sown in vermiculite, perlite, and soil mixture (1:1:3), with 243 

20 pots per tray. After germination, only a single seedling was retained per pot. The seedlings were grown in a 244 

controlled environment room at 20⁰C with 50% humidity and were watered with 500 ml water every four days 245 

after sowing. Illumination was with an LED light source; it used seven light wavelengths including near-infrared 246 

(850 ηm), far-red (740 ηm), deep red (660 ηm), red (618-630 ηm), green (530 ηm), blue (450-460 ηm) and cold 247 

white, supplied by PSI Instruments. The average irradiance output on the chamber was set at 150μmol m-2 s-1 in 248 

the photosynthetically active radiation spectrum.  249 

 250 

In experiment 1, three hundred and fifty-five individual plants of A. thaliana wild-type (Col-0) were grown under 12 251 

h light / 12h dark cycle. In experiment 2, one hundred and forty individuals each of A. thaliana ecotypes Cvi and 252 

Col-0 were grown under long-day conditions (14 h of light/10 h of dark).  253 

 254 

Imaging 255 

Images were acquired every 15 minutes during the daytime using an HTPP system with 30 RGB cameras that 256 

formed a stereo vision system. After the acquisition, images were pre-processed to reduce the noise and correct 257 

the color and lens distortion. Subsequently, image segmentation algorithms extracted the rosette area and shoot 258 

phenotypic measurements such as the rosette area, growth rate, and leaf number were calculated. The image 259 

processing steps and details are described in the following. 260 
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 261 

Image pre-processing 262 

Image pre-processing algorithms corrected the lens and color distortion. The lens correction algorithm calculated 263 

the optimal rotation and translation camera parameters using a chessboard pattern and the pin-hole camera 264 

model. Color distortions were removed using a mapping function between the light intensity and color checker 265 

cards, which had been included in the imaged area. 266 

 267 

Rosette segmentation 268 

The projected rosette area of individual plants was extracted from pre-processed images by using a combination 269 

of multiple image segmentation algorithms. First, individual pot regions were dynamically cropped from the RGB 270 

images using an adaptive window. The resultant image was converted to HSV color space and the value (V) 271 

channel extracted from it. The V channel was used to enhance the contrast of the image by applying the Contrast 272 

Limited Adaptive Histogram Equalization (CLAHE) technique [15]. Subsequently, the green color component of 273 

the image was obtained by the independent contribution of the RGB and HSV color space. The green component 274 

image was binarized using Otsu’s method for global automatic thresholding [16]. The salt-and-pepper noise of 275 

the Otsu result was removed by applying a median filter, followed by using a Gaussian filter, which reduced high-276 

frequency spatial noise. The binary image was further processed by an area-fill operation to remove small 277 

unwanted background regions or holes.  278 

 279 

The resultant binary image was used to segment the plant shoot from the original HSV image. Undesired 280 

background objects were identified and removed from it by grouping into coherent classes using K-means 281 

clustering [17]. Then, a histogram of the Hue channel was extracted and smoothed using the Savitzky-Golay filter 282 

[18]. A complementary spatial correlation test was used to determine the rosette objects. The test checked the 283 

correlation between image clusters. These clusters were formed by selecting all colors in a distribution except by 284 

color values beyond the curve’s intersection point. Spatially correlated clusters belonged to the same object and 285 

were retained. Non-correlated clusters were removed. The whole procedure was repeated multiple times, and at 286 

each time, the gamma value was randomly modified. This iterative approach occasionally over-segmented some 287 

rosette areas, but it was corrected by using Kriging [19]. Kriging is also known as Gaussian process regression, 288 

which produced predictions of unobserved values from observations at nearby locations [20]. Finally, the 289 

projected rosette area was obtained from the segmented rosette image. Unexpected power disruptions caused 290 

some image data not to be acquired during the time-series. Considering the complete time series as being 291 

images acquired every 15 minutes during the day, the data missing from experiment 1 was 14.83% of the total 292 

data and in experiment 2 was 5.6%. To enable consistent downstream analyses we applied data imputation 293 
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techniques to estimate the missing data, including up-sampling to a higher frequency, spline interpolation and 294 

curve fitting.  295 

 296 

Individual leaf Segmentation / Counting (DAPD segmentation) 297 

Our leaf segmentation approach combined two algorithms; edge contour extraction and marker-controlled 298 

watershed [21]. The edge contour extraction process was applied to the rosette binary image to obtain the rosette 299 

contour using topological analysis [22]. The center of mass of the rosette was calculated using the Hough 300 

transformation. This information was used to calculate leaf morphology features such as tip, base, center, and 301 

petiole. The watershed transformation was applied to the segmented rosette image, and centers of leaves were 302 

used as initial markers. This identified overlapping leaves and separated convex and smooth rosette features that 303 

touched. After applying the watershed transformation, the resulted number of markers represented the total 304 

number of leaves in the rosette.  305 

 306 

Developmental normalization (DAPD normalization) 307 

The normalization by development removed the time difference between plant measurements, which had similar 308 

developmental stages. These stages were identified by the leaf number based on the adjusted BBCH scale [3].  309 

 310 

The leaf number of each plant was measured by applying the DAPD segmentation algorithm to the rosette 311 

images. The measured leaf number was a discrete function (1), which depended on the real leaf number, leaf 312 

occlusion effect, and modeling error denoted ME(t). 313 

 314 

𝐿𝑒𝑎𝑓!"#$(𝑡) = 𝐿𝑒𝑎𝑓%&!'"((𝑡) + 𝐿𝑒𝑎𝑓)**+&$,)%(𝑡) +𝑀𝐸(𝑡)   (1) 315 

The variability of the measured leaf number function (1) was minimized by calculating the trend using curve 316 

fitting. This trend assembled an exponential function in the early developmental stages (2). The coefficient was 317 

the initial value of the function, and b was the growth rate. 318 

 319 

𝐿𝑒𝑎𝑓-("%.(𝑡) = 𝑎𝑒'-       (2) 320 

The leaf number trend may vary from plant to plant within the same line/mutant population at a time point. Then, 321 

the average leaf number trend among all individuals was calculated to homogenize the trends (3). 322 

 323 

𝐿𝑒𝑎𝑓-("%.(𝑡),,,,,,,,,,,,,,,, = ∑ #!""!#$
!%&

0
      (3) 324 
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The time-difference of plants with similar leaf number was removed by finding the best timeline in (1) that fitted 325 

(3). Multiple timelines were generated from the original timeline (t) by inserting a time delay (k). This time delay 326 

could be a positive or negative integer number that shifted the original timeline in days (t – k). The mean squared 327 

deviation (MSD) was calculated per each time delay (4). The time delay (s) that produced the lowest MSD was 328 

selected to shift the leaf number (5) and rosette area (6) time series. However, this time delay (s) must be 329 

adjusted because plants could have the same number of leaves, but the rosette area might be different due to 330 

the maturity and expansion of leaves. ∆𝑡 represented the time delay adjustment, as shown in equation (7). 331 

 332 

𝑀𝑆𝐷 =		 1
%
∑ 2	𝐿𝑒𝑎𝑓!"#$(𝑡 − 𝑘) −		𝐿𝑒𝑎𝑓-("%.(𝑡),,,,,,,,,,,,,,,,5

2%
,31    (4) 333 

	𝐿𝑒𝑎𝑓!"#$_$5,6-(𝑡) = 	𝐿𝑒𝑎𝑓!"#$(𝑡 − 𝑠)		    (5) 334 

	𝐴𝑟𝑒𝑎!"#$_$5,6-(𝑡) = 	𝐴𝑟𝑒𝑎!"#$(𝑡 − 𝑠)		    (6) 335 

	𝐴𝑟𝑒𝑎$5,6-(𝑡) = 	𝐴𝑟𝑒𝑎!"#$(𝑡 − 𝑠 + ∆𝑡)		    (7) 336 

 337 

Abbreviations 338 

BASF: German for Baden Aniline and Soda Factory; BBCH: BASF, Bayer, Ciba-Geigy; CLAHE: Contrast limited 339 

adaptive histogram equalization; DAPD: digital adjustment of plant development;  DAS: day-after-sowing; HSV: 340 

hue, saturation, value; HTPP: high throughput plant phenotyping LED: light-emitting diode; RGB: red, green, 341 

blue; 342 
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