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ABSTRACT: 30 

In this work, we hypothesized that shifts in the food microbiome can be used as an indicator of 31 

unexpected contaminants or environmental changes. To test this hypothesis, we sequenced total 32 

RNA of 31 high protein powder (HPP) samples of poultry meal pet food ingredients. We 33 

developed a microbiome analysis pipeline employing a key eukaryotic matrix filtering step that 34 

improved microbe detection specificity to >99.96% during in silico validation. The pipeline 35 

identified 119 microbial genera per HPP sample on average with 65 genera present in all 36 

samples. The most abundant of these were Bacteroides, Clostridium, Lactococcus, Aeromonas, 37 

and Citrobacter.  We also observed shifts in the microbial community corresponding to 38 

ingredient composition differences. When comparing culture-based results for Salmonella with 39 

total RNA sequencing, we found that Salmonella growth did not correlate with multiple 40 

sequence analyses. We conclude that microbiome sequencing is useful to characterize complex 41 

food microbial communities, while additional work is required for predicting specific species’ 42 

viability from total RNA sequencing. 43 

 44 

KEYWORDS: 45 

microbiome, food safety, bioinformatics, shotgun sequencing, microbial ecology, pathogens 46 

 47 

 48 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.18.102574doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.102574


 3 

1. INTRODUCTION: 49 

Sequencing the microbiome of food may reveal characteristics about the associated 50 

microbial content that culturing or targeted whole genome sequencing alone cannot. However, to 51 

meet the various needs of food safety and quality, next generation sequencing (NGS) and analysis 52 

techniques require additional development1 with specific consideration for accuracy, speed, and 53 

applicability across the supply chain.2 Microbial communities and their characteristics have been 54 

studied in relation to flavor and quality in fermented foods,3–5 agricultural processes in grape6 and 55 

apple fruit7, and manufacturing processes and production batches in Cheddar cheese.8 However, 56 

the advantage of using the microbiome specifically for food safety and quality has yet to be 57 

demonstrated.  58 

Currently, food safety regulatory agencies including the Food and Drug Administration 59 

(FDA), Centers for Disease Control and Prevention (CDC), United States Department of 60 

Agriculture (USDA), and European Food Safety Authority (EFSA) are converging on the use of 61 

whole genome sequencing (WGS) for pathogen detection and outbreak investigation. Large scale 62 

WGS of food-associated bacteria was first initiated via the 100K Pathogen Genome Project9 with 63 

the goal of expanding the diversity of bacterial reference genomes— a crucial need for foodborne 64 

illness outbreak investigation, traceability, and microbiome studies.10,11 However, since WGS 65 

relies on culturing a microbial isolate prior to sequencing, there are inherent biases and limitations 66 

in its ability to describe the microorganisms and their interactions in a food sample. Such 67 

information would be very valuable for food safety and quality applications.  68 

High throughput sequencing of total DNA and total RNA are promising approaches to 69 

characterize microbial niches in their native state without introducing bias due to culturing.12–14 70 

Additionally, total RNA sequencing has the potential to provide evidence of live and biologically 71 

active components of the sample.14,15 It also provides accurate microbial naming, relative 72 
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microbial abundance, and better reproducibility than total DNA or amplicon sequencing.14 Total 73 

RNA sequencing minimizes PCR amplification bias that occurs in single gene amplicon 74 

sequencing and overcomes the decreased detection sensitivity from using DNA sequencing in 75 

metagenomics.14 Total RNA metatranscriptome sequencing, however, is yet to be examined in raw 76 

food ingredients as a method to provide robust characterization of the microbial communities and 77 

the interacting population dynamics.  78 

From a single sequenced food microbiome, numerous dimensions of the sample can be 79 

characterized that may yield important indicators of safety and quality. Using total DNA or RNA, 80 

evidence for the eukaryotic food matrix can be examined. In Haiminen et al.,16 we quantitatively 81 

demonstrated the utility of metagenome sequencing to authenticate the composition of complex 82 

food matrices. In addition, from total DNA or RNA, one can observe signatures from commensal 83 

microbes, pathogenic microbes, and genetic information for functional potential (from DNA) or 84 

biologically active function (from RNA).14,15 Detecting active transcription from live microbes in 85 

food is very important to avoid spurious microbial observations that may instead be false positives 86 

due to quiescent DNA in the sample. Use of RNA in food analytics also offers the opportunity to 87 

examine expression of metabolic processes that are related to antibiotic resistance,17,18 virulence 88 

factors, or replication genes, among others. Additionally, it has the potential to define viable 89 

microbes that are capable of replication in the food and even microorganisms that stop replicating 90 

but continue to produce metabolic activity that changes food quality and safety.19–24 91 

Microorganisms are sensitive to changes in temperature, salinity, pH, oxygen content, and 92 

many other physicochemical factors that alter their ability to grow, persist, and cause disease. They 93 

exist in dynamic communities that change in response to environmental perturbation – just as the 94 

gut microbiome shifts in response to diet.25–28 Shifts in microbiome composition or activity can be 95 

leveraged in the application of microbiome characterization to monitor the food supply chain. For 96 
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example, Noyes et al. followed the microbiome of cattle from the feed lot to the food packaging, 97 

concluding that the microbial community and antibiotic resistance characteristics change based on 98 

the processing stage.17,18,29  We hypothesize that observable shifts in microbial communities of 99 

food can serve as an indicator of food quality and safety.  100 

In this work, we examined 31 high protein powder samples (HPP; derived from poultry meal). 101 

HPP are commonly used raw materials in pet foods. They are subject to microbial growth prior to 102 

preparation and continued survival in powder form.30 We subjected the HPP samples to deep total 103 

RNA sequencing with ~300 million reads per sample. In order to process the 31 samples collected 104 

over ~1.5 years from two suppliers at a single location, we defined and calibrated the appropriate 105 

methods– from sample preparation to bioinformatic analysis– needed to taxonomically identify 106 

the community members present and to detect key features of microbial growth. First, we removed 107 

the HPP’s food matrix RNA content as eukaryotic background with an important bioinformatic 108 

filtering step designed specifically for food analysis. The remaining sequences were used for 109 

relative quantification of microbiome members and for identifying shifts based on food matrix 110 

content, production source, and Salmonella culturability.  This work demonstrates that total RNA 111 

sequencing is a robust approach for monitoring the food microbiome for use in food safety and 112 

quality applications, while additional work is required for predicting pathogen viability. 113 

 114 

2. RESULTS: 115 

2.1 Evaluation of microbial identification capability in total RNA and DNA sequencing 116 

Microbial identification in microbiomes often leverages shotgun DNA sequencing; however, 117 

total RNA sequencing can provide additional information about viable bacterial activity in a 118 

community via transcriptional activity. Since using total RNA to study food microbiomes is novel, 119 

each step of the analysis workflow (Figure 1) was carefully designed and scrutinized for accuracy. 120 
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For all analyses done in this study, we report relative abundance in reads per million (RPM) 121 

(Equation 1) as recommended by Gloor et al31,32 and apply the conservative threshold of RPM > 122 

0.1 to indicate presence as previously described by Langelier et al and Illot et al.33,34 Numerically, 123 

this threshold translates to ~30 reads per genus per sample considering a sequencing depth of ~300 124 

million reads per sample (Methods Section 4.4). First, we examined the effectiveness of RNA for 125 

taxonomic identification and relative quantification of microbes in the presence of food matrix 126 

reads. We observed that RNA sequencing results correlated (R2 = 0.93) with the genus relative 127 

quantification provided by DNA sequencing (Supplementary Figure S1). RNA sequencing also 128 

detected more genera demonstrated by a higher a-diversity than the use of DNA (Supplementary 129 

Figure S2). Additionally, from the same starting material, total RNA sequencing resulted in 2.4-130 

fold more reads classified to microbial genera compared to total DNA sequencing (after 131 

normalizing for sequencing depth). This increase is substantial as microbial reads are such a small 132 

fraction of the total sequenced reads. Considering these results, we further examined the microbial 133 

content from total RNA extracted from 31 high protein powder (HPP) samples (Supplementary 134 

Table 1) that resulted in an average of ~300 million paired end 150 bp sequencing reads per sample 135 

in this study.  136 

 137 

2.2 Evaluation and application of in silico filtering of eukaryotic food matrix reads 138 

Sequenced reads from the eukaryotic host or food matrix may lead to false positives for microbial 139 

identification in microbiome studies.35 This may occur partly due to reads originating from low 140 

complexity regions of eukaryotic genomes, e.g. telomeric and centromeric repeats, being 141 

misclassified as spurious microbial hits.36 In total DNA or RNA sequencing of clinical or animal 142 

or even plant microbiomes, eukaryotic content may often comprise > 90% of the total sequencing 143 

reads. This presents an important bioinformatic challenge that we addressed by filtering matrix 144 
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content using a custom-built reference database of 31 common food ingredient and contaminant 145 

genomes (Supplementary Table 2) using the k-mer classification tool Kraken.37 This step allows 146 

for rapidly classifying all sequenced reads (~300 million reads for each of 31 samples) as matrix 147 

or non-matrix. The matrix filtering process yielded an estimate of the total percent matrix content 148 

for a sample. See our work in Haiminen et al.38  on quantifying the eukaryotic food matrix 149 

components with further precision. 150 

To validate the matrix filtering step, we constructed in silico mock food microbiomes with 151 

a high proportion of complex food matrix content and low microbial content (Supplementary Table 152 

3). We then computed the true positive, false positive, and false negative rates of observed 153 

microbial genera and sequenced reads (Table 1). False positive viral, archaeal, and eukaryotic 154 

microbial genera (as well as bacteria) were observed without matrix filtering, although bacteria 155 

were the only microbes included in the simulated mixtures. Introducing a matrix filtering step to 156 

the pipeline improved read classification specificity to >99.96% (from 78–93% without filtering) 157 

in both simulated food mixtures, while maintaining zero false negatives. With this level of 158 

demonstrated accuracy, we used bioinformatic matrix filtering prior to further microbiome 159 

analysis. 160 

 161 

2.3 High protein powder microbiome ecology 162 

After filtering eukaryotic matrix sequences, we applied the remaining steps in the 163 

bioinformatic workflow (Figure 1) to examine the shift in the high protein powder (HPP) 164 

microbiome membership and to quantify the relative abundance of microbes at the genus level. 165 

Genus is the first informative taxonomic rank for food pathogen identification that can be 166 

considered accurate given current incompleteness of reference databases11,39–42 and was therefore 167 

used in subsequent analyses. Overall, between 98 and 195 microbial genera (avg. 119) were 168 
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identified (RPM > 0.1) per HPP sample (Supplementary Table 4).  When analyzing a-diversity 169 

i.e. the number of microbes detected per sample, inter-sample comparisons may become skewed 170 

unless a common number of reads is considered since deeper sequenced samples may contain more 171 

observed genera merely due to a greater sampling depth.43,44 Thus, we utilized bioinformatic 172 

rarefaction i.e. subsampling analysis to showcase how microbial diversity was altered by 173 

sequencing depth. Examination of a-diversity across a range of in silico subsampled sequencing 174 

depths showed that the community diversity varied across samples (Figure 2A). One sample 175 

(MFMB-04) had 1.7 times more genera (195) than the average across other samples (avg. 116, 176 

range 98–143) and exhibited higher a-diversity than any other sample at each in silico sampled 177 

sequencing depth (Figure 2A). Rarefaction analysis further demonstrated that when considering 178 

fewer than ~67 million sequenced reads, the observable microbial population was not saturated 179 

(median elbow calculated as indicated in Satopää, et al.45). This observation suggests that deeper 180 

sequencing or more selective sequencing of the HPP microbiomes will reveal more microbial 181 

diversity.  182 

Notably, between 2%–4% (approximately 5,000,000–14,000,000) of reads per sample 183 

remained unclassified as either eukaryotic matrix or microbe (Supplementary Figure S3). 184 

However, the unclassified reads exhibited a GC (guanine plus cytosine) distribution similar to 185 

reads classified as microbial (Supplementary Figure S4) indicating these reads may represent 186 

microbial content that is absent or sufficiently divergent from existing references. 187 

We calculated b-diversity to study inter-sample microbiome differences and to identify any 188 

potential outliers among the sample collection. The Aitchison distances46 of microbial relative 189 

abundances were calculated between samples (as recommended for compositional microbiome 190 

data31,32), and the samples were hierarchically clustered based on the resulting distances (Figure 191 
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2B). The two primary clades were mostly defined by supplier (except for MFMB-17). In Haiminen 192 

et al.,38 we reported that three of the HPP samples contained unexpected eukaryotic species. We 193 

hypothesized that the presence of these contaminating matrix components (beef identifiable as Bos 194 

taurus and pork identifiable as Sus scrofa) would alter the microbiome as compared to chicken 195 

(identifiable as Gallus gallus) alone. Clustering HPP samples using their microbiome membership 196 

led to a distinctly different group of the matrix-contaminated samples, supporting this hypothesis 197 

(Figure 2B). These observations indicate that samples can be discriminated based on their 198 

microbiome content for originating source and supplier, which is necessary for source tracking 199 

potential hazards in food. 200 

2.4 Comparative analysis of high protein powder microbiome membership and 201 

composition 202 

We identified 65 genera present in all HPP samples (Figure 3A), whose combined 203 

abundance accounted for between 88-99% of the total abundances of detected genera per sample. 204 

Bacteroides, Clostridium, Lactococcus, Aeromonas, and Citrobacter were the five most abundant 205 

of these microbial genera. The identified microbial genera also included viruses, the most abundant 206 

of which was Gyrovirus (< 10 RPM per sample). Gyrovirus represents a genus of non-enveloped 207 

DNA viruses responsible for chicken anemia which is ubiquitous in poultry. While there were only 208 

65 microbial genera identified in all 31 HPP samples, the a-diversity per sample was on average 209 

two-fold greater as previously indicated. 210 

Beyond the collection of 65 microbes observed in all samples, there were an additional 164 211 

microbes present in various HPP samples. Together, we identified a total of 229 genera among the 212 

31 HPP samples tested (Figure 3B and 4, Supplementary Table 4). In order to identify genera that 213 

were most variable between samples, we computed the median absolute deviation (MAD)47 using 214 

the normalized relative abundance of each microbe (Figure 5A). The abundance of Bacteroides 215 
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was the most variable among samples (median = 148.1 RPM, MAD = 30.6) and showed increased 216 

abundance in almost all samples from Supplier A compared to Supplier B (abundance for the 10 217 

most variable genera shown in Figure 5B). Clostridium (median = 37.4 RPM, MAD = 24.2), 218 

Lactococcus (median = 36.8 RPM, MAD = 18.2), and Lactobacillus (median = 24.2, MAD = 7.2) 219 

were also highly variable and 3–4 fold more abundant in samples MFMB-04 and MFMB-20 220 

compared to other samples (Figure 5B). Pseudomonas (median = 11.1 RPM, MAD = 12.2) was 221 

markedly more abundant in MFMB-83 than any other sample (Figure 5B). These genera highlight 222 

variability between microbiomes from a single food source and may provide insights into other 223 

dissimilarities in these samples. 224 

 225 

2.5. Microbiome shifts in response to changes in food matrix composition 226 

We tested the hypothesis that the microbiome composition will shift in response to changes 227 

in the food matrix and can be a unique signal to indicate contamination or adulteration. In 28 of 228 

the 31 HPP samples, >99% of the matrix reads were determined in our related work38 to originate 229 

from poultry (Gallus gallus), which was the only ingredient expected based on ingredient 230 

specifications.  However, three samples had higher pork and beef content compared to all other 231 

HPP samples: MFMB-04 (7.74% pork, 8.99% beef), MFMB-20 (0.53% pork, 1.00% beef), and 232 

MFMB-38 (0.92% pork, 0.29% beef) compared to the highest pork (0.01%) and beef (0.00%) 233 

content among the other 28 HPP samples (Supplementary Data by Haiminen et al.38). The 234 

microbiomes of these matrix contaminated samples also clustered into a separate sub-cluster 235 

(Figure 2B). This demonstrated that a shift in the food matrix composition was associated with an 236 

observable shift in the food microbiome.  237 
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MFMB-04 and MFMB-20 had the highest percentage of microbial reads compared to other 238 

samples (Supplementary Figure S3). They also exhibited an increase in Lactococcus, 239 

Lactobacillus, and Streptococcus relative abundances compared to other samples (Figure 5B), also 240 

reflected at respective higher taxonomic levels above genus (Supplementary Figure S5).   241 

There were 53 genera identified uniquely in MFMB-04 and/or MFMB-20, but not present 242 

in any other sample. (MFMB-38 had a very low microbial load and contributed no uniquely 243 

identified genera above the abundance threshold.) MFMB-04 contained 44 unique genera (Figure 244 

4) with the most abundant being Macrococcus (35.8 RPM), Psychrobacter (23.8 RPM), and 245 

Brevibacterium (18.1 RPM). Additionally, Paenalcaligenes was present only in MFMB-04 and 246 

MFMB-20 with an RPM of 6.4 and 0.3, respectively, compared to a median RPM of 0.004 among 247 

other samples. Notable differences in the matrix-contaminated samples’ unique microbial 248 

community membership compared to other samples may provide microbial indicators associated 249 

with unanticipated pork or beef presence.  250 

2.6. Genus level identification of foodborne microbes 251 

We evaluated the ability of total RNA sequencing to identify genera of commonly known 252 

foodborne pathogens within the microbiome. We focused on fourteen pathogen-containing genera 253 

including Aeromonas, Bacillus, Campylobacter, Clostridium, Corynebacterium, Cronobacter, 254 

Escherichia, Helicobacter, Listeria, Salmonella, Shigella, Staphylococcus, Vibrio, and Yersinia 255 

that were found to be present in the HPP samples with varying relative abundances. Of these 256 

genera, Aeromonas, Bacillus, Campylobacter, Clostridium, Corynebacterium, Escherichia, 257 

Salmonella, and Staphylococcus were detected in every HPP with median abundance values 258 

between 0.58–48.31 RPM (Figure 6A). This indicated that a baseline fraction of reads can be 259 

attributed to foodborne microbes when using NGS. Of those genera appearing in all samples, there 260 
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was observed sample-to-sample variation in their abundance with some genera exhibiting longer 261 

tails of high abundance, e.g. Staphylococcus and Salmonella, whereas others exhibit very low 262 

abundance barely above the threshold of detection, e.g. Bacillus and Yersinia (Figure 6A). None 263 

of the pathogen-containing genera were consistent with higher relative abundances due to 264 

differences in food matrix composition. Bacillus and Corynebacterium exhibited slightly higher 265 

relative abundances in sample MFMB-04 which contained 7.7% pork and 9.0% beef (Figure 6B). 266 

Yet while MFMB-04 contained higher cumulative levels of these foodborne microbes, the next 267 

highest sample was MFMB-93 which was not associated with altered matrix composition, and 268 

both MFMB-04 and MFMB-93 contained higher levels of Staphylococcus (Figure 6B). Thus, 269 

matrix composition alone did not explain variations of these pathogen-containing genera.  270 

Interestingly, low to moderate levels of Salmonella were detected within all 31 HPP 271 

microbiomes (Figure 6A). The presence of Salmonella in HPP is expected but the viability of 272 

Salmonella is an important indicator of safety and quality. Thus, we further sought to delineate 273 

Salmonella growth capability within these microbiomes by comparing culturability with multiple 274 

established bioinformatic NGS methods for Salmonella relative abundances in the samples.  275 

2.7 Assessment of Salmonella culturability and total RNA sequencing  276 

Total RNA sequencing of food microbiomes has the potential to provide additional 277 

sensitivity beyond standard culture-based food safety testing to confirm or reject the presence of 278 

potentially pathogenic microbes. In all of the examined HPP samples, some portion of the 279 

sequenced reads were classified as belonging to pathogen-containing genera (Figure 6); however, 280 

the presence of RNA transcripts does not necessarily indicate current growth of the organism itself. 281 

We further inspected one pathogen of interest, Salmonella, to determine the congruence between 282 

sequencing-based and culturability results. Of the 31 samples examined with total RNA 283 
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sequencing, Salmonella culture testing was applied to 27 samples, of which four were culture-284 

positive. Surprisingly, Salmonella culture-positive samples were not among those with the highest 285 

relative abundance of Salmonella from sequencing (Figure 7A). When ranking the samples by 286 

decreasing Salmonella abundance, the culture-positive samples were not enriched for higher ranks 287 

(p=0.86 from Wilcoxon rank sum test indicating that the distributions are not significantly 288 

different, Table 2). To confirm that the microbiome analysis pipeline did not miss Salmonella reads 289 

present, we completed two orthogonal analyses on the same data set used in the microbial 290 

identification step. The reference genomes relevant to these additional analyses were publicly 291 

available and closed high quality genomes available from the sources indicated below. 292 

First, for a targeted analysis, we aligned the sequenced reads using a different tool, Bowtie 293 

2,48 to an augmented Salmonella-only reference database. This reference was comprised of the 264 294 

Salmonella genomes extracted from NCBI RefSeq Complete (used in our previous microbial 295 

identification step) as well as an additional 1,183 public Salmonella genomes which represent 296 

global diversity within the genus.49  The number of reads that aligned to the Salmonella-only 297 

reference was on average 370-fold higher than identified as Salmonella by Kraken using the multi-298 

microbe NCBI RefSeq Complete. In this additional analysis, the culture-positive samples had 299 

overall higher ranks compared to culture-negative samples (p=0.06, Table 2) indicating that 300 

additional Salmonella genomic data in the reference significantly improved discriminatory 301 

identification power. Salmonella culture-positive samples were still not the most abundant (Figure 302 

7B), but with an enriched database, sequencing positioned all four culturable samples within the 303 

top 10 ranking. 304 

The second additional analysis examined alignment of the reads to a specific gene 305 

required50 for replication and protein production in actively dividing Salmonella— elongation 306 

factor Tu (ef-Tu). This was done by aligning the reads to 4,846 gene sequences for ef-Tu extracted 307 
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for a larger corpus of Salmonella genomes from OMXWare.51 The relative abundances of this 308 

transcript in culture-positive samples were still comparable to culture-negative samples (Figure 309 

7C). Culture-positive samples did not exhibit higher ranks compared to culture-negative samples 310 

(p=0.56, Table 2), indicating that ef-Tu relative abundance alone was not sufficient to improve the 311 

lack of concordance in culturability vs sequencing. These two orthogonal analyses demonstrated 312 

that results from carefully developed culture-based testing and those from current high-throughput 313 

sequencing technologies, whether assessed at overall reads aligned or specific gene abundances, 314 

were not conclusively in agreement when detecting active Salmonella in food samples (Figure 7 315 

and Table 2). However, the use of a reference database enriched in whole genome sequences of 316 

the specific organism of interested was found appropriate for food safety applications.  317 

Since microbes compete for available resources within an environmental niche and 318 

therefore impact one another,52 we investigated Salmonella culture results in conjunction with co-319 

occurrence patterns of other microbes in the total RNA sequencing data (Figure 8). Point-biserial 320 

correlation coefficients (rpb) were calculated between Salmonella culturability results (presence or 321 

absence which were available for 27 of the 31 samples) and microbiome relative abundance. We 322 

observed 31 genera that positively correlated and with Salmonella presence (rpb > 0.5). 323 

Erysipelothrix, Lactobacillus, Anaerococcus, Brachyspira, and Jeotgalibaca exhibited the largest 324 

positive correlations. Gyrovirus was negatively correlated with Salmonella growth (rpb = -0.54). 325 

In three of the four Salmonella-positive samples (MFMB-04, MFMB-20, and MFMB-38), food 326 

matrix contamination was also observed (Supplementary Data in Haiminen et al.38). The 327 

concurrency of Salmonella growth and matrix contamination was affirmed by the microbial co-328 

occurrence (specifically Erysipelothrix, Brachyspira, and Gyrovirus). This highlights the complex 329 

dynamic and community co-dependency of food microbiomes, yet shows that multiple dimensions 330 
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of the data (microbiome composition, culture-based methods, and microbial load) will signal 331 

anomalies from typical samples when there is an issue in the supply chain. 332 

 333 

3. DISCUSSION: 334 

Accurate and appropriate tests for detecting potential hazards in the food supply chain are key to 335 

ensuring consumer safety and food quality. Monitoring and regular testing of raw ingredients can 336 

reveal fluctuations within the supply chain that may be an indicator of an ingredient’s quality or 337 

of a potential hazard. Such quality is assessed by standardized tests for chemical and microbial 338 

composition to meet legal requirements and specifications from government agencies throughout 339 

the world. For raw materials or finished products to meet these bounds of safety and quality, their 340 

composition must usually have a low microbiological load (except in fermented foods) and be 341 

chemically identical in macro-components such as carbohydrate, protein, and fat. Methods in this 342 

space must avoid false negative results which could endanger consumers, while also minimizing 343 

false positives which could lead to unnecessary recalls and food loss.   344 

Existing microbial detection technologies used in food safety today such as pulse field gel 345 

electrophoresis (PFGE) and whole genome sequencing (WGS) require microbial isolation. This 346 

provides biased outcomes as it removes microbes from their native environment where other biotic 347 

members also subsist, and selects microbes by culturability alone. Amplicon sequencing, while a 348 

low-cost alternative to metagenome or metatranscriptome sequencing for bacteria, also imparts 349 

PCR amplification bias and reduces detection sensitivity due to reliance on a single gene (16S 350 

ribosomal RNA).14,53,54 We therefore investigated the utility of total RNA sequencing of food 351 

microbiomes and demonstrated that from this single test, we are able to yield several pertinent 352 

results about food safety and quality.  353 
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For this evaluation, we developed a pipeline to characterize the microbiome of typical food 354 

ingredient samples and to detect potentially hazardous outliers. Special considerations for food 355 

samples were made as computational pipelines for human or other microbiome analyses are not 356 

sufficient for applications in food safety without modification. In food, the eukaryotic matrix needs 357 

to be confirmed, may be mixed, and, as we and others have shown, affects the identification 358 

accuracy of microbes that are present.35,36 By filtering food matrix sequence data properly, we 359 

avoid incorrect microbial identification and characterization of the microbiome36 while also 360 

increasing the computational efficiency for downstream processing. The addition of this filtering 361 

step in the pipeline removed approximately 90% of false positive genera and provided results at 362 

99.96% specificity when evaluating simulated mixtures of food matrix and microbes (Table 1).   363 

Through the analysis of 31 high protein powder total RNA sequencing samples, we 364 

demonstrated the pipeline’s ability to characterize food microbiomes and indicate outliers. In this 365 

sample collection, we identified a core catalog of 65 microbial genera found in all samples where 366 

Bacteroides, Clostridium, and Lactococcus were the most abundant (Supplementary Table 4). We 367 

also demonstrated that in these food microbiomes the overall diversity was 2-fold greater than the 368 

core microbe set. Fluctuations in the microbiome can indicate important differences between 369 

samples as observed here, as well as in the literature for grape berry6 and apple fruit microbiomes 370 

(pertaining to organic versus conventional farming)7 or indicate inherent variability between 371 

production batches or suppliers as observed here and during cheddar cheese manufacturing.8 372 

Specifically, we observed a shift in the microbial composition (Figure 2B) and the microbial load 373 

(Supplementary Figure S3) in high protein powder samples (derived from poultry meal) where 374 

unexpected pork and beef were observed. Matrix-contaminated samples were marked by increased 375 

relative abundances of specific microbes including Lactococcus, Lactobacillus, and Streptococcus 376 

(Figure 5B). This work shows that the microbiome shifts with observed food matrix contamination 377 
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from sources with similar macronutrient content and thus, the microbiome alone is a likely signal 378 

of compositional change in food. 379 

Beyond shifts in the microbiome, we focused on a set of well-defined foodborne-pathogen 380 

containing genera and explored their relative abundances observed from total RNA sequencing. 381 

Of these genera, Aeromonas, Bacillus, Campylobacter, Clostridium, Corynebacterium, 382 

Escherichia, Salmonella, and Staphylococcus were detected in every HPP sample. This highlights 383 

that when using NGS there may be an observable baseline of sequences assigned to potentially 384 

pathogenic microbes. For this ingredient type, this result lends a range of normalcy of relative 385 

abundance generated by NGS. Further work is needed to establish a definitive and quantitative 386 

range of typical variation in samples of a particular food source and the degree of anomaly for a 387 

new sample or genus abundance. However, preliminary studies of this nature can inform the 388 

development of guidelines when working with increasingly sensitive shotgun metagenomic or 389 

metatranscriptomic analysis.  390 

Furthermore, sequenced DNA or RNA alone does not imply microbial viability. Therefore, 391 

we investigated the relatedness of culture-based tests and total RNA sequencing for the pathogenic 392 

bacterium Salmonella in the high protein powder samples. As has been reported for human gut55 393 

and deep sea56 microbiomes, we also did not dretect a correlation between Salmonella read 394 

abundance and culturability (Figure 7 and Table 2). Sequence reads matching Salmonella 395 

references were observed for all samples (both culture-positive and culture-negative) as 396 

determined by multiple analysis techniques: microbiome classification, alignment to Salmonella 397 

genomes, and targeted growth gene analysis. When ranking the high protein powder samples based 398 

on Salmonella abundance from whole genome alignments, the culture-positive samples were 399 

enriched for higher ranks (p = 0.06). However, the culture-positive samples were still intermixed 400 

in ranking with culture-negative samples. This indicated that there was no clear minimum 401 
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threshold of sequence data as evidence for culturability and that this analysis alone is not predictive 402 

of pathogen growth. One possible reason for this is that the culture-positive variant of Salmonella 403 

is missing from existing reference data sets. Potentially, Salmonella attained a nonculturable state 404 

wherein it was detected by sequencing techniques yet remained nonculturable from the HPP 405 

sources. Successful isolation of total RNA and DNA and gene expression analysis from 406 

experimentally known nonculturable bacteria has been demonstrated by Ganesan et al. in multiple 407 

studies in other genera.19,22 Physiological state should thus be taken under consideration when 408 

benchmarking sequencing technologies in comparison with culture-based methods. Thus, total 409 

RNA sequencing of food samples may identify shifts that standard food testing does not, but the 410 

incongruity between sequencing read data and culture-based results highlights the need to perform 411 

more benchmarking in food microbiome analysis for pathogen detection. 412 

The characterization of HPP food microbiomes leveraged current accepted public reference 413 

databases, yet it is known that these databases are still inadequate.1,2,11,57,58 Furthermore, when 414 

considering congruence between Salmonella culturability and NGS read mapping techniques, the 415 

genetic breadth and depth of multi-genome reference sequences is essential. For example, focusing 416 

on ef-Tu, a known marker gene for Salmonella growth, was not sufficient to mirror viability of in 417 

vitro culture tests. This highlights the limitations of single gene approaches for identification. 418 

When the sequenced reads were examined in the context of an augmented reference collection of 419 

Salmonella genomes, we observed improved ranking and read mapping rate for culture-positive 420 

samples (yet we did not achieve complete concordance). This improvement underlined the 421 

increased analytical robustness yielded from a multi-genome reference. We also recognize that the 422 

read mapping rate may be exaggerated as reads from non-Salmonella genomes could map to 423 

Salmonella in the absence of any other reference genomes. Overall for robust analysis and 424 

applicability to food safety and quality, microbial references must be expanded to include more 425 
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genetically diverse representatives of pathogenic and spoilage organisms. Description of food 426 

microbiomes will only improve as additional public sequence data is collected and leveraged. 427 

In our sample collection, 2-4% (effectively 5 to 14 million) of reads remain unclassified. The 428 

GC content distribution of unclassified reads matched microbial GC content distribution 429 

(Supplementary Figure S4) suggesting that these reads may have been derived from microbes 430 

missing from the current reference database that have not yet been isolated or sequenced. By 431 

sequencing the microbiome, we sampled environmental niches in their native state in a culture-432 

independent manner and therefore collected data from diverse and potentially never-before seen 433 

microbes. Tracking unclassified reads will also be essential for monitoring food microbiomes. The 434 

inability to provide a name from existing references does not eliminate the possibility that the 435 

sequence is from an unwanted microbe or indicates a hazard. In addition to tracking known 436 

microbes, quantitative or qualitative shifts in the unclassified sequences might be used to detect 437 

when a sample is different from its peers.  438 

We demonstrated the potential utility of analyzing food microbiomes for food safety using raw 439 

ingredients. This study resulted in the detection of shifts in the microbiome composition 440 

corresponding to unexpected matrix contaminants. This signifies that the microbiome is likely an 441 

important and effective hazard indicator in the food supply chain. While we have used total RNA 442 

sequencing for detection of microbiome membership, the technology has future applicability for 443 

detection of antimicrobial resistance, virulence, and biological function for multiple food sources, 444 

and for other sample types. Notably, while this pipeline was developed for food monitoring, with 445 

applicable modifications and identification of material-specific indicators, it can be applied to 446 

other microbiomes including human and environmental.  447 

 448 

4.  METHODS: 449 
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 450 

4.1 Sample Collection, Preparation, and Sequencing  451 

High protein powder (HPP, 2.5 kg) samples were each collected from a train car in Reno, NV, 452 

USA between April 2015 and February 2016 in four batches from two suppliers and shipped to 453 

the Weimer lab at the University of California, Davis (Davis, CA). Each HPP sample was 454 

composed of five sub-samples from random locations within the train car prior to shipment. 455 

Sample preparation, total RNA extraction and integrity confirmation, cDNA construction, and 456 

library construction for these samples was previously described by Haiminen et al.38 457 

Sequencing was performed by BGI@UC Davis (Sacramento, CA) using Illumina HiSeq 458 

4000 (San Diego, CA) with 150 paired end chemistry for each sample except the following: HiSeq 459 

3000 with 150 paired end chemistry was used for MFMB-04 and MFMB-17. All total RNA 460 

sequencing data are available via the 100K Pathogen Genome Project BioProject (PRJNA186441) 461 

at NCBI (Supplementary Table 1). 462 

For evaluation of total RNA sequencing for microbial classification in paired processing 463 

steps, total RNA and total DNA were extracted from the same sample and denoted as MFMB-03 464 

and MFMB-08, respectively. Total RNA was extracted and sequenced as described above. Total 465 

DNA was extracted and sequenced as described previously.10,59–64 The Illumina HiSeq 2000 with 466 

100 paired end chemistry was used for MFMB-03 and MFMB-08.  467 

 468 

4.2 Sequence Data Quality Control 469 

Illumina Universal adapters were removed and reads were trimmed using Trim Galore65 470 

with a minimum read length parameter 50 bp. The resulting reads were filtered using Kraken37, as 471 

described below in Section 4.3, with a custom database built from the PhiX genome (NCBI 472 

Reference Sequence: NC_001422.1). Removal of PhiX content is suggested as it is a common 473 
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contaminant in Illumina sequencing data.66  Trimmed non-PhiX reads were used in subsequent 474 

matrix filtering and microbial identification steps. 475 

 476 

4.3 Matrix Filtering Process and Validation 477 

Kraken37 with a k-mer size of 31 bp (optimal size described in the Kraken reference 478 

publication) was used to identify and remove reads that matched a pre-determined list of 31 479 

common food matrix and potential contaminant eukaryotic genomes (Supplementary Table 2). 480 

These food matrix organisms were chosen based on preliminary eukaryotic read alignment 481 

experiments of the HPP samples as well as high-volume food components in the supply chain. Due 482 

to the large size of eukaryotic genomes in the custom Kraken37 database, a random k-mer reduction 483 

was applied to reduce the size of the database by 58% using kraken-build with option --max-db-484 

size, in order to fit the database in 188 GB for in-memory processing. A conservative Kraken score 485 

threshold of 0.1 was applied to avoid filtering microbial reads. The matrix filtering database 486 

includes low complexity and repeat regions of eukaryotic genomes to capture all possible matrix 487 

reads. This filtering database with the score threshold was also used in the matrix filtering in silico 488 

testing as described below. 489 

Matrix filtering was validated by constructing synthetic paired end reads (150 bp) using 490 

DWGSIM67 with mutations from reference sequences using the following parameters: base error 491 

rate (e) = 0.005, outer distance between the two ends of a read pair (d) = 500, rate of mutations (r) 492 

= 0.001, fraction of indels (R) = 0.15, probability an indel is extended (X) = 0.3. Reference 493 

sequences are detailed in Supplementary Table 3. We constructed two in silico mixtures of 494 

sequencing reads by randomly sampling reads from eukaryotic reference genomes. Simulated 495 

Food Mixture 1 was comprised of nine species with the following number of reads per genome: 496 

2M cattle, 2M salmon, 1M goat, 1M lamb, 1M tilapia (transcriptome), 962K chicken 497 
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(transcriptome), 10K duck, 1K horse, and 1K rat totaling 7.974M matrix reads. Simulated Food 498 

Mixture 2 contained 5M soybean, 4M rice, 3M potato, 2M corn, 200K rat, and 10K drain fly reads, 499 

totaling 14.210M matrix reads. Both simulated food mixtures included 1,000 microbial sequence 500 

reads generated from 15 different microbial species for a total of 15K sequence reads 501 

(Supplementary Table 3).  502 

 503 

4.4 Microbial Identification 504 

Remaining reads after quality control and matrix filtering were classified using Kraken37 505 

against a microbial database with a k-mer size of 31 bp to determine the microbial composition 506 

within each sample. NCBI RefSeq Complete68 genomes were obtained for bacterial, archaeal, 507 

viral, and eukaryotic microorganisms (~7,800 genomes retrieved April 2017). Low complexity 508 

regions of the genomes were masked using Dustmasker69 with default parameters. A threshold of 509 

0.05 was applied to the Kraken score in an effort to maximize the F-score of the result (as 510 

demonstrated in Kraken’s operating manual.70 Taxa-specific sequence reads were used to calculate 511 

a relative abundance in reads per million (RPM; Equation 1) where 𝑅" represents the reads 512 

classified per microbial entity (e.g. the genus Salmonella) and 𝑅# represents the number of 513 

sequenced reads remaining after quality control (trimming and PhiX removal) for an individual 514 

sample, including any reads classified as eukaryotic: 515 

 516 

𝑅𝑃𝑀	 = 	
𝑅"
𝑅#

× 	1,000,000								𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1 517 

 518 

This value provides a relative abundance of the microbial entity of interest and was used in 519 

comparisons of taxa among samples. Genera with a conservative threshold of RPM > 0.1 were 520 
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defined as present, as previously applied by others in the contexts of human infectious disease and 521 

gut microbiome studies.33,34 Pearson correlation of resulting microbial genus counts was 522 

computed. 523 

 524 

4.5 Community Ecology Analysis 525 

Rarefaction analysis at multiple subsampled read depths RD was performed by multiplying 526 

the microbial genus read counts with RD/RQ and rounding the results down to the nearest integer 527 

to represent observed read counts. Here RQ is the total number of reads in the sample after quality 528 

control (including microbial, matrix, and unclassified reads). Resulting a-diversity at read depth 529 

RD was computed as the number of genera with resulting RPM > 0.1 and plotted at five million 530 

read intervals: RD = 5M, 10M, 15M, …, RQ. If, due to random sampling and rounding effects, the 531 

computed a-diversity was lower than the diversity computed at any previous depth, the previous 532 

higher a-diversity was used for plotting. The median elbow was calculated as previously 533 

described45 using the R package kneed.45  534 

In compositional data analysis,31 non-zero values are required when computing b-diversity 535 

based on Aitchison distance.46 Therefore, reads counts assigned to each genus were pseudo-536 

counted by adding one in advance of computation of RPM (Eq. 1) prior to calculating the Aitchison 537 

distance for the microbial table. b-diversity was calculated using the R package robCompositions71 538 

and hierarchical clustering was performed using base R function hclust using the “ward.D2” 539 

method as recommended for compositional data analysis.31 540 

 541 

4.6 Unclassified Read Analysis 542 
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The GC percent distributions of matrix (from matrix filtering), microbial, and remaining 543 

unclassified reads per sample were computed using FastQC72 and collated across samples with 544 

MultiQC.73  545 

 546 

4.7  Analysis of Salmonella Culturability  547 

Growth of Salmonella was determined using a real-time quantitative PCR method for the 548 

confirmation of Salmonella isolates for presumptive generic identification of foodborne 549 

Salmonella. Testing was performed fully in concordance with the Bacteriological Analytical 550 

Manual (BAM) for Salmonella74,75 for this approach that is also AOAC-approved. All samples 551 

with positive results for Salmonella were classified as containing actively growing Salmonella. To 552 

compare culture results with those from total RNA sequencing, Salmonella RPM values were 553 

parsed from the genus-level microbe table (described in Section 4.4).  554 

Two additional approaches were employed to examine Salmonella read mapping with a 555 

more sensitive tool and broader reference databases. Quality controlled matrix-filtered reads were 556 

aligned using Bowtie248 with very-sensitive-local-mode to 1. an expanded collection of whole 557 

Salmonella genomes and 2. to a curated growth gene reference for elongation factor Tu (ef-Tu). 558 

For results from both complete genome and ef-Tu gene alignments, the relative abundance (RPM) 559 

was computed as shown in Equation 1.  560 

For whole genome alignments, a reference was constructed from 1,183 recently published 561 

Salmonella genomes49 in addition to the 264 Salmonella genomes extracted from the 562 

aforementioned NCBI RefSeq Complete collection (see Methods Section 4.4).  563 

To construct a curated growth gene (ef-Tu) reference, gene sequences annotated in 564 

Salmonella genomes as “elongation factor Tu”, “EF-Tu” or “eftu” (case insensitive) were retrieved 565 

from OMXWare51 using its Python package. This query yielded 4,846 unique gene sequences from 566 
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a total of 36,242 Salmonella genomes which were assembled or retrieved from the NCBI Sequence 567 

Read Archive or RefSeq Complete Sequences as previously described.51 The retrieved ef-Tu gene 568 

sequences were subsequently used to build a custom Bowtie248 reference. Read alignment was 569 

completed with very-sensitive-local-mode.  570 

The read counts for each sample were ranked and Wilcoxon rank sum test was computed 571 

between the rank vectors of 4 Salmonella-positive and 23 Salmonella-negative samples. The 4 572 

samples with unknown Salmonella status were excluded from the rankings. 573 

Point-biserial correlation coefficients (rpb) were calculated between Salmonella growth 574 

indicated by culture results (+1 and -1 for presence and absence, respectively) and observed 575 

relative abundance from total RNA sequencing results using the R package ltm.76 The point-576 

biserial correlation is a special case of the Pearson correlation that is better suited for a binary 577 

variable e.g. when Salmonella is reported as present or absent (a sample’s Salmonella status).  578 

 579 

Data Availability: 580 

All high protein powder (HPP) poultry meal sequences are available through the 100K 581 

Pathogen Genome Project (PRJNA186441) in the NCBI BioProject (see Supplementary Table 1 582 

for a complete list of accession numbers). 583 

 584 

Code Availability: 585 

 The pipeline and microbial or matrix references were constructed from publicly available 586 

tools and reference sequences as described in the Methods section. Automated usability of this 587 

pipeline is available through membership in the Consortium for Sequencing the Food Supply 588 

Chain. 589 

 590 
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 801 
 802 
FIGURE and TABLE LEGENDS: (corresponding to their order at end of merged document) 803 

 804 

Figure 1: Pipeline description of bioinformatic steps applied to high protein powder 805 

metatranscriptome samples. Black arrows indicate data flow and blue boxes describe outputs  806 

from the pipeline. 807 

 808 

Table 1: Accuracy of microbial identification using in silico constructed Simulated Food 809 

Mixtures with expected food matrix and microbial sequences. 810 

 811 

Figure 2A: Alpha diversity (number of genera) for all (n = 31) high protein powder 812 

metatranscriptomes is compared to total number of sequenced reads for a range of in silico 813 

subsampled sequencing depths. The dashed vertical line indicates the median elbow (at approx. 814 

67 million reads). 815 

 816 

Figure 2B: Hierarchical clustering of Aitchison distance values of poultry meal samples based 817 

on microbial composition. Samples were received from Supplier A (blue and red) and Supplier B 818 

(green). Matrix-contaminated samples are additionally marked in red.  819 

 820 

Figure 3A: Phylogram of the 65 microbial genera present in all samples with RPM > 0.1 821 

 822 

Figure 3B: Phylogram of all microbes observed in any sample. Log of the median RPM value 823 

across samples is indicated. Grey indicating a median RPM value of 0. 824 

 825 
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 826 

Figure 4: Heatmap (log10-scale) of high protein powder microbial composition and relative 827 

abundance (RPM) where absence (RPM < 0.1) is indicated in grey. Genera are ordered by 828 

summed abundance across samples. Samples were received from Supplier A (blue) and Supplier 829 

B (green). Red stars indicate matrix-contaminated samples (from Supplier A).  830 

 831 

Figure 5A: All identified microbial general are plotted with median value and median absolute 832 

deviation (MAD) of RPM abundance. Genera with MAD > 5 are labeled with the genus name. 833 

 834 

Figure 5B: Heatmap (log10-scale)  of ten microbial genera with the largest median absolute 835 

deviation (MAD) across samples. Genera are ordered by decreasing MAD from top to bottom. 836 

Samples were received from Supplier A (blue) and Supplier B (green). Red stars indicate matrix 837 

contaminated samples (from Supplier A). 838 

 839 

Figure 6A: Relative abundance of microbes with high relevance to food safety and quality from 840 

high protein powder total RNA sequenced microbiomes. Width of violin plot indicates density of 841 

samples with relative abundance at that value. Observation threshold of RPM = 0.1 is indicated 842 

with the horizontal black line. 843 

 844 

Figure 6B: Foodborne microbe relative abundances are shown across samples of high protein 845 

powder total RNA sequenced samples. 846 

 847 

Figure 7: Salmonella culturability status and high-throughput sequencing read abundance 848 

(RPM) from k-mer classification to NCBI Microbial RefSeq Complete (A), from alignments to 849 
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1,447 Salmonella genomes (B), and from alignments to 4,846 EF-Tu gene sequences (C). 850 

Salmonella presence (red) indicates culture-positive result, absence (green) indicates culture-851 

negative result, and no record (black) indicates samples for which no culture test was completed. 852 

 853 

Table 2: The ranks for Salmonella-positive samples and the associated p-values from Wilcoxon 854 

rank sum test are shown for high-throughput sequencing read abundance (RPM) for multiple 855 

analyses: k-mer classification to NCBI Microbial RefSeq Complete (left), alignments to 1,447 856 

Salmonella genomes (middle), and alignments to 4,846 ef-Tu gene sequences (right). The 857 

corresponding Salmonella relative abundances are shown in Figure 7A–C. 858 

 859 

Figure 8: Salmonella status correlations with genus relative abundances. Only those genera with 860 

absolute value of the correlation coefficient > 0.5 are shown. Positive and negative correlations 861 

are indicated in grey and blue, respectively. 862 

 863 

 864 

SUPPLEMENTAL INFORMATION: 865 

Supplemental Figures (pdf): Supplemental Figures S1–S5 866 

Supplemental Table 1 (.xlsx) - Sample Descriptions  867 

Supplemental Table 2 (.xlsx) - Matrix Filtering Genomes   868 

Supplemental Table 3 (.xlsx) - Simulated Food Mixtures    869 

Supplemental Table 4 (.xlsx) - Microbial Genera 870 
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Table 1: Microbial Identification Accuracy from Simulated Food Microbiome Mixtures
Simulated Mixture 1 Simulated Mixture 2

With Matrix Filtering No Matrix Filtering With Matrix Filtering No Matrix Filtering

# GENERA GENUS 
READS # GENERA GENUS 

READS # GENERA GENUS 
READS # GENERA GENUS 

READS

Bacteria in Simulated Mixture 
(Expected Content) 14 15,000 14 15,000 14 15,000 14 15,000

Observed Microbial Content
Bacteria 18 13,517 34 13,700 15 13,551 33 13,999

Viruses 0 0 9 563 0 0 4 328
Archaea 0 0 1 1 0 0 1 3

Eukaryota 0 0 4 104 0 0 4 799
Total Observed 18 13,517 48 14,368 15 13,551 42 15,129

True Positives
(as a % of total observed)

14 
(78%)

13,511 
(99.96%)

14 
(29%)

13,571
(94.45%)

14
(93%)

13,548
(99.98%)

14
(33%)

13,623
(90.05%)

False Positives
(as a % of total observed)

4 
(22%)

6 
(0.04%)

34 
(71%)

797 
(5.55%)

1
(7%)

3 
(0.02%)

28
(67%)

1,506
(9.95%)

False Positives Removed 
with Matrix Filtering

(as a % of false positives 
without filtering)

30
(88.2%)

791
(99.2%)

27
(96.4%)

1,503
(99.8%)
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Salmonella-positive sample k-mer Classification Whole Genome 
Alignment

ef-TuAlignment

MFMB-04 8th 10th 1st

MFMB-20 9th 9th 4th

MFMB-38 20th 3rd 21st

MFMB-41 30th 6th 28th

Rank sum test p-value
p=0.86 p=0.06 p=0.56
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