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Abstract 

Rapidly detecting and responding to new invasive species and the spread of those that are 1 

already established is essential for reducing their potential threat to food production, the 2 

economy, and the environment. We describe a new multi-species spatial modeling platform that 3 

integrates mapping of phenology and climatic suitability in real-time to provide timely and 4 

comprehensive guidance for stakeholders needing to know both where and when invasive insect 5 

species could potentially invade the conterminous United States. The Degree-Days, Risk, and 6 

Phenological event mapping (DDRP) platform serves as an open-source and relatively easy-to-7 

parameterize decision support tool to help detect new invasive threats, schedule monitoring and 8 

management actions, optimize biological control, and predict potential impacts on agricultural 9 

production. DDRP uses a process-based modeling approach in which degree-days and 10 

temperature stress are calculated daily and accumulate over time to model phenology and 11 

climatic suitability, respectively. Products include predictions of the number of completed 12 

generations, life stages present, dates of phenological events, and climatically suitable areas 13 

based on two levels of climate stress. Species parameters can be derived from laboratory and 14 

field studies, and from published and newly fitted CLIMEX models. DDRP is written entirely in 15 

R, making it flexible and extensible, and capitalizes on multiple R packages to generate gridded 16 

and graphical outputs. We illustrate the DDRP modeling platform and the process of model 17 

parameterization using two invasive insect species as example threats to United States 18 

agriculture: the light brown apple moth, Epiphyas postvittana, and the small tomato borer, 19 

Neoleucinodes elegantalis. We then discuss example applications of DDRP as a decision support 20 

tool, review its potential limitations and sources of model error, and outline some ideas for future 21 

improvements to the platform.  22 
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Introduction 23 

Invasive insects in the United States are a significant threat to the economy, environment, food 24 

security, and human health [1–3]. They cause billions of dollars in damage to forests each year 25 

[1,2], and their potential cost to food crop production is among the highest of any country [3]. 26 

Insect invasions in the United States also reduce the abundance and diversity of native species, 27 

which negatively impacts ecosystem functions and services such as soil health, nutrient cycling, 28 

and wildlife habitat [1,2]. Rapidly detecting and responding to new invasive insects and the 29 

spread of those that are already established before they can cause significant economic and 30 

environmental damage has therefore become a major priority [2,4]. 31 

Modeling climatic suitability (risk of establishment) and the timing of seasonal activities 32 

(phenology) of invasive insect species can help stakeholders including farmers, natural resource 33 

managers, and surveillance teams detect and prevent their establishment, slow their spread, and 34 

manage existing populations more sustainably and economically [5]. Estimates of climatic 35 

suitability identify areas to concentrate surveillance or management resources and efforts [6–8], 36 

whereas real-time (i.e. current) or forecasted predictions of phenology can improve the timing of 37 

surveillance and integrated pest management (IPM) efforts such as monitoring device 38 

installation, pesticide applications, and biological control release [9–11]. Additionally, estimates 39 

of climatic suitability, phenology, and voltinism (number of generations per year) can help 40 

growers predict the impact of pests and diseases on agricultural production and associated 41 

economic losses [12]. 42 

Degree-day models that predict insect phenology are an established tool for decision support 43 

systems that assist stakeholders with scheduling surveillance, monitoring or IPM operations for 44 

numerous pest species over the growing season [13–16]. Most degree-day models predict 45 
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phenology by measuring linear relationships between temperature and development rate, and 46 

they employ daily time steps to estimate degree-days using daily minimum and maximum 47 

temperature (Tmin and Tmax, respectively) data. In the daily time step, degree-days accumulate if 48 

heat exceeds the lower developmental temperature threshold of a species (and below its upper 49 

threshold for some calculation methods) during a 24-hour period [13,14,16]. Several web-based 50 

platforms host degree-day models for insect pest species in the United States, offering users 51 

opportunities to model phenology of multiple species at single locations (site-based model) or 52 

across a certain area (spatialized model). These platforms include but are not limited to Michigan 53 

State University’s Enviroweather (https://www.enviroweather.msu.edu), Oregon State 54 

University’s USPEST.ORG (https://uspest.org/wea/), and the USA National Phenology Network 55 

(https://www.usanpn.org) [17,18]. 56 

Despite their widespread use, currently available degree-day modelling platforms are in need 57 

of improvements. None of them integrate predictions of phenology and climatic suitability, 58 

which would provide guidance on the question of both where and when—e.g. is an area at high 59 

risk of establishment, and if so, then when will the species emerge or begin a specific activity? 60 

For most species, addressing this two-part question would require finding, potentially 61 

purchasing, and learning how to use two separate platforms. Additionally, many phenology 62 

modeling platforms use oversimplified models that make broad assumptions about insect 63 

biology, such as assuming a single lower developmental temperature threshold for multiple 64 

species, or assuming that an entire population emerges from overwintering at a single time. 65 

However, developmental temperature thresholds may vary widely across insect species, and 66 

development rates often vary within populations [19–21]. A biologically unrealistic model may 67 

produce inaccurate predictions of phenological events (e.g. spring emergence, first adult flight, 68 
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egg-hatching) or voltinism. Moreover, most platforms are capable of forecasting phenology only 69 

a week or two into the future in specific states or regions. However, stakeholders may need to 70 

plan operations several weeks in advance, potentially in areas that are outside the geographic 71 

bounds of predictive models. 72 

In this study, we introduce a new spatial modeling platform, DDRP (short for Degree-Days, 73 

establishment Risk, and Phenological event maps) that generates real-time and forecast 74 

predictions of phenology and climatic suitability (risk of establishment) of invasive insect 75 

species in the conterminous United States (CONUS). The objective of DDRP is to improve the 76 

efficiency and effectiveness of programs that aim to detect new or spreading invasive insect 77 

species in the United States, or to monitor and manage species that are already well-established. 78 

The platform is written entirely in the R statistical programming language (R Development Core 79 

Team 2019), making it flexible and extensible, and has a simple command-line interface that can 80 

be readily implemented for online use. Gridded temperature data for DDRP may include the 81 

entire CONUS or a specific region or state, and may be at any spatial resolution that can be 82 

handled by the user’s computing system. DDRP will generally use observed and future (forecast 83 

or recent average) temperature data because it was designed to be run as a within-season decision 84 

support tool that can provide guidance on where and when to expect the pest to appear each year, 85 

but it will accept temperature data for any time period. Model products include gridded (raster) 86 

and graphical (map) outputs of life stages present, number of generations, phenological events, 87 

and climatic suitability. 88 

First, we describe the modeling process and workflow of DDRP, summarize types of model 89 

products (Fig 1), and review its system and software requirements. Next, we demonstrate its 90 

capabilities and the process of model parameterization using two invasive insect species which 91 
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threaten agricultural biosecurity in the United States: the small tomato borer, Neoleucinodes 92 

elegantalis [Guenée (Lepidoptera: Crambidae)], and the light brown apple moth, Epiphyas 93 

postvittana [Walker, 1863 (Lepidoptera: Tortricidae)]. These species were chosen because they 94 

have been well-studied in terms of their developmental requirements, and previous climatic 95 

suitability studies provide a basis for parameterizing the climatic suitability model in DDRP. 96 

Additionally, models for these species are intended to aid surveillance teams at the Cooperative 97 

Agricultural Pest Survey (CAPS) pest detection program, which supports the USDA Animal and 98 

Plant Health Inspection Service (APHIS) as it works to safeguard agricultural and environmental 99 

resources in the United States. The DDRP platform will be a useful decision support tool for 100 

preventing, monitoring, and managing new and emerging invasive pests in the United States. 101 

 102 

Methods 103 

1) Model inputs 104 

Temperature data 105 

DDRP requires daily Tmin and Tmax data in a gridded format for an area of interest in CONUS. 106 

For real-time modeling, we have been using daily Tmin and Tmax data at a 4 km spatial resolution 107 

from the PRISM (Parameter-elevation Relationships on Independent Slopes Model) database 108 

(available at http://www.prism.oregonstate.edu) [22]. Daily PRISM data become available ca. 1 109 

day after weather station observations are reported, and are typically updated and improve in 110 

quality as more observations are added (see PRISM website for details). The phenology mapping 111 

system of the USA National Phenology Network [18] uses Real-Time Mesoscale Analysis 112 

(RTMA) weather data at a 2.5 km resolution, which are available within hours after data are 113 

observed. The daily Tmin and Tmax RTMA data set could potentially be used in DDRP; however, 114 
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the RTMA methodology lacks PRISM’s update and quality control regimes [22]. Another 115 

alternative is Daymet v3, which offers daily climate data for North America, Hawaii, and Puerto 116 

Rico at a very high spatial resolution (1 km) (https://daymet.ornl.gov) [23]. However, Daymet 117 

data are released months after the end of each year, so they would be less useful for within-118 

season modeling and decision support. 119 

For forecast modeling, DDRP is currently configured to use either monthly-updated, daily-120 

downscaled NMME (North American Multi-Model Ensemble) 7-month forecasts at a 4 km 121 

resolution [24], or recent 10-year average PRISM daily data that are calculated on a bi-monthly 122 

basis. We consider 10-year average data to be an improvement over 30-year climate normals for 123 

producing forecasts because temperatures in CONUS have significantly increased over the past 124 

30 years [25,26]. The match of mean forecasts of the NMME model’s ensemble to the observed 125 

value (i.e. skill) varies both spatially and temporally due to topography, season, and the presence 126 

of an El Niño-Southern Oscillation (ENSO) signal [27,28]. It may therefore be more 127 

conservative, and provide more consistent predictions, to use 10-year averages instead of NMME 128 

data to avoid potential issues with skill. However, we caution that the 10-year average data do 129 

not have simulated variation in daily Tmin and Tmax, which may result in the under-prediction of 130 

degree-day accumulation in the spring or fall as daily Tmax only slightly exceeds the lower 131 

developmental threshold of a species, or for cooler sites that have temperatures that are often 132 

near the threshold. We have also prepared and plan to use the National Weather Service gridded 133 

National Digital Forecast Database (NDFD) 7-day forecasts 134 

(https://www.weather.gov/mdl/ndfd_info) [29] for use in DDRP. 135 

 136 

Phenology modeling: species data and parameters  137 
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The life history and behavior of a target species must be considered for appropriateness to model 138 

in DDRP. In its current form, the platform can model four separate life stages (the egg, the larva 139 

or nymph, the pupa or pre-oviposition, and the adult) plus a separately parameterized 140 

overwintering stage. As movement and migration are not handled by DDRP, it is currently 141 

limited in its ability to model migratory species, such as those that may establish in southern 142 

areas of their potential range and migrate yearly to more northern areas. Species that lack an 143 

overwintering stage, which are common in tropical and subtropical areas, may be difficult to 144 

model because the timing of first spring activities and stages present cannot be accurately 145 

estimated. Currently DDRP is entirely temperature-driven, so species whose growth and 146 

reproduction are strongly influenced by additional environmental factors such as day length or 147 

moisture may not be accurately modeled.  148 

DDRP requires data on the developmental temperature thresholds (in either degrees Celsius 149 

or Fahrenheit) and durations for each life stage of an insect species in degree-days (Fig 1 and 150 

Table 1). These data are typically collected in the laboratory by measuring how temperature 151 

influences the rate of development, although data derived from season-long monitoring studies 152 

are also used [15,30]. A different developmental threshold may be assigned to each stage, 153 

although we typically solve for a common threshold if differences across the stages are minimal. 154 

Presently, the model depends upon a fixed starting date such as January 1, specified by the user 155 

for the entire region of interest. The duration of the overwintering stage represents the number of 156 

degree-days that must accumulate from the start of the year for the stage to complete, and 157 

indicates the start time for the model since other stages would then commence develop. 158 

Users must specify the number of degree-days that are required for the overwintering stage to 159 

complete development and emerge for the growing season. These data are typically gathered 160 
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using field monitoring studies, whereby the temporal distribution of emergence times and 161 

number of individuals that emerge on a given date is documented [e.g. 32]. Assigning a single 162 

value to the overwintering stage duration parameter would assume that an entire population 163 

develops simultaneously, which may not be biologically realistic because several intrinsic (with 164 

a genetic basis) and extrinsic (e.g. microclimate, nutrition) factors can produce variation in 165 

development rates within a species [21,32]. Indeed, phenology models that incorporate 166 

developmental variability in a population may have increased predictive power [19,21,33]. 167 

DDRP therefore allows the duration of the overwintering stage to vary across a user-defined 168 

number of cohorts (groups of individuals in a population). Much of the intrinsic variability in 169 

insect development during a generation often occurs in the first stadium after overwintering [34], 170 

although developmental variation may occur in any life stage [19,35,36]. DDRP uses five 171 

parameters to generate a frequency distribution of emergence times: the mean, variance, low 172 

bound, and high bound of emergence times, and the shape of the distribution (Gaussian or 173 

lognormal; Table 1). The platform uses these data to estimate the relative size of the population 174 

represented by each cohort, which initializes the population distribution that is maintained during 175 

subsequent stages and generations. Individuals within each cohort develop in synchrony. 176 

Users may specify the timing (in degree-days) of phenological events that are important to 177 

their target system to generate phenological event maps in DDRP, which depict the estimated 178 

calendar dates of the event over a time frame of interest. We typically generate phenological 179 

event maps based on temperature data for an entire year so that events for multiple generations of 180 

each of the five life stages are modeled. For example, phenological event maps that depict when 181 

the overwintering stage would emerge may be useful for identifying start dates for surveillance 182 

operations for a species, whereas maps for subsequent generations could help with planning 183 
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operations later in the year. The timing of phenological events may be based on life stage 184 

durations (e.g. the end of the egg stage signifies egg-hatching), or on occurrences within a stage 185 

such as midpoint (to approximate peak) of oviposition or midpoint of adult flight. Currently, one 186 

user-defined phenological event for each life stage for up to four generations may be modeled, 187 

although the platform could be modified to predict multiple events for each stage (e.g. first, 188 

midpoint, and end of the stage) for any numbers of generations.  189 

 190 

Climate suitability modeling: species data and parameters  191 

Climatic suitability modeling in DDRP is based on cold and heat stress accumulation and 192 

requires data on temperature stress threshold and limits of a species (Fig 1 and Table 1). While 193 

estimates of these parameters may be estimated from laboratory or field experiments, such data 194 

are lacking for most species. Additionally, extrapolating laboratory data to the field to project 195 

accumulation of stress is difficult due to oversimplification of the number of variables and the 196 

temporal and spatial variation in natural environments [37]. We have been using the CLIMEX 197 

software [38] (Hearne Scientific Software, Melbourne, Australia) to assist with climatic 198 

suitability model parameterization in DDRP, which is one of the most widely used species 199 

distribution modeling tools for agricultural, livestock and forestry pests and non-pests [6,7]. 200 

Laboratory collected data may help with parameterizing a CLIMEX model; however, model 201 

parameters are fine-tuned and the model is fitted using observations from the species’ known 202 

geographical distribution [38,39]. CLIMEX uses a similar process-based modeling approach as 203 

DDRP, wherein climatic suitability of an area to a species is influenced by climate stress 204 

accumulation. Model products generated by the two programs, including maps of temperature 205 

stress accumulation, are therefore directly comparable. 206 
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DDRP was designed to be complementary to CLIMEX is several ways to facilitate climatic 207 

suitability model parameterization, but the two programs also differ in several respects (Table 2). 208 

Importantly, DDRP was designed to model climatic suitability based on daily current or forecast 209 

temperature data at fine spatial scales (e.g. a single state or region), which would give users 210 

insight into the potential risk of establishment or spread during a particular season or year. In 211 

contrast, CLIMEX is normally used to estimate a species’ potential distribution using coarse-212 

scale 10ʹ and 30ʹ resolution global gridded 30-year monthly climate normals centered on 1975 213 

(1961‒1990) or future projections from selected global circulation models (GCMs) [40]. In 214 

theory CLIMEX could be used for real-time climatic suitability, but it has no native ability to 215 

import and process common gridded formats and is incapable of using daily resolution climate 216 

data. Thus, DDRP’s climate suitability models are intended to improve the efficiency of 217 

surveillance and trap deployment at a relatively small focal area for a current or near-future time 218 

period, whereas CLIMEX models provide a more general and coarse-scale assessment of 219 

suitability based on averaged climate data. 220 

Relying on real-time climatic suitability models for decision support on where to employ pest 221 

management and eradication operations for a given year or season is preferable to using models 222 

based on 30-year climate normals. A model that uses current climate data is more biologically 223 

relevant because the risk of establishment in an area would be affected by the conditions that a 224 

species physically experiences, not by averages of historical climate. Additionally, climate in 225 

CONUS is changing rapidly, so models based on climate normals may produce unrealistic 226 

predictions of present-day climatic suitability. Over the past ca. 30 years, the average annual 227 

temperature in CONUS has increased by 1.2°F (0.7°C), the number of freezing days has 228 

declined, and extreme temperature events have increased in frequency and intensity [25,26]. 229 
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Nonetheless, DDRP is not currently capable of including moisture factors in the modeling 230 

process like CLIMEX, so model predictions for moisture-sensitive species in very arid or wet 231 

areas should be interpreted with caution. We present a more detailed comparison of the features 232 

of each platform in Table 2, and discuss the potential implications of generating a climate 233 

suitability model based solely on temperature in the ‘Discussion.’ 234 

We compare CLIMEX’s predictions of temperature stress accumulation and overall climate 235 

suitability to similar products in DDRP to help parameterize a DDRP climate suitability model. 236 

Temperature stress thresholds may be calibrated so that predictions of cold and heat stress 237 

accumulation at the end of the year are spatially concordant with CLIMEX’s predictions. 238 

Climatic suitability in CLIMEX is estimated with the Ecoclimatic Index (EI), which is scaled 239 

from 0 to 100, and integrates the annual growth index and climate stress indices to give an 240 

overall measure of favorableness of a location or year for long-term occupation by the target 241 

species [38,39]. Typically an EI approaching 0 indicates an unfavorable climate for long-term 242 

survival, while an EI exceeding 20 or 30 (depending on the species) indicates a highly suitable 243 

climate [38,39]. As discussed in more detail in ‘Case Studies’, temperature stress limits in DDRP 244 

can be adjusted so that areas predicted to have highly suitability according to CLIMEX are also 245 

included in DDRP’s prediction of the potential distribution. 246 

Comparing DDRP climatic suitability model products to those of CLIMEX for model fitting 247 

purposes is naturally more appropriate when temperature data are derived from the same time 248 

period. We have therefore been using a PRISM Tmin and Tmax 30-year average dataset centered on 249 

1975 (1961‒1990) to match the time-schedule of the CliMond CM10 (also 1961−1990) world 250 

climate dataset currently supplied with CLIMEX [40]. We temporally downscaled monthly 251 

PRISM estimates for 1961‒1990 because DDRP requires daily data and PRISM daily 252 
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temperature data for years prior to 1980 are not available. For each month of a given year, a 253 

bilinear interpolation method was used to assign each day an average temperature value that was 254 

iteratively smoothed and then adjusted so that the monthly averages were correct. 255 

 256 

2) Daily time step 257 

DDRP models insect phenology and climatic suitability by stepping through each day of a 258 

specified time period and calculating degree-day and temperature stress accumulation at each 259 

grid cell of a focal area (Fig 1). The time period may span the entire year of interest, or include 260 

only a subset of days such as those during the growing season. Users may sample and save daily 261 

modeling results every 30 days, 14 days, 10 days, seven days, two days, or one day. Results are 262 

saved in multi-layer rasters that are processed and analyzed after the daily time step to produce 263 

final model products. We describe the phenology and climatic suitability modeling process and 264 

products in more detail in the following sections. 265 

 266 

Phenology model 267 

DDRP calculates daily degree-days over the specified time period using developmental 268 

temperature threshold information and gridded temperature data that have been cropped to the 269 

extent of the focal area (Fig 1). Currently DDRP has three methods to calculate degree-days: a 270 

simple average, the simple average using an upper threshold with a horizontal cutoff, and the 271 

single triangle method with upper threshold [41–43]. All three methods calculate degree-days 272 

from the daily Tmin and Tmax data and a specified base (lower developmental threshold) 273 

temperature, but the latter two methods also include the upper developmental threshold in 274 
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calculations. The single triangle method is also used as a close approximation to the more 275 

complex sine-curve calculation method [43]. 276 

With the exception of phenological event maps, which are computed only for the last day of 277 

the daily time step, DDRP saves the following phenology model results for each sampled day: 278 

1. Accumulated degree-days.  While daily degree days are calculated for each life stage, the 279 

cumulative degree-days are summed only for the first cohort of the larval stage, as these 280 

degree-day maps are representative for all cohorts and life stages. Accumulated degree-days 281 

calculated for larva will be the same for other life stages if common developmental 282 

thresholds are used. 283 

2. Life stages. The life stage present (overwintering stage, eggs, larvae, pupae, and adults) for 284 

each cohort. 285 

3. Number of generations. The current generation count for each cohort. If the model is run for 286 

an entire year, then the output for the last day of the year would represent the potential 287 

voltinism of the species. The generation count increases when adults progress to the egg 288 

stage (i.e. oviposition occurs).  289 

4. Phenological event maps (optional). The timing of phenological events is estimated by 290 

computing daily degree-day totals from the gridded temperature data, and storing the day of 291 

year when an event threshold is reached. Event results are generated only on the last day of 292 

the daily time step (typically, the last day of the year) because the entire time period must be 293 

analyzed for all potential event days to be considered. 294 

 295 

Climatic suitability model 296 
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Independently from the phenology model simulations, DDRP steps through each day and 297 

calculates cold and heat stress accumulation to predict the potential distribution of the species 298 

(Fig 1). To simplify model parameterization and increase processing efficiency, it assumes that 299 

all life stages have the same climatic tolerances. Cold stress units are calculated as the difference 300 

between daily Tmin and the cold stress temperature threshold, whereas heat stress units are 301 

calculated as the difference between daily Tmax and the heat stress temperature threshold. Stress 302 

units accumulate across the entire time period of interest (i.e. across all life stages and 303 

generations) and are presumed to kill individuals either directly or indirectly when they exceed 304 

the moderate or severe stress unit limits. Stress could indirectly kill individuals by restricting 305 

their activity, or directly cause mortality through extreme cold or heat events such as a hard 306 

freeze. For CONUS, the northern range limit is typically delineated by cold stress and the 307 

southern range limit, if any, is delineated by heat stress.  308 

We opted to use moderate and severe stress limits to reflect two distinct themes. First, they 309 

may provide a way to depict the potential for short term vs. longer term establishment. For most 310 

species, the potential distribution could be represented by areas where cold and heat stress have 311 

not exceeded the severe or moderate stress limits, as these should allow for long-term population 312 

persistence. DDRP depicts these areas with maps of cold stress exclusion, heat stress exclusion, 313 

and all stress exclusion (cold plus heat stress exclusions; Fig 1). Areas under moderate stress 314 

exclusion may represent temporary zones of establishment in which a species establishes only 315 

during a favorable season, such as after an annual migration event. Conversely, areas under 316 

severe stress exclusion do not allow for even short-term establishment. Typically we visualize 317 

exclusion maps calculated for the last day of the year (day 365) under investigation to provide 318 

insight into the potential distribution for an entire growing season.  319 
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Second, using two levels of stress may provide a way to represent uncertainty for estimating 320 

the potential distribution. As discussed in more detail in the ‘Discussion,’ several sources of 321 

uncertainty and error in the modeling process may bias model predictions, such as applying 322 

inappropriate parameter values, using climate data with low skill or poor spatial resolution, 323 

ignoring biotic factors such as species interactions, or ignoring non-temperature abiotic factors 324 

such as microclimate effects, moisture, and photoperiod [32,44]. Defining the potential 325 

distribution as areas under severe stress only would typically provide a broader estimate than a 326 

definition based on both stress levels. While this approach may over-predict the risk of 327 

establishment, conducting surveys over too broad an area is probably better than surveying too 328 

small of an area, which may allow a new invasive species to establish and spread. 329 

 330 

3. Post time step processing 331 

After the daily time step has completed, DDRP combines and analyzes results across cohorts and 332 

generates final multi-layer rasters and summary maps (“.png” image files) for each sampled day. 333 

If multiple cohorts were modeled, then DDRP uses estimates of the relative size of the 334 

population represented by each cohort to calculate the relative size of the population (totaling 335 

100%) in any given life stage and generation. For phenological event maps, the earliest and 336 

average day of year that an event occurs across cohorts is calculated. 337 

DDRP integrates mapping of phenology and climate suitability so that users can use a single 338 

model product to obtain guidance on their “where” and “when” questions (Fig 1). For example, a 339 

user involved with planning surveys may want to know where a target species may establish, and 340 

within those areas, when populations may emerge from over-wintering. Each output of the 341 

phenology model with the exception of accumulated degree-days will be associated with two 342 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.18.102681doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.102681


Barker et al. 17 

17 

 

additional products for each sampled day (or the last day for a phenological event map): 1) one 343 

that includes severe stress exclusion only, and 2) one that includes both severe and moderate 344 

stress exclusions. For example, a phenological event map with severe and moderate stress 345 

exclusions for 2018 (all 365 days) would present predicted dates of the selected event only in 346 

areas where long-term establishment is predicted (Fig 2).  347 

 348 

System and software requirements 349 

DDRP requires the R statistical software platform and can be run from the command line or 350 

within RStudio [45]. It takes advantage of functions from several R packages for data 351 

manipulation, analysis, and post-model processing. The ‘raster’ package [46] is used to crop 352 

daily temperature rasters to the focal area, store and manipulate daily loop raster results, and 353 

process and further analyze results for each cohort. Many non-spatial data manipulations are 354 

conducted with functions in the ‘dplyr,’ ‘tidyr,’ and ‘stringr’ packages [47–49]. The ‘ggplot2’ 355 

package [50] is used to generate and save summary maps of raster outputs, and options from the 356 

command line argument are parsed using the ‘optparse’ package [51].  357 

DDRP capitalizes on the multi-processing capabilities of modern servers to run multiple 358 

operations in parallel, which is made possible with the ‘parallel’ and ‘doParallel’ packages in R 359 

[52]. This significantly reduces computation times, particularly in cases where modeling is 360 

conducted with multiple cohorts and across large areas. For example, parallel processing is used 361 

to crop rasters for multiple dates, run multiple cohorts in the daily time step, and to analyze time 362 

step outputs for multiple days or files simultaneously. For very large areas (currently defined as 363 

the Eastern United States and CONUS), temperature rasters are split into four tiles and both the 364 

tiles and cohorts are run in parallel in the daily time step.   365 
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We recommend running DDRP on a Linux OS because its multicore functionality supports 366 

the fork system calls of the ‘parallel’ package in R. The script can easily be modified to be run 367 

on a Windows OS; however, certain processes are very memory intensive and may execute 368 

slowly or stall without parallel processing. Additionally, DDRP was designed to run on a Linux 369 

server, and has not been sufficiently tested on Windows servers to know how well it would 370 

perform. 371 

 372 

Case studies 373 

Climatic suitability, voltinism, and phenological events in Epiphyas postvittana 374 

The light brown apple moth (LBAM), E. postvittana (Walker 1863) (Lepidoptera: Tortricidae), 375 

is a leafroller pest native to southeastern Australia, including Tasmania [53]. The species invaded 376 

Western Australia, New Zealand, New Caledonia, England, and Hawaii more than 100 years ago 377 

[54–56], and has been established in coastal California since 2006 [57,58]. It poses a significant 378 

threat to agricultural production in the United States because it feeds on more than 360 host 379 

plants, including economically important fruits such as apple, pear, citrus and grapes [53,59,60]. 380 

For example, an economic risk analysis of E. postvittana to four major fruit crops (apple, grape, 381 

orange, and pear) in CONUS estimated an annual mean cost of US$105 million associated with 382 

damage to crops and control, quarantine, and research [59]. The CAPS program at APHIS 383 

conducts annual surveys for E. postvittana at various counties across CONUS. 384 

A summary of phenology and climatic suitability model parameters used for E. postvittana in 385 

DDRP is reported in Table 2. We assigned all life stages a lower developmental threshold of 386 

7.1°C (45°F) and an upper developmental threshold of 31.1°C (88°F). Although DDRP allows 387 

for different temperature thresholds for each stage, the site-based phenology modeling tool that 388 
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we use at USPEST.ORG requires common thresholds, and these are presented as whole numbers 389 

in Fahrenheit scale for easy interpretation by end-users. Building the model for both platforms 390 

keeps models simpler and facilitates cross-comparison. Additionally, laboratory studies revealed 391 

small differences in the lower developmental threshold (< 1°C) across different life stages 392 

[53,60]. The upper developmental threshold value is based on studies showing that all life stages 393 

cease development between 31‒32°C [53,60,61]. We derived life stage durations (in degree-days 394 

°C; hereafter DDC) for E. postvittana based on our analysis of published research [53,60,62], 395 

which resulted in 127, 408, 128, and 71 DDC for eggs, larvae (females on young apple foliage), 396 

pupae, and adults to 50% egg-laying, respectively. This analysis is presented in S1 Appendix. 397 

We set the overwintering stage to larva because the predominant overwintering stage of E. 398 

postvittana in the United States are the late larval instars [31,63]. We applied seven cohorts to 399 

approximate a normal distribution of emergence times that spanned 100 to 320 DDC (average = 400 

210 DDC) based on a report that overwintering larvae at four sites in California required 401 

between 102 and 318 degree-days to finish development [31]. This would correspond to the time 402 

required for mid-stage (3rd-5th instars, average 4th instar) female larval feeding on old foliage 403 

(0.45 × 494 DDC = 210 DDC), after a January 1 start date. 404 

We generated a CLIMEX model for E. postvittana using CLIMEX version 4.0 [38] to help 405 

parameterize the climatic suitability model in DDRP. The model applied a combination of 406 

parameter values (Table 3) derived from two previous CLIMEX studies of this species [64,65]. 407 

However, we used a cold stress threshold (TTCS) of 3°C, which is lower than He et al.’s (2012) 408 

value (5°C)[64], and higher than Lozier and Mill’s (2011) value (1.5°C) [65]. We applied a top-409 

up irrigation (additional simulated rainfall) rate of 2.5 mm day−1 for the winter and summer 410 

season because irrigation mitigates the hot-dry climate that limits distribution of E. postvittana 411 
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within CLIMEX. We assessed the fit of the CLIMEX model to observation‐based data from 530 412 

locality records for the species from Australia (N = 317), New Zealand (N = 76), and California 413 

(N = 137), which were obtained from GBIF.org (18th July 2019; GBIF Occurrence Download 414 

https://doi.org/10.15468/dl.a4ucei) and Nick Mills (pers. comm.). The model correctly predicted 415 

suitable conditions (EI > 20) at all 530 localities where the species is known to occur (S1 Fig).  416 

In DDRP, we generated a climatic suitability model for E. postvittana using the daily 417 

downscaled PRISM Tmax and Tmin estimates for 1961‒1990 and calibrated model parameters in 418 

accordance with the CLIMEX model (Fig 3). We compared maps of temperature stress 419 

accumulation, and adjusted temperature stress limits so that most areas predicted to be under 420 

moderate and severe climate stress by DDRP had low (20 > EI > 0) or zero (EI = 0) suitability 421 

according to CLIMEX, respectively. Finally, we modeled phenology and climatic suitability for 422 

E. postvittana in 2018 to provide insight into its potential voltinism, seasonal activities, and risk 423 

of invasion in particularly warm temperatures. The summer of 2018 in the United States was the 424 

warmest since 2012 and tied for the fourth-warmest on record (NOAA website 425 

https://www.noaa.gov/news/summer-2018-ranked-4th-hottest-on-record-for-us last accessed 426 

11/21/19). We generated a phenological event map that depicted the date of first egg laying by 427 

first generation females, because this activity is relevant to monitoring both eggs and the 428 

emergence of adults, which typically occurs two to three days prior to egg laying.  429 

 430 

Climatic suitability, voltinism, and phenological events in Neoleucinodes elegantalis 431 

The small tomato borer (STB), N. elegantalis (Guenée) (Lepidoptera: Crambidae), is native to 432 

South America and is distributed throughout the Neotropics including in Mexico, Central 433 

America, and the Caribbean [66,67]. A major insect pest of tomato (Solanum lycopersicum), it 434 
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also attacks fruits of other plants belonging to the family Solanaceae including eggplant, paprika, 435 

naranjilla, and green and red pepper [67]. There are at least 1175 recorded interceptions of the 436 

species from the United States, where it is considered a serious threat to agricultural biosecurity 437 

because it lowers tomato production in South America [68]. The CAPS program has conducted 438 

surveillance for N. elegantalis since at least 2011. 439 

A summary of phenology and climatic suitability model parameters used for N. elegantalis in 440 

DDRP is reported in Table 2. We re-analyzed data from a laboratory study on the development 441 

of N. elegantalis on hybrid tomato (Paronset) at five temperatures [69] to estimate a common 442 

lower temperature threshold for all life stages, which involved adding a point to force the x-443 

intercept to an integer value in degrees Fahrenheit. We weighted the analysis to select a common 444 

lower threshold for immature stages, which are the longest in duration, because this should 445 

produce the lowest error for the overall life cycle. The lower threshold values for immature 446 

stages were very similar to the overall egg-to-adult value of 8.89°C (48°F), so we chose 8.89°C 447 

as the common threshold instead of a higher one solved for the adult pre-oviposition stage 448 

(11.5°C). We estimated the duration for eggs, larvae, pupae, and adults to peak oviposition as 86, 449 

283, 203, and 96 DDC, respectively. This analysis is presented in S2 Appendix. 450 

We compared the results of our method to estimate a common threshold to the alternative, 451 

whereby separate thresholds for each life stage are derived and used in the DDRP model (S2 452 

Appendix). The error resulting from a slight forcing of the linear regression model was nominal. 453 

For example, the values for the x-intercept and 1/slope for the egg-to-adult interval of N. 454 

elegantalis without forcing the regression were 8.64oC (47.6oF) and 1048.3, respectively. After 455 

constructing the model with forcing, these values were 8.89oC (48.0oF) and 1030.8, respectively. 456 

Further, models that used egg-to-adult development times calculated by the forced versus 457 
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unforced method were run with various start dates including January 1 and April 1, and 458 

predictions differed by only 1 day. 459 

Neoleucinodes elegantalis has no apparent photoperiodic response, diapause, or specific 460 

overwintering stage. In subtropical climates in Brazil, the insect remains active throughout the 461 

year if host plants are available [69]. We used January 1 as the model start date for CONUS 462 

because few host plants would be available for immature stages at this time, leaving adults as the 463 

overwintering stage. We assumed that adult feeding and host search activities could begin 464 

immediately if temperatures are suitable, and that first egg-laying would subsequently occur after 465 

the estimated pre-oviposition period of ca. 55 DDC. The durations of later events (1st to peak 466 

oviposition, immature development, etc.) were estimated from previously published data [69,70]. 467 

We applied seven cohorts to approximate a normal distribution of emergence times that spanned 468 

0 to 111 DDC (average = 50 DDC) because over-wintered adults begin finding hosts over this 469 

time frame. 470 

We parameterized the DDRP climatic suitability model by working with previously 471 

published CLIMEX models for N. elegantalis, which were constructed using data on its 472 

development at different temperatures, its known distribution in the Neotropics, and a sensitivity 473 

analysis of CLIMEX parameters [71–73]. We produced a CLIMEX model for N. elegantalis in 474 

CONUS that applied the “best-fit” parameter values proposed by da Silva et al. 2018 [71](Table 475 

3) and a top-up irrigation rate of 2.5 mm day−1 for the winter and summer season. However, we 476 

applied a cold stress threshold of 2°C because the species may experience this temperature at 477 

high-elevation areas where it occurs in Colombia (Bogota, elevation = ca. 2600 m) [74] and in 478 

Ecuador (El Chaco, elevation = 1600 m), as documented in records of the lowest monthly 479 
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temperatures for these areas (available for 2017 to the present-day at https://rp5.ru/ and 480 

https://www.worldweatheronline.com, respectively) [75]. 481 

We calibrated climatic suitability parameters for N. elegantalis in DDRP in accordance with 482 

CLIMEX results (Fig 4) using the same approach taken for E. postvittana. Next, we modeled 483 

phenology and climatic suitability in DDRP using temperature data from 2018. We generated a 484 

phenological event map for the average date of the beginning of egg hatch of the overwintered 485 

generation. Predictions of egg hatch could enhance population control of N. elegantalis because 486 

this species is most vulnerable to pesticides before larvae enter the fruit of host plants [76].  487 

 488 

Results 489 

Cold stress was the major determinant of the potential distribution of E. postvittana and N. 490 

elegantalis according to the DDRP analyses based on 30-year climate normals (1961‒1990). 491 

Both species were excluded from the northern half of CONUS by cold stress, with the exception 492 

of (mostly) western parts of Oregon and Washington (Figs 3D and 4D). Heat stress excluded E. 493 

postvittana from most of the Southwest and from southern parts of Gulf Coast states (Fig 3E), 494 

whereas N. elegantalis was excluded only from the hottest parts of the Southwest in southern 495 

California, Arizona, and Texas (Fig 4E). When considering both cold and heat stress exclusions, 496 

the potential distribution of both species included western parts of the Pacific states (California, 497 

Oregon, and Washington), most of the Southeast, and southern parts of the Northeast (in 498 

Delaware, Maryland, New Jersey, and Rhode Island) and the Midwest (in Kansas, Missouri, 499 

Illinois, and Indiana). The potential distribution for N. elegantalis included a greater area of 500 

Oklahoma and Texas than the distribution for E. postvittana. 501 
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DDRP may be over-predicting the potential distribution of E. postvittana and N. elegantalis 502 

in particularly arid regions of the Southwest. According to CLIMEX, high levels of dry stress 503 

(S2 Fig) were associated with low climatic suitability (EI < 10) throughout most of western 504 

Texas, southern New Mexico, and Arizona (Figs 3C and 4C). Conversely, DDRP did not exclude 505 

the species from some of these same areas (Figs 3F and 4F), which is most likely due to the 506 

platform’s current inability to consider moisture factors in the modeling process. 507 

DDRP predicted a smaller potential distribution for E. postvittana and N. elegantalis in 2018 508 

compared to 1961‒1990 (Figs 2 and 5). High levels of heat stress in 2018 (S3 and S4 Figs) 509 

excluded both species from warm areas of CONUS that were included in the potential 510 

distribution under historical conditions, including parts of Arizona, New Mexico, Texas, and the 511 

Central Valley of California. Additionally, E. postvittana was excluded from several areas in the 512 

Southeast that were historically suitable (e.g. in South Carolina, Louisiana, Alabama, and 513 

Arkansas). In the East, moderate stress exclusion resulting from cold stress (S3 and S4 Figs) 514 

pushed the northern range limit for each species slightly farther south, although this shift was 515 

more pronounced for N. elegantalis.   516 

Predictions of potential dates for phenological events and voltinism for E. postvittana and N. 517 

elegantalis in 2018 varied substantially by latitude (Figs 2 and 5). The earliest date of egglaying 518 

for the first generation of E. postvittana was predicted to be as early as February in Florida to as 519 

late as December in the Pacific Northwest (Fig 2A). The average date of first generation 520 

beginning of egg hatch for N. elegantalis was predicted to begin in the first week of January in 521 

Florida but not until late June in the Pacific Northwest (Fig 2B). Thus, the timing of monitoring 522 

trap installation to detect ovipositing adults and eggs of E. postvittana, or larvae of N. 523 

elegantalis, could vary widely across CONUS. For both species, DDRP predicted as many as 524 
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seven to nine generations in coastal areas of the Southeast, compared to only one or two 525 

generations in parts of the Pacific Northwest (Fig 5). Three to six generations were predicted for 526 

most other regions of CONUS. These findings may indicate that the Southeast would experience 527 

the longest duration of pest pressure. 528 

 529 

Discussion 530 

DDRP as a decision support tool 531 

DDRP is a new spatial modeling platform that generates real-time and forecast predictions of 532 

phenology and climatic suitability (risk of establishment) of invasive insect pests in CONUS. 533 

These predictions may help with detecting the presence of invasive species in the shortest time 534 

possible after they arrive and reproduce, which increases the chance of eradication success and 535 

makes other rapid response measures (e.g. deployment of biological control) possible and less 536 

costly [4]. In particular, DDRP’s unique ability to produce integrated climatic suitability and 537 

phenology model products can provide biosurveillance personnel with insights into both where 538 

and when to focus detection efforts for a given year or growing season. For example, 539 

phenological event maps for E. postvittana and N. elegantalis (Fig 2) identify high-risk areas 540 

where surveillance activities could be concentrated, in addition to providing estimated dates of 541 

activities that can ensure timely trap placement. Thus, users can use a single program to address 542 

decision support needs for early pest detection. 543 

DDRP was designed to be a multi-species platform, which makes it broadly applicable to 544 

monitoring and managing populations of IPM pests and classical biological control agents. For 545 

example, growers have used predictions of the timing of first egg hatch for codling moth [Cydia 546 

pomonella (Linnaeus)], first emergence of western cherry fruit fly [Rhagoletis indifferens 547 
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(Curran)], and first spring oviposition of spotted wing drosophila [Drosophila suzukii 548 

(Matsumura)] to help monitor and reduce populations of these major crop pests [77–80]. 549 

Phenology models for biological control insects can help managers schedule sampling trips to 550 

coincide with insect presence on the target organism, and to estimate the synchrony of insect and 551 

host phenology at a given location [81,82]. DDRP’s estimates of voltinism may provide insights 552 

into expected pressure on target organisms, as higher voltinism should translate to greater agent 553 

population growth and biocontrol success. 554 

Our models for E. postvittana and N. elegantalis indicated that heat stress excluded 555 

populations from a greater area of the Southwest compared to 1961‒1990, which is consistent 556 

with studies showing that global warming may reduce species’ distributions in warmer parts of 557 

their range [83]. However, determining whether these putative range shifts are persistent or 558 

temporary would require combining model runs for multiple recent years or seasons. For 559 

example, trends in the geographic distribution of stress exclusions over several years or seasons 560 

could be visualized with a probability surface map. Estimating the direction of range shifts may 561 

also provide insights into the response of the species to future climate change. Nonetheless, the 562 

differences that we documented in predictions of climatic suitability based on climate data for 563 

1961‒1990 compared to 2018 suggests that an area’s contemporary risk of establishment is 564 

different than it was ca. 30 years ago. DDRP’s ability to produce climatic suitability models in 565 

real-time may provide more meaningful insights into areas that are presently suitable for an 566 

invasive species, and therefore allow for more effective placement of surveillance operations. 567 

DDRP considers several aspects of insect development in the modeling process, which 568 

should increase the realism of model predictions compared to simpler platforms that are based 569 

solely on generation time degree-days. For example, DDRP’s estimates of voltinism and spring 570 
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activity will likely be more accurate if knowledge of the biology of a given species is sufficient, 571 

because different temperature thresholds for multiple life stages may be used, and the 572 

overwintering stage is parameterized separately from the post-winter stage (e.g. overwintering 573 

adult vs. adult). Additionally, it accounts for developmental variation within populations by 574 

generating and combining results across multiple cohorts that complete the overwintering stage 575 

at different times, which is more realistic than assuming a single population cohort and single 576 

model start time.  577 

From a historical perspective, DDRP could be considered a partial descendant and spatialized 578 

version of the PETE (Predictive Extension Timing Estimator) phenological modeling platform 579 

that was established as a standard in the mid-1970s [84]. Features in common include a cohort 580 

approach to population phenological modeling using daily degree-days as the main input, 581 

provision for major insect life stages and a separately parameterized overwintering distribution, 582 

an open-source non-proprietary standard for sharing, and a focus on agricultural extension 583 

(applied decision support). Unlike PETE, DDRP is spatialized and therefore able to produce a 584 

variety of mapping products including phenological event maps, and it also includes options to 585 

use separate thresholds for different life stages and to generate climatic suitability models. DDRP 586 

could be improved by adding certain features of the PETE platform including the use of a 587 

diapause trigger, and a distributed delay function that would allow the generation time to 588 

lengthen with each subsequent generation. 589 

DDRP is one of the first open-source platforms that can model both phenology and climatic 590 

suitability of insect pests. The Insect Life Cycle Modelling (ILCYM) software [85,86] is another 591 

open-source R program that can model temperature-based phenology and establishment risk for 592 

insects in a spatial context. However, ILCYM is a full population dynamics modeling platform 593 
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that requires life table data at constant and variable temperatures, which are seldom available for 594 

anticipated but not yet present invasive insect species. ILCYM has primarily been used to 595 

simulate models with climate normals or GCMs at global or regional scales [85,87], whereas 596 

DDRP was designed to use real-time and forecast climate data for within-season decision 597 

support. PhenModel is another R program that can model insect phenology, but it is unclear how 598 

adaptable the program would be to other insect species besides leaf-feeding beetles, and it is not 599 

spatialized or capable of modeling climatic suitability [88].  600 

There are numerous opportunities for improving and extending the applications of DDRP, 601 

especially given that it is written in R, an open source programming language. For example, the 602 

program could be modified to use climate data for a region outside of CONUS, or to model other 603 

types of organisms such as non-insect invertebrates, plants, plant-pathogenic bacteria and fungi, 604 

and insect plant and animal virus vectors. The platform has been tested for and could be used 605 

through an on-line web interface, although there is the potential for overload issues on a server 606 

host. This issue, as yet untested, could be addressed by using a cloud computing platform. We 607 

describe some additional features that could be added to potentially improve model accuracy and 608 

expand the list of products in more detail below. The most recent code for DDRP is available at 609 

GitHub (https://github.com/bbarker505/ddrp_v2.git), where we invite scientists and practitioners 610 

to jointly develop the platform and database of species models. 611 

 612 

Uncertainties, limitations, and other considerations 613 

Linear (degree-day) modeling 614 

DDRP uses a relatively simple degree-day modeling approach, whereas some platforms 615 

including ILCYM, phenModel, and devRate [89] offer complex functions to model nonlinear 616 
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responses of insects to temperature. Degree-day models are ideal for multi-species platforms like 617 

DDRP because there are sufficient data to parameterize a degree-day model for most insect pest 618 

species of economic importance in the United States [20,90]. Linear degree-day models are also 619 

readily calibrated and sometimes constructed entirely using field data, making them more 620 

practical for extension and decision support use [15]. Additionally, degree-day models require 621 

only daily Tmin and Tmax data (as opposed to hourly data for most nonlinear models), which are 622 

available at a high spatial resolution for CONUS from multiple sources including PRISM and 623 

RTMA. Nonetheless, it is important for users to recognize potential sources of error and lack of 624 

precision in degree-day models, such as their limited ability to accurately model development at 625 

supra-optimal temperatures [15,91]. 626 

 627 

Environmental inputs 628 

DDRP is intentionally parameterized in a simple, conservative manner, which will hopefully 629 

achieve the goal of a parsimonious balance of both model simplicity and accuracy [15,92]. 630 

Nonetheless, DDRP is driven entirely by temperature, and therefore ignores other factors that 631 

may affect the development and distribution of insects such as photoperiod, moisture, dispersal, 632 

resources, disturbance, and biotic interactions [7,93]. The potential consequences of this 633 

limitation will depend on the biology of the organism under study. For example, dry stress is the 634 

major factor restricting the current distribution of N. elegantalis in its native range [72,74,94], 635 

and it limits the distribution of E. postvittana both in its native range [53,95] and in Southern 636 

California and Arizona [62]. The absence of moisture factors in DDRP most likely explains why 637 

it predicted higher climatic suitability for these species in arid regions of CONUS compared to 638 

CLIMEX, which considers wet and dry stress in the modeling process. However, this 639 
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conservative-leaning error may in fact better reflect human manipulation of the landscape (e.g. 640 

greenhouse and irrigation usage) that may allow the species to exist in such regions. Future 641 

versions of DDRP that can process gridded moisture data and incorporate moisture stress factors 642 

into climatic suitability models may help overcome our current limitations in matching CLIMEX 643 

models, and they may improve predictions for moisture-sensitive species such as E. postvittana 644 

and N. elegantalis. Additionally, we are developing a version of DDRP that incorporates 645 

photoperiodically induced life history events such as winter diapause and summer aestivation, 646 

which builds on earlier phenology modeling work that estimated voltinism of photoperiod-647 

sensitive insects [96]. 648 

 649 

Presumptive models 650 

Uncertainties regarding the accuracy of temporal or spatial predictions of invasive species that 651 

are not yet established is inevitable, in part because no validation data are yet available, and 652 

species interceptions do not imply establishment [7,97]. DDRP models for species for which 653 

only presumptive models exist should therefore be used conservatively. For example, 654 

surveillance or management actions could be implemented in advance of predicted phenological 655 

events as a precautionary measure (e.g. installing traps even earlier than estimates for the earliest 656 

date of overwintering adult emergence). To potentially avoid under-predicting the risk of 657 

establishment, the potential distribution could be defined as areas not under severe climate stress 658 

as opposed to defining it using both stress levels. Additionally, climatic suitability models 659 

generated by DDRP could be combined with those produced using different modeling methods 660 

(e.g. correlative, semi-mechanistic, mechanistic) to create a “hybrid” model, which may increase 661 

the reliability of predictions [7,93]. 662 
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Web platforms that support sharing of pest observations and related expert commentary will 663 

be valuable resources for validating and increasing the predictive performance of DDRP models. 664 

For example, the iPiPE and its sister platforms (http://www.ipipe.org, https://ipmpipe.org) have 665 

created a national information technology infrastructure for sharing pest observations in near 666 

real-time and contributing them to a national depository [98]. Similarly, the USA National 667 

Phenology Network provides a depository of plant and insect phenology observations 668 

contributed by citizen scientists [9]. The National Agricultural Pest Information System (NAPIS; 669 

https://napis.ceris.purdue.edu/home) currently has over 5.17 million records from pest detection 670 

surveys, and is another potential source of validation data. Unfortunately, there were insufficient 671 

data from these sources to validate our DDRP model for E. postvittana, which we hope will 672 

change in the near future. 673 

 674 

Geographic variation 675 

A major challenge for insect phenology modeling in general is how to account for geographic 676 

variation in insect responses to temperature [32,44]. Populations of an invading species may 677 

diverge in thermal physiology traits when genetically divergent individuals are introduced to 678 

different areas, or when evolutionary changes including rapid adaptation to new environments or 679 

hybridization occurs [99,100]. If sufficient data on the amount and geographic distribution of 680 

variation in relevant traits exists, then model accuracy may be improved by building separate 681 

models for each genotype. For example, an egg hatch phenology model for a subspecies of the 682 

Asian gypsy moth, Lymantria dispar asiatica (Vnukovskij), had reduced error compared to a 683 

similar model constructed for the European subspecies that has invaded North America, 684 

Lymantria dispar dispar (Linnaeus), which has a markedly different predominant phenotype 685 
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[101]. An alternative approach may be to run several models, each with a different value for the 686 

parameter of interest, and present a range of model predictions. Conversely, DDRP could be 687 

modified to accept a grid of parameter values so that geographic variation would be accounted 688 

for in a single model run. 689 

A lack of knowledge on how early-season environmental conditions or events that initiate the 690 

first spring activity of a species (biofix) vary geographically may be a source of error because the 691 

model start date affects all downstream predictions. For example, how does first spring activity 692 

vary across the wide range of warming conditions possibly encountered for a large region such 693 

as CONUS? As a case in point, our phenology model for N. elegantalis assumes that moths have 694 

only 55 DDC before egg-laying behaviors may occur. This assumption may not be valid for sub-695 

tropical zones of the United States, where flight and reproduction could occur even earlier. 696 

Conversely, a much longer spring warm-up may be needed in temperate zones because 697 

commercial tomatoes are transplanted much later in the year. Studying how first spring activity 698 

(adult flight) in N. elegantalis potentially varies geographically in Central or South America 699 

would help to refine a range of model start times. The phenology model for DDRP could then be 700 

parameterized using a necessarily conservative selection of start dates or by inputting a grid of 701 

start dates. Using a broad distribution of emergence times to initiate the cohorts could be another 702 

approach to accommodate uncertainty in first spring activity. 703 

 704 

Distributed delay 705 

There is currently no distributed delay function in DDRP, meaning that the overlap in 706 

generations and life stages of cohorts does not increase over multiple generations. Modeling 707 

distributed delay can be important because the timing of surveillance activities or IPM events 708 
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like spraying or trapping need to be adjusted for later generations [35,36,84]. Not accounting for 709 

distributed delay may be a greater issue for species that continue to develop throughout winter 710 

months or lack a temperature or photoperiodic event that synchronize populations, such as E. 711 

postvittana [31,56,60]. For many multivoltine species, DDRP may accurately predict peak events 712 

in each generation, but inaccurately predict the first appearance of one or more life stages after 713 

the first or second generations because of increasing overlap in generation cohorts. Thus, 714 

phenological event maps produced for species that have significant overlap in generations should 715 

be most reliable for the first few generations. This will be among the high priority issues in 716 

development of future versions of the platform. 717 

 718 

Conclusion 719 

DDRP is a new modeling tool that can integrate mapping of phenology and climatic suitability in 720 

real-time to provide timely and comprehensive guidance for stakeholders needing to known 721 

where and when invasive species may establish. When used for surveillance, the platform will 722 

hopefully increase chances for early detection of new or spreading invasive threats in the United 723 

States, and therefore help pest management programs mitigate their potential damage to 724 

agricultural and environmental resources. Additionally, DDRP may help plan monitoring and 725 

management efforts for IPM pests and biological control insects, and to predict pest pressure on 726 

host plants.  727 

The case studies we presented provided examples of how models for DDRP may be 728 

parameterized and then run to produce various products including gridded and graphical 729 

predictions of the number of generations, life stages present, dates of phenological events, and 730 

areas of climatic suitability based on two levels of climate stress. We encourage users of DDRP 731 
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to consider the limitations of the platform, to report the conditions that their model was designed 732 

to work under (e.g. a particular region, life stage event, or generation), and to document and any 733 

known sources of model error that could not be accounted for when providing validation and 734 

other feedback reports. The flexible and open-source nature of DDRP will facilitate making 735 

modifications and improvements, such as adding new environmental factors, using it for other 736 

regions besides CONUS, modeling non-insect organisms, expanding the types of model 737 

products, and adding features to improve model accuracy. 738 

 739 
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Tables and Figures 1115 

 1116 

Table 1.  Species-specific parameters used in DDRP with corresponding values for Epiphyas postvittana (light brown apple 1117 

moth) and Neoleucinodes elegantalis (small tomato borer). For both species, the phenological events for egg, larvae, and adults are 1118 

beginning of egg hatch, mid-larval development, and first egg-laying, respectively. The phenological event for pupae is first adult 1119 

emergence for E. postvittana and mid-pupal development for N. elegantalis. The duration and timing of the phenological event for the 1120 

overwintering stage will vary according to the number of cohorts applied in model runs (see text for details). 1121 

 1122 

Parameter Code E. postvittana N. elegantalis 

Lower developmental thresholds (°C)    

   Egg eggLDT 7.2 8.89 

   Larvae larvaeLDT 7.2 8.89 

   Pupae pupaeLDT 7.2 8.89 

   Adult adultLDT 7.2 8.89 

Upper developmental thresholds (°C)    

   Egg eggUDT 31.1 30 
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Table 1 cont.    

   Larvae larvaeUDT 31.1 30 

   Pupae pupaeUDT 31.1 30 

   Adult adultUDT 31.1 30 

Stage durations (°C degree-days)    

   Egg eggDD 127 86 

   Larvae larvaeDD 408 283 

   Pupae pupDD 128 203 

   Adult adultDD 71 96 

   Overwintering larvae  OWlarvaeDD varies ‒ 

   Overwintering adult OWadultDD ‒ varies 

Phenological events (°C degree-days)    

   Overwintering stage event OWEventDD varies varies 

   Egg event eggEventDD 126 80 

   Larvae event larvaeEventDD 203 140 

   Pupae event pupaeEventDD 128 100 
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Table 1 cont.    

   Adult event adultEventDD 22 55 

Cold stress    

   Cold stress temperature threshold (°C) coldstress_threshold 3 ‒1 

   Cold degree-day (°C) limit when most individuals die coldstress_units_max1 875 300 

   Cold degree-day (°C) limit when all individuals die coldstress_units_max2 1125 700 

Heat stress    

   Heat stress temperature threshold (°C) heatstress_threshold 31 32 

   Heat stress degree-day (°C) limit when most individuals die heatstress_units_max1 160 180 

   Heat stress degree-day (°C) limit when all individuals die heatstress_units_max2 220 340 

Cohorts    

   Degree-days (°C) to emergence (average) distro_mean 210 50 

   Degree-days (°C) to emergence (variation) distro_var 2500 1500 

   Minimum degree-days (°C) to emergence xdist1 100 0 

   Maximum degree-days (°C) to emergence xdist2 320 111 

   Shape of the distribution distro_shape normal normal 
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Table 2. Comparison of the characteristics, parameters, and products of climatic suitability models in CLIMEX and DDRP. 1123 

For simplicity, we do not show CLIMEX parameters related to interaction stress indices (hot-wet stress, hot-dry stress, cold-wet stress, 1124 

and cold-dry stress) or to radiation, substrate, light and diapause indices. 1125 

 1126 

Attributes DDRP CLIMEX 

Temporal range (time frame) Any – historical, real-time, near forecast, and 

climate change forecasts 

Historical (1961–1990), and future climate change 

forecasts for 2030, 2050, 2070, 2080, 2090, and 2100 

 

Temporal scale (time step) 1-day (daily) for PRISM data – others potentially 

accommodated 

Typically weekly values interpolated from monthly 

data 

 

Spatial scale Any – default is 2ʹ (~4 km) for PRISM data CliMond data at a 30ʹ (~55 km at equator) or 10ʹ (~20 

km) resolution; others potentially accommodated 

 

Factors influencing climatic suitability 

 

 

Cold and heat stress only Cold, heat, dry, and wet stress plus population growth  
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Table 2 cont.   

Modeling process overview Estimates daily cold and heat stress accumulation 

and determines whether total accumulations 

exceed the moderate (max1) or severe (max2) 

cold and heat stress limits 

Estimates weekly population growth and the 

accumulation of stress (cold, heat, dry, and wet); 

population growth is reduced when daily 

accumulations are too low or too high to maintain 

metabolism 

 

Climate stress parameters   

   Temperature thresholds Upper and lower cold and heat stress temperature 

thresholds, beyond which stress accumulates as 

cold and heat stress units  

 

Upper and lower cold and heat stress thresholds in 

Celsius or degree-day units 

   Temperature stress rates Cold and heat stress accumulation limits (max1 

and max2); stress units accumulate linearly over 

time (consecutive days not weighted higher than 

non-consecutive weeks) 

Type 1 – weekly cold and heat stress accumulation 

rate (similar to DDRP) 

  Type 2 – stress accumulates exponentially in cases of 

consecutive weeks of stress 
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Table 2 cont. 

   Moisture stress thresholds 

 

 

None 

 

Upper and lower dry and wet stress thresholds 

   Moisture stress rates None Weekly dry and wet stress accumulation rate for 

species 

 

Total no. of parameters possible 6 38 

 

Total no. of parameters typically used 6 21 

Depiction of climatic suitability Areas not under moderate or severe cold and heat 

stress exclusions 

Typically areas with a high ecoclimatic index (> 20 or 

30), which is calculated using annual growth and 

stress indices 

 

Products Gridded and summary map outputs of 1) cold 

and heat stress unit accumulation, and 2) cold, 

heat, and all (cold plus heat) stress exclusions  

Tabular and summary map outputs of 1) cold, heat, 

dry, and wet stress unit accumulation, and 2) the 

temperature, moisture, growth, and ecoclimatic index 
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Table 3.  Parameter values used to produce a CLIMEX model for Epiphyas postvittana (light brown apple moth) and 1127 

Neoleucinodes elegantalis (small tomato borer). 1128 

 1129 

    E. postvittana   N. elegantalis  

CLIMEX parameter Code Lozier & Mills He et al. This  da Silva et This  

  (2011) (2012) study  al. (2018) study  

Temperature         

   Lower temperature threshold (°C) DV0 7.5 7 7  8.8 8.8  

   Lower optimal temperature (°C) DV1 15 13 13  15 15  

   Upper optimal temperature (°C) DV2 25 23 23  27 27  

   Upper temperature threshold (°C) DV3 31 30 31  30 30  

   Degree-days per generation (°C days) PDD 673.6 673.6 673.6  588.2 588.2  

Moisture         

   Lower soil moisture threshold  SM0 0.15 0.25 0.15  0.35 0.35  

   Lower optimal soil moisture SM1 0.5 0.8 0.5  0.7 0.7  

   Upper optimal soil moisture SM2 0.8 1.5 0.8  1.5 1.5  
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Table 3 cont.         

   Upper soil moisture threshold SM3 1.4 2.5 1.4  2.5 2.5  

Cold stress         

   Cold stress temperature threshold (°C) TTCS 1.5 5 3  ‒ 2  

   Cold stress temperature rate (week‒1) THCS 0.005 0.0005 0.0005  ‒ 0.001  

   Cold stress degree-day threshold (°C days) DTCS ‒ ‒ ‒  15 ‒  

   Cold stress degree-day rate (week‒1) DHCS ‒ ‒ ‒  0.001 ‒  

Heat stress         

   Heat stress temperature threshold (°C) TTHS 31 31 31  30 30  

   Heat stress temperature rate (week‒1) THHS 0.0045 0.01 0.0045  0.0007 0.0007  

Dry stress         

   Dry stress threshold SMDS 0.15 0.2 0.15  0.35 0.35  

   Dry stress rate (week‒1) HDS 0.005 0.01 0.005  0.001 0.001  

Wet stress         

   Wet stress threshold SMWS 1.4 2.5 1.4  2.5 2.5  

   Wet stress rate (week‒1) HWS 0.001 0.002 0.001   0.002 0.002  
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Fig 1.  Schematic of the DDRP model framework. 1) Input datasets (blue shaded boxes) 1130 

include a) data on the developmental requirements, climatic tolerances (optional), and emergence 1131 

time(s) of population cohort(s) of a species (Table 1), and b) daily minimum and maximum 1132 

temperature data (Tmin and Tmax, respectively). 2) Hollow blue boxes indicate calculations 1133 

conducted on each daily time step, where a dashed outline represents calculations for climatic 1134 

suitability. Phenological event map (PEM) calculations for each life stage (E = egg, L = larva, P 1135 

= pupa, A = adult) are shown in green font. A full generation is counted when adults lay eggs (in 1136 

red), and the number of generations subsequently increases. 3) After the daily time step 1137 

completes, DDRP combines the results across all cohorts and exports the model outputs as multi-1138 

layer raster and summary map (“.png”) files (orange shaded boxes). Orange shaded boxes with a 1139 

dashed line represent model outputs for PEMs and climatic suitability. 1140 
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Fig 2. Phenological event maps generated by DDRP for (A) Epiphyas postvittana (light 1142 

brown apple moth) and (B) Neoleucinodes elegantalis (small tomato borer) in CONUS in 1143 

2018. The map for E. postvittana shows the average date of egg-laying by first generation 1144 

females, whereas the map for N. elegantalis shows the average date of first generation beginning 1145 

of egg hatch. Both maps include estimates of climatic suitability, where long-term establishment 1146 

is indicated by areas not under moderate (excl.-moderate) or severe (excl.-severe) climate stress 1147 

exclusion. 1148 

 1149 
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Fig 3. Predictions of cold stress, heat stress, and climatic suitability for Epiphyas postvittana 1150 

(light brown apple moth) in CONUS produced by CLIMEX (A‒C) and DDRP (D‒F) based 1151 

on 1961‒1990 climate normals. Climatic suitability is estimated by the Ecoclimatic Index (EI) 1152 

in CLIMEX, and by combining cold and heat stress exclusions in DDRP. In DDRP, long-term 1153 

establishment is indicated by areas not under moderate (excl.-moderate) or severe (excl.-severe) 1154 

climate stress exclusion. Cold and heat stress units in DDRP were scaled from 0 to 100 to match 1155 

the scale in CLIMEX. 1156 

1157 
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Fig 4. Predictions of cold stress, heat stress, and climatic suitability for Neoleucinodes 1158 

elegantalis (small tomato borer) in CONUS produced by CLIMEX (A‒C) and DDRP (D‒F) 1159 

based on 1961‒1990 climate normals. Climatic suitability is estimated by the Ecoclimatic 1160 

Index (EI) in CLIMEX, and by combining cold and heat stress exclusions in DDRP. In DDRP, 1161 

long-term establishment is indicated by areas not under moderate (excl.-moderate) or severe 1162 

(excl.-severe) climate stress exclusion. Cold and heat stress units in DDRP were scaled from 0 to 1163 

100 to match the scale in CLIMEX. 1164 

1165 
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Fig 5. DDRP model predictions of voltinism (number of generations per year) in (A) 1166 

Epiphyas postvittana (light brown apple moth) and (B) Neoleucinodes elegantalis (small 1167 

tomato borer) in CONUS for 2018. Maps include estimates of climatic suitability, where long-1168 

term establishment is indicated by areas not under moderate (excl.-moderate) or severe (excl.-1169 

severe) climate stress exclusion. 1170 

 1171 
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