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Abstract: The microbiome of the human body has been shown to have profound effects on physiological regulation 
and disease pathogenesis. However, association analysis based on statistical modeling of microbiome data 
has continued to be a challenge due to inherent noise, complexity of the data, and high cost of collecting 
large number of samples. To address this challenge, we employed a deep learning framework to construct a 
data-driven simulation of microbiome data using a conditional generative adversarial network. Conditional 
generative adversarial networks train two models against each other while leveraging side information learn 
from a given dataset to compute larger simulated datasets that are representative of the original dataset. In 
our study, we used a cohorts of patients with inflammatory bowel disease to show that not only can the 
generative adversarial network generate samples representative of the original data based on multiple 
diversity metrics, but also that training machine learning models on the synthetic samples can improve 
disease prediction through data augmentation. In addition, we also show that the synthetic samples 
generated by this cohort can boost disease prediction of a different external cohort. 
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1 INTRODUCTION 

The microbiome is a collection of microscopic 
organisms cohabitating in a single environment. 
These organisms have been shown to have a 
profound impact on its environment. Of particular 
interest is the human microbiome and how its 
composition can affect the health and development 
of the host. In particular, the microbiome of the 
human gut has been linked to the pathogenesis of 
metabolic diseases such as obesity, diabetes 
mellitus, and inflammatory bowel disease (Barlow, 
Yu, & Mathur, 2015; Franzosa et al., 2019; Tilg & 
Kaser, 2011). Additionally, the gut microbiome has 
been shown to have an effect on the development 
and modulation of the central nervous system 
(Carabotti, Scirocco, Maselli, & Severi, 2015), 
stimulation of the immune system (Fung, Olson, & 
Hsiao, 2017), and even impact the response to 
cancer immunotherapy treatment (Gopalakrishnan, 
Helmink, Spencer, Reuben, & Wargo, 2018). 
Because of the profound effect that the microbiome 
has on the human host, it is of increasing importance 
to understand how the changes in its composition 
lead to physiological changes in the host. 
     An important analysis in microbiome studies 
involves uncovering underlying association between 
microbes and the host’s health status. However, 
statistical modelling of the underlying distribution of 
microbiome data has been a long-standing challenge 
due to the sparsity and over-dispersion found in 
microbiome data. There have been many approaches 
proposed over the past decade, however there is still 
no consensus as to which models and underlying 
assumptions are best suited for handling the 
complexity of the data. (Kurilshikov, Wijmenga, Fu, 
& Zhernakova, 2017; Xu, Paterson, Turpin, & Xu, 
2015). 
     Recently, machine learning (ML) models have 
been advocated for a data-driven approach for the 
prediction of the host phenotype (Knights, Parfrey, 
Zaneveld, Lozupone, & Knight, 2011; LaPierre, Ju, 
Zhou, & Wang, 2019; Pasolli, Truong, Malik, 
Waldron, & Segata, 2016). However, one persistent 
challenge is the relatively small size of microbiome 
datasets. It is often the case that datasets have a far 
greater number of features than the number of 
samples, which can quickly lead to the overfitting of 
models. 
     To address these challenges and limitations, we 
construct a novel method for generating microbiome 
data using a conditional generative adversarial 
network (CGAN). We then construct synthetic 
samples using the generative model in order to 
augment the original training set. Data augmentation 
is a technique often used in ML to improve task 

performance and improve generalization (Bowles et 
al., 2018; Mikołajczyk & Grochowski, 2018). By 
generating a large number of synthetic microbiome 
samples that resemble the original data, we show 
that it is possible to improve the performance of ML 
models trained on the generated synthetic samples. 
     Generative adversarial networks (GANs) involve 
two neural networks competing against each other in 
an adversarial fashion in order to learn a generative 
model in a non-parametric data-driven approach 
(Goodfellow et al., 2014). GAN models have shown 
success in multiple domains including the generation 
of medical images (Frid-Adar et al., 2018) and 
single cell RNA-Seq gene expression profiles 
(Ghahramani, Watt, & Luscombe, 2018). 
Additionally, synthetic datasets generated using 
GAN models have shown to be able to boost 
performance of prediction based tasks through data 
augmentation (Che, Cheng, Zhai, Sun, & Liu, 2017). 
A recent study has also explored the behaviour of 
Wasserstein GAN models with gradient penalty in 
microbiome data, showing success in generating 
realistic data compared to other simulation 
techniques (Rong et al., 2019).  However, the utility 
and benefits of using GANs to generate microbial 
synthetic data has not been fully explored. 
Specifically, we hypothesize that the synthetic data 
generated using GAN models can boost the 
performance of downstream analyses. 
     In our study, we use a variation of standard GAN 
models called CGAN. CGANs incorporate side 
information into the model to allow the generation 
of samples from different distributions when certain 
underlying conditions, such as disease status, are 
given. CGAN has shown improvement from 
standard GAN models (Mirza & Osindero, 2014). 
The incorporation of side information also allows for 
the training of a single generative model that can 
incorporate different conditions.  
     The main contribution of this manuscript is the 
utilization of the CGAN model in order to construct 
a generator that can sample from different conditions 
to provide synthetic data representative of the true 
data. Additionally, we use the generator to 
synthesize samples for data augmentation. We show 
that the generated data not only are similar to the 
original data with respect to diversity metrics, but 
also that the data augmentation can lead to 
statistically significant improvement in the 
performance of disease prediction tasks in ML 
models. 
 
 

2    MATERIALS AND METHODS 

2.1 Datasets used in study 
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For our study, we use the data reported from two 
different cohorts of patients with inflammatory 
bowel disease (IBD). The Prospective Registry in 
IBD Study at Massachusetts General Hospital 
(PRISM) enrolled patients with a diagnosis of IBD 
based on endoscopic, radiographic, and histological 
evidence of either Crohn’s Disease or Ulcerative 
Colitis. The second dataset is used specifically for 
external validation and consists of two independent 
cohorts from the Netherlands (Tigchelaar et al., 
2015). The first consists of 22 healthy subjects who 
participated in the general population study 
LifeLines-DEEP in the northern Netherlands. The 
second cohort consists of subjects with with IBD 
from the Department of Gastroenterology and 
Hepatology, University Medical Center Groningen, 
Netherlands. This will be used as the validation 
dataset. 
     Processing of the stool samples collected for both 
datasets is described in the original study (Franzosa 
et al., 2019). Briefly, metagenomic data generation 
and processing were performed at the Broad Institute 
in Cambridge, MA. Quality control for raw sequence 
reads was performed and reads were taxonomically 
profiled to the species level using MetaPhlAn2 
(Segata et al., 2012). The relative abundance values 
are publicly available and were obtained from the 
original study (Franzosa et al., 2019). A summary 
showing the number of IBD patients, healthy 
subjects, and species level microbes for each dataset 
is shown in Table 1.  

Table 1: Datasets used in study. 

 # IBD # Healthy # Microbes 
PRISM 121 34 195 

Validation 43 33 115 

 
 
 
 
 
2.2 CGAN architecture 
 
In order to generate synthetic microbial community 
structures, we utilize a CGAN architecture. A 
standard GAN is composed of two competing 
networks: a generator and a discriminator. The task 
of the generator is to learn to generate synthetic data 
representative of real data while the discriminator 
tries to determine if a given sample is synthetic or 
real.  The generator is trained to maximize the 
probability of the discriminator in misclassifying 

samples. At the same time, the discriminator is 
trained to minimize this probability. A CGAN 
expands on standard GAN models by feeding side 
information, i.e., the disease status, to both the 
generator and discriminator. This allows the 
generator to generate synthetic samples conditioned 
on the provided side information. 
     The generator, G, of the CGAN model requires 
two sets of inputs: a set of priors and the conditional 
side information. In our study, we sample our priors 
from the uniform distribution . Both 
inputs are fed through multiple fully connected 
hidden layers of perceptrons and finally to an output 
layer. The output of the generator represents a vector 
of microbial abundance features.  
     The discriminator, , takes a sample of microbial 
abundance features as an input in addition to the side 
information. The inputs are passed through multiple 
fully connected layers and then to an output of a 
single node using the sigmoid activation function. 
The sigmoid function is used so that the output is a 
value ranging from 0 and 1. The output of the 
discriminator represents the prediction of the 
probability that the given sample of data is real. 
     Both generator and discriminator networks are 
trained in an iterative fashion such that in each 
epoch, the discriminator is first trained on the 
generated and real samples and the network weights 
are updated. After the discriminator has been 
updated, the generator is updated. The loss functions 
for the discriminator and generator are shown below. 
 

 (1) 

 
 
 

 
 
 
 
 
 
 

 

Figure 1: Visualization of the CGAN architecture. A 
set of prior noise  and side information  
corresponding to sample  are used to generate a 
synthetic sample. The discriminator then uses the 
side information to predict if a given sample is real or 
synthetic.  
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     Here � represents the number of real samples, �� 
represents a vector of priors for the generator, �� is 
the relative abundance vector of a real microbial 
community sample, and ��  is the side information 
that the networks are conditioned on. ����, ��� is the 
discriminator’s prediction if �� is real given the side 
information ��. 	���, ��� is the generator’s prediction 
of a synthetic sample given the prior noise ��  and 
side information ��.  A figure showing the 
architecture of our CGAN is shown in Fig.1. 

3 RESULTS 

3.1 CGAN training 

CGAN models were trained only using the PRISM 
dataset. Before training, microbial relative 
abundance features present in less than 20% of 
samples or with a mean abundance less than 0.1% 
across all samples of both the PRISM and Validation 
sets were removed from the analysis, resulting in a 
total of 93 microbial features in the PRISM and 
Validation datasets. 
     In our analysis, we sample a vector of size 8 for 
the input �� in the generator model. We add a vector 
of size 2 representing the one-hot encoded value of 
the disease state (IBD or healthy) as the input �� and 
concatenate the two inputs together. The 
concatenated input is then passed through two fully 
connected layers of size 128. Batch normalization is 
performed at each layer. The leaky ReLU activation 
function with an alpha value of 0.1 is performed 
after each batch normalization. Unlike the standard 
ReLU activation function, leaky ReLU still allows a 
small positive gradient for given negative values. 
The output layer of the generator is a vector of size 
93 representing the microbial features. The softmax 
activation function in used in order to reconstruct the 
relative abundance of the microbial community.  
     The discriminator network takes a vector of size 
93 representing microbial relative abundance 
features as an input in addition to vector of size 2 
representing the one-hot encoded disease state for 
that sample. The two inputs are concatenated and fed 

through two fully connected layers of size 128. The 
leaky ReLU activation is again used for each fully 
connected layer. The output of the discriminator is a 
single node with a sigmoid activation to shrink the 
prediction value to be between 0 and 1. 
     Models were trained using 10-fold cross-
validation. In each partition, 90% of the PRISM 
dataset was used to train the CGAN model. CGAN 
models were trained for 30,000 iterations in which 
32 random samples were selected at each iteration as 
real samples. A synthetic sample was generated for 
each of the 32 real samples using the sample’s 
respective disease state as the side information. The 
32 real and 32 synthetic samples were then fed to the 
discriminator for training and the discriminator was 
updated based on Eq. 1. After updating the 
discriminator, the discriminator is again used to 
predict the synthetic samples and the generator is 
updated based on Eq. 2. Both networks were trained 
using the ADAM optimizer with a learning rate of 
5x10-5 (Kingma & Ba, 2014). For the  
implementation and training of our CGAN models 
we used the TensorFlow package in Python (Abadi 
et al., 2016). 
     During training, models were saved every 500 
iterations. Additionally, the Principal Coordinate 
Analysis (PCOA) (Wold, Esbensen, & Geladi, 1987) 
of the training set, generated set, and the 
combination of the two sets was visualized and 
stored. The Bray-Curtis dissimilarity measure was 
used in calculating the distance matrix for PCOA 
(Bray & Curtis, 1957). The Bray-Curtis dissimilarity 
quantifies the microbial compositional dissimilarity 
between two different samples. Given two microbial 
samples, ��  and �� , the Bray-Curtis dissimilarity 
between the two samples is calculated as 
 

�����, ��� �  1 � 2���
�� � �� (3) 

 
where ���  is the sum of the lesser values for the 
abundances of each species found in both �� and ��, 
and �  and �  are the total number of species 
counted in �� and �� respectively. Visual analysis of 
the PCOA plots and the overlap of the original and 
generated data was used to select the best model. An 
example showing the PCOA of a selected model 
from the cross-validated training is shown in Fig. 2. 
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3.2 Generated data improve     
          prediction performance 
 
For each of the partitions in the 10-fold cross-
validation, we simulated 10,000 samples for both 
IBD and healthy groups using the selected best 
model. Relative abundance values were then log-
transformed and normalized to zero mean and unit 
variance. Next, we trained logistic regression and 
multilayer perceptron neural network (MLPNN) 
models to predict disease status using microbial 
features. For each partition of the cross-validation 
training, two sets of MLPNN and logistic regression 
models were trained. One set of models was trained 
using the original samples in the partition  of the 
training set. The second set of models was trained 
using the 10,000 simulated samples generated by the 
CGAN trained on the training set. 
     To train a logistic regression model on each 90% 
used as training set, we performed internal 5-fold 
cross-validation grid search over L1, L2, and Elastic 
Net regularizations considering 10 penalty strengths 
spaced evenly on a log scale ranging from 1 to 
10,000. Logistic regression models were trained 
using the Python scikit-learn package (Pedregosa et 
al., 2011). 
     MLPNN models were trained using two fully 
connected hidden layers with 256 nodes each and 
dropout with a rate of 0.5 after each layer. Leaky 
ReLU with an alpha of 0.1 was used as the 
activation function. The output layer contained two 
nodes using the softmax activation to predict the 

disease state. Networks were trained using the 
ADAM optimizer with a learning rate of 1x10-4. We 
set aside 20% of the training set as a validation set 
and networks were trained until the loss of the 
validation set had not decreased for 100 epochs. The 
implementation and training of the MLPNN models 
was again done using the TensorFlow package in 
Python (Abadi et al., 2016). 
     Using the trained logistic regression and MLPNN 
models generated from a fold’s training set as well 
as the generated dataset, we calculated the area 
under the receiver operating characteristic curve 
(ROC AUC) using the fold’s 10% held out data of 
true observed values. We observed that for logistic 
regression, the models trained using the generated 
sets had an average ROC AUC of 0.849 while the 
models trained on the original data had an average 
ROC AUC of 0.778 across the 10 folds. Similarly, 
for MLPNN models, the ROC AUC had a value of 
0.889 when training on the generated data and 0.847 
when training on the original data. Using a 
Wilcoxon Signed-Rank test, the ROC AUC when 
using the generated samples was significantly larger 
than that of when using the original data with a p-
value of 0.0249 for logistic regression models and a 
p-value of 0.0464 for MLPNN models. Boxplots of 
the ROC AUC values when using original and 
generated datasets is shown in Fig. 3. These results 
demonstrated that the CGAN augmented datasets 
can boost the predictive power of the ML models. 
 
3.3 Diversity of generated data  
 
Diversity metrics are often used to characterize 
microbiome samples and datasets. In order to check 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: PCOA of the training (left), generated (middles), and combined (right) datasets using the Bray-Curtis 
dissimilarity. Red points represent patients with IBD and blue points represent healthy subjects. 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 3: Boxplots for the ROC AUC values across 
10-fold cross-validation for logistic regression and 
MLPNN models trained on original and synthetic 
data.  
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how well the generated samples represent the real 
samples, we compare the distributions of the alpha 
and beta diversities for IBD and healthy samples.   
     Alpha diversity is a local measure of species 
diversity within a sample. It characterizes the 
microbial richness of a community. For our analysis, 
we use the Shannon Entropy metric to quantify the 
alpha diversity of samples. Given a sample  with  
relative abundance values, the Shannon Entropy is 
calculated as 
 

 (4) 

 
     Beta diversity, on the other hand, allows us to 
quantify how similar samples are to each other. In 
our study, we use the Bray-Curtis dissimilarity as a 
distance measure of beta diversity, calculated as 
described in Eq. 3. 
     To demonstrate the behaviour of the CGAN 
model, we visualize the diversity metrics for the 
training set and for 10,000 generated samples using 
the selected best model. In addition, we calculate the 

diversity metrics of a set of 10,000 generated 
samples using the random initialization of the 
CGAN before any training to show the initial 
random distribution.  
     Before calculating the diversity metrics, we 
clipped the generated samples in order to introduce 
zero values. The softmax function used to generate 
samples provides a vector entirely of positive values. 
However, in reality microbiome data very sparse. 
Therefore, to induce this sparsity into the generated 
samples, we calculated the minimum value across all 
species found in the training set. We used this value 
as a threshold and set any generated value less than 
the observed minimum to zero. 
     After clipping the generated sets, we calculated 
the diversity metrics. When considering beta 
diversity, we only considered the Bray-Curtis 
dissimilarity from the training set to itself, the 
training set to the best generated samples, and the 
training set to the randomly generated samples. The 
distributions of alpha and beta diversity for one of 
the cross-validated partitions is shown in Fig. 4. 
     We observed that the data generated from the 
selected best model followed very similar 
distributions of the alpha and beta diversities of the 
data used to train the CGAN. We did notice that the 
beta diversity within the training set had a spike near 
one, however upon post-analysis we discovered that 
was caused by samples with only a few numbers of 
microbial species present. 

3.4    Generated data is predictive of 
external dataset 

To evaluate if the synthetic samples generated from 
the CGAN model were generalizable to a dataset of 
a similar study, we trained a CGAN model using the 
entire PRISM dataset in the same manner as 
described in Section 3.1. The CGAN is trained for 
30,000 iterations and models as well as PCOA 
visualization of the real and synthetic samples are 
saved every 500 iterations. The best model is 
selected based on the PCOA comparison between 
the training and generated sets. A PCOA 
visualization of the PRISM dataset combined with 
the synthetic data generated from the best model and 
the external validation set is shown in Fig. 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Distributions of (A) the beta diversity based 
on the Bray-Curtis dissimilarity between the training 
set and itself, the generated (CGAN), and random 
datasets, and (B) the Shannon alpha diversity of 
training, generated, and random samples for IBD 
(left) and healthy (right) samples. 
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Figure 5: PCOA visualization of the combination of 
the PRISM dataset, synthetic data generated by the 
best CGAN model, and the external validation set. 
Red points represent patients with IBD and blue 
points represent healthy patients. 

     Using the best model, we evaluate if the 
generated samples can improve the task of 
predicting IBD status. Logistic regression and 
MLPNN models are trained in a similar fashion as 
outlined in Section 3.2. The model was trained using 
10,000 generated samples from a CGAN model that 
was trained on the entire PRISM dataset. We then 
evaluate the model performance on the true 
observations of the external validation IBD dataset. 
We observed an improvement in ROC AUC from 
0.734 to 0.832 in logistic regression models and 
from 0.794 to 0.849 in MLPNN models. This 
demonstrates that the synthetic samples generated 
using one cohort can augment the analysis of a 
different cohort. 
     Lastly, we analyse the distribution of alpha and 
beta diversities of the original PRISM dataset, the 
samples generated after training a CGAN on the 
whole PRISM dataset, and the external validation 
dataset. The alpha diversity is calculated for each 
dataset using the Shannon Entropy metric. The beta 
diversity within the PRISM dataset, from the PRISM 
dataset to the generated samples, and from the 
external validation dataset to the generated samples 

was calculated. In addition, we compared the 
random diversities from the randomly initialized 
CGAN before training. The alpha and beta 
diversities are shown in Fig. 6.   
     We observed that the beta diversity between the 
PRISM dataset and the synthetic samples generated 
from it displays similar distributions. Additionally, 
the distribution of the beta diversity values between 
the external validation set and the synthetic samples 
follow a similar pattern, suggesting that the CGAN 
model did not overfit the PRISM dataset and is 
robust in generating synthetic samples. We also 
observed that the alpha diversities within the 
PRISM, synthetic, and external validation datasets 
showed similar distributions. In particular, the alpha 
diversity within the samples of IBD patients was 
very similar. The distributions in the healthy 
samples were slightly different in each of the 
datasets, however we suspect this may be due to the 
fact that there were far fewer cases of healthy 
samples in the original PRISM dataset. 
 

4 CONCLUSIONS 

In this study, we have developed a novel approach 
for the generation of synthetic microbiome samples 
using a CGAN architecture in order to augment ML 
analyses. Using two different cohorts of subjects 
with IBD, we have demonstrated that the synthetic 
samples generated from the CGAN are similar to the 
original data in both alpha and beta diversity 
metrics. In addition, we have shown that augmenting 
the training set by using a large number of synthetic 
samples can improve the performance of logistic 
regression and MLPNN in predicting host 
phenotype. 
     A current limitation to this approach involves 
selecting the best CGAN model. Even though visual 
inspection has been a common approach, it is a 
subjective and may miss the optimal model. We plan 
to further this study by investigating stopping 
criteria using alpha and beta diversity metrics in 
order to facilitate CGAN model selection. In 
addition, we plan to evaluate other forms of side 
information such as using time in longitudinal 
datasets.  
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