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Abstract 24 

Epidemiological studies of obesity, Type-2 diabetes (T2D), cardiovascular 25 

diseases and several common cancers have revealed an increased risk in Native 26 

Hawaiians compared to European- or Asian-Americans living in the Hawaiian islands. 27 

However, there remains a gap in our understanding of the genetic factors that affect the 28 

health of Native Hawaiians. To fill this gap, we studied the genetic risk factors at both the 29 

chromosomal and sub-chromosomal scales using genome-wide SNP array data on 30 

~4,000 Native Hawaiians from the Multiethnic Cohort. We estimated the genomic 31 

proportion of Native Hawaiian ancestry (“global ancestry,” which we presumed to be 32 

Polynesian in origin), as well as this ancestral component along each chromosome (“local 33 

ancestry”) and tested their respective association with binary and quantitative 34 

cardiometabolic traits. After attempting to adjust for non-genetic covariates evaluated 35 

through questionnaires, we found that per 10% increase in global Polynesian genetic 36 

ancestry, there is a respective 8.6%, and 11.0% increase in the odds of being diabetic (P 37 

= 1.65�10-4) and having heart failure (P = 2.18�10-4), as well as a 0.059 s.d. increase in 38 

BMI (P = 1.04�10-10). When testing the association of local Polynesian ancestry with risk 39 

of disease or biomarkers, we identified a chr6 region associated with T2D. This 40 

association was driven by an uniquely prevalent variant in Polynesian ancestry individuals. 41 

However, we could not replicate this finding in an independent Polynesian cohort from 42 

Samoa due to the small sample size of the replication cohort. In conclusion, we showed 43 

that Polynesian ancestry, which likely capture both genetic and lifestyle risk factors, is 44 

associated with an increased risk of obesity, Type-2 diabetes, and heart failure, and that 45 
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larger cohorts of Polynesian ancestry individuals will be needed to replicate the putative 46 

association on chr6 with T2D. 47 

 48 

Author Summary 49 

Native Hawaiians are one of the fastest growing ethnic minority in the U.S., and exhibit 50 

increased risk for metabolic and cardiovascular diseases. However, they are generally 51 

understudied, especially from a genetic perspective. To fill this gap, we studied the 52 

association of Polynesian genetic ancestry, at genomic and subgenomic scale, with 53 

quantitative and binary traits in self-identified Native Hawaiians. We showed that 54 

Polynesian ancestry, which likely capture both genetic and non-genetic risk factors 55 

related to Native Hawaiian people and culture are associated with increased risk for 56 

obesity, type-2 diabetes, and heart failure. While we do not endorse utilizing genetic 57 

information to supplant current standards of defining community membership through 58 

self-identity or genealogical records, our results suggest future studies could identify 59 

population-specific genetic susceptibility factors that may be useful in suggesting 60 

underlying biological mechanisms and reducing the disparity in disease interventions in 61 

Polynesian populations. 62 

 63 

Introduction 64 

Native Hawaiians are the second fastest growing ethnic group in the U.S., growing 65 

40% from the 2000 to 2010 U.S. census [1]. Moreover, Native Hawaiians display alarming 66 

rates of obesity, coronary heart disease, diabetes, cardiovascular diseases, cancers, and 67 

other related chronic health conditions [2–9]. Epidemiological studies have shown that 68 
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49% of adult Native Hawaiians are obese, compared to 21% of European Americans and 69 

13% of Japanese Americans living in Hawai‘i Error! Reference source not found., with > 70 

2x and 5x higher odds of being obese than European- and Asian-Americans, respectively, 71 

after adjusting for socioeconomic status [6]. In addition, Native Hawaiians are ~2-3 times 72 

more likely to develop Type-2 diabetes (T2D) than their European American counterparts, 73 

even after adjusting for common modifiable risk factors such as BMI and socioeconomic 74 

covariates [4]. Similarly, Native Hawaiians are ~1.7 times more likely to develop 75 

cardiovascular diseases than European Americans [8], and cardiometabolic risk factors 76 

such as hypertension have been shown to be associated with genealogical estimates of 77 

proportion of Native Hawaiian ancestry [9]. Taken together, these observations suggest 78 

that in addition to non-genetic risk factors such as lifestyle or diet, there may be systematic 79 

differences in the number, frequency, or effect size of genetic risk alleles that contribute 80 

to epidemiological differences between Native Hawaiians and other continental 81 

populations. Yet, such genetic investigation has not been conducted and despite 82 

awareness and efforts to include more non-European populations in genomic studies, 83 

indigenous populations such as Native Hawaiians remain understudied [10–12]. 84 

Today, Native Hawaiians are an admixed population. Their ancestors settled the 85 

Hawai‘i archipelagos approximately 1,200-2,000 years ago and remained isolated there 86 

until 1778 when they encountered Western explorers who brought novel infectious agents 87 

that decimated the Native Hawaiian population before they rebounded over the last 88 

couple of centuries [13–16]. During the 18th and 19th centuries, Native Hawaiians became 89 

admixed with European and East Asian immigrants to the islands. The 2010 U.S. census 90 

data suggests that only approximately 1.2 million individuals in the U.S. derive some 91 
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proportion of their ancestry from Native Hawaiians, accounting for about 0.4% of the U.S. 92 

population. The small population size may be one of the challenges in recruiting large 93 

cohorts, which contributes to the reason that this population is under-investigated from a 94 

genetic standpoint.  95 

To begin filling the missing gap in the genetic understanding of disease risks in Native 96 

Hawaiians, we first distinguished a Native Hawaiian-specific component of ancestry from 97 

other continental ancestries, and tested the association of this global (genomic) ancestry 98 

to complex traits and diseases in Native Hawaiians. We presumed this component of 99 

ancestry to be Polynesian in origin, although we cannot discount the possibility that this 100 

component of ancestry has diverged from the prevalent ancestry component found in 101 

other extant Polynesian populations today. We further stress that associations between 102 

estimated global Polynesian ancestry and any phenotype will also capture any non-103 

genetic cultural or environmental effects that are correlated with Polynesian ancestry. 104 

These variables are typically measured with considerable error; thus, adjustment for them 105 

does not exclude residual effects. Therefore, an observed association with genetic 106 

ancestry is not evidence for a deterministic impact attributed to the Polynesian genetic 107 

ancestry alone. Nevertheless, an observed association with genetic ancestry may imply 108 

that genetic mapping studies could identify genetic susceptibility factors enriched in the 109 

Polynesian populations that may be useful in suggesting underlying biological 110 

mechanisms. 111 

We then tested the association of local Polynesian ancestry with complex traits and 112 

diseases in what is known as admixture mapping. Admixture mapping assumes that 113 

causal variants leading to increased risk or trait values occur more frequently on 114 
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chromosomal segments inherited from the ancestral population that has higher disease 115 

risk or larger average trait values [17–19]. This technique is thus ideal as a first line 116 

analysis in understudied populations that are recently admixed. It has previously been 117 

used in African-American and Latino populations to identify novel genomic regions 118 

associated with phenotypes such as asthma, blood cell traits, breast and prostate cancer 119 

(reviewed in ref [17]), but has not yet been applied to Native Hawaiians. 120 

 121 

Results 122 

Impact of global genetic ancestry on cardiometabolic traits in Native Hawaiians. 123 

We used 3,940 self-identified Native Hawaiians from the Multiethnic Cohort (MEC) 124 

[20] that were genotyped on the MEGA array [21] to assess the impact of global ancestry 125 

on health. We first needed to construct a reference panel for Polynesian (PNS) ancestry 126 

since there is no publicly available reference panel for the PNS ancestry among Native 127 

Hawaiians. (Note: we refer to this ancestral component as Polynesian for simplicity.) 128 

Among the 3,940 Native Hawaiians in our dataset, we identified a panel of 178 unrelated 129 

Native Hawaiian individuals with the highest estimated amount of PNS ancestry (>90% 130 

in unsupervised ADMIXTURE analysis; Methods) after accounting for other sources of 131 

recent admixtures, namely Europeans (EUR), East Asians (EAS), and Africans (AFR). 132 

Using this reference panel, we computed a haplotype-based estimate of global genetic 133 

ancestry for each of the remaining 3,762 individuals, and kept 3,428 unrelated individuals 134 

after excluding for the first-degree relatedness in our dataset (Methods).  135 

We then assessed in Native Hawaiians the association of each component of 136 

ancestries with a set of quantitative and binary cardiometabolic traits. Specifically, we 137 
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focused on three disease categories for which the Native Hawaiians have shown 138 

increased risks in previous epidemiological studies: obesity [3,6], T2D [4], and 139 

cardiovascular disease [8,9]. We also examined quantitative traits and biomarkers 140 

associated with these diseases, namely BMI at baseline, fasting glucose and insulin level, 141 

HDL, LDL, triglycerides, and total cholesterol. More importantly, because non-genetic 142 

factors, such as socioeconomic status (SES) and lifestyle factors, could potentially 143 

confound the association between global genetic ancestry and risk of diseases, we 144 

attempted to adjust for these factors using education as individual level proxy to SES 145 

(Methods). Overall, we found that higher PNS ancestry is strongly associated with higher 146 

risk of obesity, T2D, heart failure (HF), and consistently, with higher BMI and lower HDL 147 

levels among the quantitative traits (Table 1, S1-15 Tables). For example, we observed 148 

that, holding the proportion of EAS and AFR ancestry constant, every 10% increase in 149 

the PNS ancestry in our cohort corresponded to a 0.059 s.d. (or 0.35 BMI unit) increase 150 

in BMI and a 1.09 times the odds of T2D (after adjusting for BMI). We observed opposite 151 

effects of PNS ancestry on waist-to-hip ratio (WHR) in males and females separately, 152 

though the statistical significance is marginal (Table 1, S2 Table). For T2D, HF, 153 

hypertension (HYPERT), and ischemic heart disease (IHD), BMI is an established risk 154 

factor. In our models, we also found BMI to be strongly associated with disease risk for 155 

these conditions (max P < 1�10-7; S10-11, S13-14 Tables). For T2D and HF, we 156 

observed a strong association between disease risk and PNS ancestry even after 157 

accounting for BMI, suggesting additional risk factors that are specific or correlated to the 158 

PNS ancestry (Table 1). For HYPERT and IHD, we observed a weak but nominally 159 

significant association between PNS ancestry and disease risk if we do not account for 160 
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BMI. In fact, for most traits tested, the effect sizes due to PNS ancestry are lower after 161 

adjusting for BMI (S1 Fig), suggesting that at least part of the excessive risk for these 162 

traits may be mediated through BMI. Finally, other components of ancestry found in 163 

Native Hawaiians also exert an effect, as we observed that higher East Asian ancestry 164 

component are associated with increased risk of T2D, hyperlipidemia, and hypertension, 165 

but lower BMI and lowered risk of obesity (Table 1). 166 

 167 

Table 1: summary of association between global genetic ancestry and quantitative and binary 168 

cardiometabolic traits in the Native Hawaiians. 169 

 PNS EAS AFR 
Trait b P-value b P-value b P-value 
Quantitative Traits 
BMI 0.5923 1.04×10-10 -0.6400 <2×10-16 1.0777 0.0948 
WHR (male) -0.3592 0.0179 -0.1358 0.2664 1.9487 0.1218 
WHR (female) 0.2272 0.0985 0.2587 0.0139 -0.1722 0.8524 
Glucose -0.0129 0.929 0.1355 0.232 0.7825 0.463 
Insulin 0.2858 0.0472 0.0048 0.966 0.6249 0.5573 
HDL -0.4715 1.40×10-4 0.1753 0.0700 -1.4498 0.0988 
LDL 0.0736 0.557 0.0720 0.463 -0.5192 0.559 
TG 0.1387 0.0342 0.1426 0.0053 0.1639 0.7237 
TC -0.0441 0.7228 0.2072 0.0331 -0.8084 0.3602 
Categorical Traits 
Obesity 1.2164 2.24×10-7 -1.3596 5.40×10-11 1.3181 0.3979 
T2D 1.2416 1.04x10-9 0.6836 2.05x10-5 1.1393 0.4220 
T2D (adj BMI) 0.8209 1.65×10-4 1.1765 1.30×10-11 0.3603 0.8125 
HF 1.3104 1.99x10-6 -0.0224 0.9209 3.4587 0.0493 
HF (adj BMI) 1.0465 2.18×10-4 0.2528 0.2797 3.4653 0.0593 
HYPERL * 0.0652 0.792 0.6973 5.30×10-4 0.9841 0.5731 
HYPERT 0.6461 0.0100 0.7363 2.74x10-4 -0.6385 0.7081 
HYPERT (adj BMI) 0.3842 0.135 0.8783 1.89×10-5 -0.9459 0.585 
IHD 0.4787 0.0496 0.0164 0.9327 -0.3750 0.8270 
IHD (adj BMI) 0.2881 0.2457 0.1445 0.4633 -0.7074 0.6871 
TIA 0.4876 0.143 -0.0201 0.941 2.3080 0.278 
TIA (adj BMI) 0.3612 0.2839 0.0719 0.7928 2.1347 0.3226 

 170 

We present the effect sizes (b, in units of s.d. for quantitative traits and log odds for binary traits) and p-171 

values for the final model after accounting for covariates for PNS, EAS, and AFR ancestries, using propotion 172 

of EUR ancestry as baseline (Method). In all binary traits other than obesity, results adjusting for BMI as a 173 
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covariate in the model are also reported (* BMI was not found to be associated with HYPERL and thus was 174 

not adjusted in the model). Effect sizes and P-values that are significant after adjusting for testing 14 traits 175 

are bolded. Abbreviations: BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density 176 

lipoprotein; TG, triglycerides; TC, total cholesterol; T2D, Type-2 diabetes; HF, heart failure; HYPERL, 177 

hyperlipidemia; HYPERT, hypertension; IHD, ischemic heart disease; TIA, stroke and transient ischemic 178 

attack. For full model of each trait tested, please refer to S1-15 Tables.  179 

 180 

Because, as mentioned above, non-genetic factors such as socioeconomic status 181 

could confound our analysis, we further tested if adding neighborhood SES could account 182 

for these associations. Neighborhood SES (nSES) is a validated composite measure 183 

created by principal component analysis that incorporates U.S. Census data on education, 184 

occupation, unemployment, household income, poverty, rent, and house values [22]. This 185 

nSES measure was categorized into quintiles based on the nSES distribution of Hawaii 186 

census tracts and Native Hawaiian subjects were assigned a quintile based on their 187 

geocoded baseline address (Methods). For BMI/obesity, HDL, T2D, and HF that showed 188 

significant association with proportion of PNS ancestry, adding nSES into the model 189 

showed that nSES was statistically significantly associated with each outcome, and 190 

accounted for some proportion of the risk. However, the association between proportion 191 

of PNS ancestry and each of these outcomes remained highly significant, with the 192 

exception of HDL, which became nominally significant (Table 2, S1, S5, S9-11 Tables). 193 

These results are again consistent with the possibility that unique Polynesian genetic risk 194 

factors exist in the Native Hawaiians that partly explain the elevated risk. 195 

 196 
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Table 2: summary of association between global genetic ancestry and quantitative and binary 197 

cardiometabolic traits in the Native Hawaiians, after adding nSES into the previous model that only 198 

adjusted for inidivdual level covariates. 199 

 PNS EAS AFR 
Trait b P-value b P-value b P-value 
BMI 0.4974 2.26×10-7 -0.6113 1.37×10-15 0.8537 0.201 
HDL -0.3027 0.0201 0.1725 0.0891 -0.9393 0.3021 
Obesity 1.0774 1.29×10-5 -1.3105 1.03×10-9 1.2973 0.4141 
T2D (adj BMI) 0.7575 8.51×10-4 1.1569 6.92×10-11 0.2535 0.8668 
HF (adj BMI) 1.0201 7.41×10-4 0.2775 0.2588 3.4056 0.0714 

 200 

We present the effect sizes (b, in units of s.d. for quantitative traits and log odds for binary traits) and p-201 

values for the final model after accounting for covariates for PNS, EAS, and AFR ancestries, using propotion 202 

of EUR ancestry as baseline (Method). Effect sizes and P-values that are significant after adjusting for 203 

testing 14 traits are bolded.  204 

 205 

As the strongest association with genetic ancestry came from BMI, we further 206 

investigated the association between BMI and PNS ancestry in stratified analysis. We 207 

found no evidence of difference between sexes (data not shown). However, we did 208 

observe a strong difference in the strength of association stratified by T2D disease status. 209 

Specifically, among T2D cases, we found no significant association between BMI and 210 

proportion of PNS ancestry (P = 0.112; Fig 1, S16 Table). On the other hand, among 211 

T2D controls, individuals were predicted to have 0.087 s.d. (or 0.51 units) or higher BMI 212 

per 10% increase in PNS ancestry (P = 1.4x10-13). This is despite the T2D strata having 213 

similar sample sizes (1,310 cases vs. 1,799 controls). A BMI model including interaction 214 

between T2D strata and PNS ancestry showed significant negative interaction (P = 215 

0.0004, S17 Table). One interpretation is that relative individuals of other ancestries, BMI 216 

was only marginally increased among individuals with PNS ancestry when affected by 217 

T2D suggesting that there are alternative pathways (other than BMI) that contributes to 218 
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T2D risk in the Polynesian population. This is consistent with our observation that PNS 219 

ancestry is independently associated with higher risk for T2D (Table 1, with adjustment 220 

of BMI).  221 

 222 

Fig 1: Stratified association testing between global genetic ancestry and BMI. Individuals were 223 

stratified based on T2D disease status. Cases are colored in darker color, controls in lighter color. P-values 224 

for significant association coefficients are provided. The strongly significant association between PNS 225 

ancestry and BMI among T2D controls, but not cases, is suggestive of an interaction between PNS ancestry 226 

and T2D. 227 

 228 

For a subset of ~300 Native Hawaiians in our cohort, we also have measures of 229 

subcutaneous fat and visceral fat, as well as lean mass vs. fat mass obtained through 230 

dual-energy x-ray absorptiometry and abdominal magnetic resonance imaging [23]. In 231 

this small subcohort, we found that increasing PNS ancestry to be more strongly and 232 

positively associated with subcutaneous fat (P = 4.88x10-6) compared to visceral fat (P = 233 

0.014) (Table 3). There was no association with lean-to-fat mass ratio (P = 0.76), 234 

suggesting that PNS ancestry is associated with body fat distribution but not necessarily 235 

body fat composition. Because anthropometric measures of body fat distribution such as 236 
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Waist-to-hip ratio often differ between male and females, we also conducted sex-stratified 237 

analysis. We observed similar trend of associations between subcutaneous fat vs. 238 

visceral fat, though the association seems more strongly driven by males (Table 3). 239 

 240 

Table 3: Association of global ancestry with measures of fat distribution or fat composition among 241 

Native Hawaiians. 242 

 Combined Male Female 
 Estimate (s.e.) P Estimate (s.e.) P Estimate (s.e.) P 
Subcutaneous Fat 
Intercept -0.39 (0.25) 0.11 -0.58 (0.35) 0.10 -0.25 (0.37) 0.51 
PNS 1.30 (0.28) 4.88x10-6 1.52 (0.4) 2.29x10-4 1.14 (0.4) 0.0052 
EAS -0.14 (0.22) 0.54 0.050 (0.33) 0.88 -0.28 (0.32) 0.38 
AFR 3.16 (1.80) 0.080 5.45 (3.62) 0.13 2.46 (2.12) 0.25 
Total fat mass -0.0044 (0.0081) 0.59 -0.0033 (0.013) 0.80 -0.0056 (0.011) 0.62 
Visceral Fat 
Intercept -0.26 (0.26) 0.31 -0.11 (0.37) 0.77 -0.48 (0.38) 0.20 
PNS 0.71 (0.29) 0.014 0.55 (0.42) 0.19 0.98 (0.4) 0.016 
EAS -0.29 (0.23) 0.21 -0.092 (0.35) 0.79 -0.36 (0.32) 0.27 
AFR 3.45 (1.85) 0.064 6.54 (3.82) 0.089 2.45 (2.13) 0.25 
Total fat mass 0.0012 (0.0083) 0.89 -0.0082 (0.013) 0.54 0.0073 (0.011) 0.52 
Lean-to-Fat Mass Ratio 
Intercept 0.11 (0.18) 0.55 0.49 (0.28) 0.079 -0.23 (0.25) 0.37 
PNS -0.087 (0.29) 0.76 -0.64 (0.42) 0.13 0.40 (0.39) 0.31 
EAS -0.28 (0.24) 0.24 -0.77 (0.35) 0.030 0.15 (0.33) 0.64 
AFR 0.86 (1.95) 0.66 0.55 (4.21) 0.90 1.02 (2.21) 0.64 
 243 

N = 280, 280, and 294 for analysis on subcutaneous fat, visceral fat, and lean-to-fat mass ratio, respectively. 244 

In sex-stratified analysis, N = 128, 128, and 136 males for analysis on subcutaneous fat, visceral fat, and 245 

lean-to-fat mass ratio, respectively; N = 152, 152, and 158 females for analysis on subcutaneous fat, 246 

visceral fat, and lean-to-fat mass ratio, respectively. 247 

 248 

Mapping of cardiometabolic traits using local genetic ancestry in Native Hawaiians. 249 

We next examined the impact of local genetic ancestry on cardiometabolic traits in Native 250 

Hawaiians through admixture mapping using linear or logistic regression models. We only 251 

analyzed the traits that exhibited a significant association with the global PNS ancestry. 252 
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We used a threshold of 2.2x10-5 to declare genome-wide significance with a trait 253 

(Method). 254 

Across the 2 quantitative (BMI and HDL) and 2 binary (T2D and HF; obesity was 255 

not included as the definition of obese status is dependent on BMI) traits examined 256 

through admixture mapping, we identified one region that surpassed our genome-wide 257 

significance threshold (Fig 2): 62.7Mb to 65.7Mb on chr6 for T2D (Table 4, Fig 2). We 258 

further defined a broader region encompassing neighboring regions with admixture P-259 

value less than 1x10-4 as potential regions that may harbor causal allele(s). For this 260 

broader region spanning 11.4 Mb on chr6 (Table 4), we examined if known variants 261 

reported in the GWAS catalog could account for the signals we found through admixture 262 

mapping. We found 2 variants in the GWAS catalog for T2D that fall within our admixture 263 

peak (S18 Table). We imputed these two variants using 1000Genomes (phase 3) as the 264 

reference panel and found that conditioning on these variants did not significantly change 265 

our admixture mapping results (top P-value = 6.22x10-6; S2 Figure). These results 266 

suggest that our signals detected through admixture mapping may potentially be novel. 267 

 268 
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 269 

Fig 2: Manhattan plot of admixture mapping results for T2D. Dotted line denotes the genome-wide 270 

significance threshold for each trait at 2.2x10-5, determined through permutation. 271 

 272 
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 273 

Table 4: summary of significant loci identified through admixture mapping. 274 

  Admixture Mapping Single Variant Top Signal 

Trait Chr Peak -

log10P 

Signal Region  

Start – Stop (hg19) 

Broad Region  

Start – Stop (hg19) 

NSNP tested SNP ID OR P-value * Nearest 

Gene 

T2D 6 5.07 62,697,746 65,763,203 57,098,973 68,542,828 29,751 rs370140172 1.096 1.25x10-5 EYS 

 275 

The signal region from admixture mapping was defined as the interval between which admixture mapping P-value is below the genome-wide significance threshold 276 

of 2.2x10-5 (-log10P =4.65). Broad region was defined as the interval between which admixture mapping P-value is below 1x10-4; continuous segments with admixture 277 

mapping P-value below 1x10-4 but within 5 Mb are also merged. Within each broad region, we report the variant with strongest association with the trait through 278 

either single variant association testing. * For the chromosome 6 region, rs370140172 would be significantly associated with T2D after correcting for number of 279 

variants tested in the region by permutation (at 5% FDR, critical threshold = 1.51x10-5). 280 

 281 
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 282 

 To fine-map the candidate region on chromosome 6, we conducted single variant 283 

association tests (Fig 3). We imputed the full dataset of 3,940 individuals using 1000 284 

Genomes as reference to increase coverage across the region, and accounted for cryptic 285 

relatedness and population structure in a logistic mixed model (Methods). We found that 286 

the top associated variant on chr6 for T2D was a well-imputed (INFO score = 0.86) 5’ 287 

UTR variant rs370140172 (OR = 1.096, P = 1.25x10-5, Fig 3). Its association with T2D 288 

was significant after accounting for number of markers tested in this region (regional 289 

significance threshold = 1.51x10-5; Table 3). This variant showed a large difference in 290 

frequency between Native Hawaiians (MAF = 24.2% among our reference PNS 291 

individuals; 11.2% among MEC-NH population) and European (0%) or East Asian (0.9%) 292 

individuals from 1000 Genomes (S19 Table). Conditioning on rs370140172 also 293 

drastically reduced the admixture association signal (minimum P ~ 0.001 in the region; 294 

S3 Fig). Taken together, these observations suggest that rs370140172 or its proxy could 295 

be the allelic association driving the admixture signal. 296 

 297 
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 298 

Fig 3. Association signals with T2D in the broad region of chr 6. The top panel depicts association 299 

signals from admixture mapping; middle panel depicts the single variation association, and bottom panel 300 

the genomic coordinates and nearby genes. Highlighted region at the bottom indicated the signal region as 301 

defined in Table 2. 302 

 303 
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We attempted to replicate the single variant signal on chromosome 6 by examining the 304 

lead variant and its proxies for association with T2D in another Polynesian population of 305 

2,852 Samoan individuals, including 475 cases and 2,377 controls. We found no 306 

significant associations (minimum P = 0.743; S20 Table). However, we noted that the 307 

derived allele of rs370140172 had a significantly lower frequency in the Samoans (8.7%, 308 

compared to 24.2% in reference PNS individuals). The lower frequency of the allele and 309 

the current sample size does not provide sufficient power to replicate the association 310 

signal even at nominal significance level of 0.05 (Power = 14.2%; S4 Figure). Because 311 

of the difference in frequency between Native Hawaiians and Samoans, we also 312 

examined if this locus exhibits signals of positive natural selection in the Native Hawaiians 313 

(Methods). We found the derived allele to indeed sit on the longer haplotypes in Native 314 

Hawaiians, although the statistical significance is marginal compared to other loci of 315 

similar derived allele frequency in the genome (Z-score = +1.38; empirical P = 0.067). 316 

Thus, the elevated frequency in MEC-NH may still be the result of genetic drift. 317 

 318 

Discussion 319 

This study aimed to fill a gap of genetic research in Native Hawaiians. We focused 320 

on studying the association of genetic ancestry, both globally and locally, to diseases for 321 

which Native Hawaiians showed increased risk. While the focus is on genetic ancestry, 322 

we emphasize that our approach does not constitute a methodology to quantify the 323 

degree of indigenousness among individuals native to the Hawaiian archipelago. 324 

Estimating proportion of genetic ancestry is not without errors, the results may change 325 

depending on the input genetic or reference data, and there is a conceptual difference 326 
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between genetic ancestry and genealogical ancestry. Moreover, there are also difficulties 327 

in interpreting the estimated proportion; in this paper we made the simplifying assumption 328 

that the predominant component of ancestry found in MEC-NH individuals but not in other 329 

continental populations is Polynesian in origin. Given these caveats, we therefore believe 330 

the approach described here should not supplant current approaches, such as through 331 

self-reports or genealogical records, to define community membership. Consistent with 332 

this belief, we analyzed all individuals with available genetic data who self-identify as at 333 

least part Native Hawaiian ancestry; we did not attempt to define a population of Native 334 

Hawaiians using genetic data. 335 

We began our analysis by modeling Polynesian ancestry. We first conducted 336 

ADMIXTURE analysis to identify an internal Native Hawaiian ancestry reference panel 337 

since there is no appropriate representative panel currently available. Consistent with 338 

their known history, we found Native Hawaiians to be a recently admixed population, 339 

deriving the largest proportion of their genetic ancestry from a presumed Polynesian 340 

ancestral component (on average ~40.2%). We also found that global Polynesian 341 

ancestry from MEC-NH is positively and statistically significantly associated with BMI, 342 

HDL, Type-2 diabetes, obesity and heart failure after adjusting for other components of 343 

ancestries and available non-genetic covariates (Table 1 and 2). Polynesian ancestry 344 

was also nominally associated with WHR (in males), insulin level, triglycerides, 345 

hypertension and ischemic heart diseases, but these associations did not remain 346 

statistically significant after Bonferroni correction for the multiple traits that we tested in 347 

this study (Table 1). We then examined the association between local Polynesian 348 

ancestry and BMI, HDL, T2D, and HF. We found a 3.06 Mb region on chr6 possibly 349 
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associated with Type-2 diabetes (Fig 2 and 3). Conservatively, we searched an expanded 350 

broader region encompassing 11.4Mb (Fig 3, Table 4) for known GWAS variants for T2D 351 

and showed that these known variants could not explain signal we detected (S2 Fig, S18 352 

Table). Furthermore, single variant fine-mapping of the broad regions implicated a variant 353 

(rs370140172) on chr6 for T2D that was significantly associated with T2D after correcting 354 

for number of variants tested in permutation (Table 4) and showed large frequency 355 

differences between populations (S19 Table) that could account for the signal in local 356 

ancestry association (S3 Fig). Taken together, our findings suggest that these regions 357 

should be targeted for further investigation and replication in the future, preferably in 358 

additional Native Hawaiian or Polynesian populations.  359 

The strong association between global ancestry and disease risks or related 360 

quantitative phenotypes suggests the presence of population-specific variants that could 361 

contribute to the increased risk observed in these populations. For example, a recently 362 

reported, Polynesian-specific, CREBRF variant discovered in Samoans was strongly 363 

associated with the odds of obesity, a finding that we previously replicated in Native 364 

Hawaiians [24]. However, we should also stress that an association with global ancestry 365 

would also in theory capture any non-genetic cultural or environmental effects that are 366 

correlated with ancestry. We attempted to control for non-genetic factors such as 367 

education, representing individual-level socioeconomic status (SES), and behavioral 368 

traits, such as cigarette smoking. We also examined the possibility that our observed 369 

associations with global ancestry was due to community-level SES by including 370 

neighborhood income levels in the model (Table 2). Admittedly, these variables are still 371 

imperfect proxies for SES and non-genetic factors certainly play a role in the etiology of 372 
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these traits. Future studies may further integrate both individual-level (e.g. physical 373 

activity, diet, alcohol or medication use) and community-level (e.g. discrimination) non-374 

genetic factors. Therefore we should interpret these associations with global ancestry 375 

with much caution. 376 

These caveats notwithstanding, one notable observation is the association 377 

between global PNS ancestry and BMI. In analysis stratified by T2D status, despite 378 

having similar numbers of cases and controls, we found that PNS ancestry is not 379 

associated with BMI among T2D cases, but is associated with higher BMI among 380 

individuals unaffected by T2D (S16 Table). In models including interaction between global 381 

ancestry and T2D, we again observed that while T2D cases generally have higher BMI, 382 

those with greater PNS ancestry would actually have lowered BMI than those with less 383 

PNS ancestry (S17 Table, Fig 1). We interpret these findings to suggest that while PNS 384 

ancestry is positively associated with BMI, it is not proportionally increasing the risk of 385 

T2D compared to other ancestries. One possible explanation for this is through differential 386 

body composition. For example, individuals with increasing PNS ancestry may possess 387 

more lean mass, which contributes to BMI, than fat mass, which contributes to BMI and 388 

risk for T2D. There are some suggestions that individuals of PNS ancestry preferentially 389 

have greater lean mass than fat mass [25], although data is limited and we found no 390 

association between PNS ancestry and lean-to-fat mass ratio in a small subcohort of 391 

MEC-NH (Table 2). An alternative explanation is through differential fat distribution. For 392 

example, individuals with increasing PNS ancestry may preferentially store fat 393 

subcutaneously, which contribute to general adiposity and BMI but not necessarily to T2D, 394 

rather than viscerally, which could lead to insulin resistance and contribute to peripheral 395 
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insulin sensitivity and further T2D [26,27]. We did find a stronger association between 396 

PNS ancestry with subcutaneous fat compared to visceral fat among our small sub-cohort 397 

of MEC-NH (Table 2), and it may be possible there are differences in deep versus 398 

superficial subcutaneous fat storage that we have not investigated. Ultimately, more data 399 

will be needed to make firm conclusions. What seems to be clear from our result is an 400 

independent pathway beyond BMI through which Native Hawaiians are also at risk for 401 

T2D. The negative interaction between T2D and PNS ancestry in the BMI model suggests 402 

individuals with increasing PNS ancestry are affected with T2D at lower BMI. In support 403 

of this hypothesis, we found that PNS ancestry is positively associated with risk of T2D 404 

even after adjusting for BMI (Table 1). 405 

 We conducted admixture mapping testing the association between local PNS 406 

ancestry genome-wide with the traits significantly associated with global PNS ancestry. 407 

Because admixture mapping had not been previously conducted among Native 408 

Hawaiians and the haplotypic pattern and LD structure within Native Hawaiians had not 409 

been previously explored, we used permutation to establish the genome-wide threshold 410 

for significance for a single trait, which we determined to be 2.2x10-5. Using this threshold, 411 

we found one notable region on chr6 associated with T2D. 412 

Single variant fine-mapping of these regions showed a significant association on 413 

chr6 (rs370140172, P = 1.25x10-5) after correcting for number of variants tested by 414 

permutation (regional significance threshold = 1.51x10-5). This variant was imputed with 415 

high accuracy (INFO score = 0.86), exhibits large frequency enrichment compared to 416 

other populations (24% in non-admixed Native Hawaiians but monomorphic in 1KGP 417 

EUR and < 1% in 1KGP EAS; gnomAD v3 overall frequency = 0.00054), and explained 418 
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the admixture mapping signal we detected (S3 Fig). Rs370140172 falls within the 5’ UTR 419 

(2nd exon) of the gene EYS. Mutations in EYS can cause recessive retinitis pigmentosa 420 

[28,29], but there was no obvious link to T2D other than a suggestive association with 421 

T2D in Europeans (rs10498828, ~670kb away, P=9x10-6), and a genome-wide 422 

association with BMI in a Japanese population (rs148546399, ~1.5Mb away, P=1x10-9) 423 

[30,31]. Taken together, rs370140172 or its proxy may signal a novel population-specific 424 

candidate locus associated with T2D. We failed to replicate the association signal at this 425 

variant in a Samoan cohort. The failure to replicate could be partly explained by 426 

decreased power as the variant is rarer in Samoans and the cohort is relatively small. 427 

Furthermore, we may be limited by the availability of imputation panels; we used the 1000 428 

Genome Project as reference panel and, as such, a number of Polynesian-specific 429 

variants that could underlie the admixture signal in these region may not be well imputed. 430 

 In summary, Native Hawaiians exhibit an increased risk for obesity, type-2 431 

diabetes, and a number of cardiovascular diseases, but are generally understudied from 432 

a genetic standpoint in the literature. A better understanding of the genetic susceptibility 433 

risk factors will complement other epidemiological, non-genetic, risk factors for uniquely 434 

prevalent diseases among the Native Hawaiians. It is by integrating both genetic and non-435 

genetic risk factors in our understanding of population-specific disease risk that we will 436 

have a better chance to control these diseases. Native Hawaiians have undergone a 437 

unique evolutionary history in their trans-Pacific voyages and settlement of the Hawaiian 438 

archipelago. Both the demographic and adaptive histories of these people may have 439 

shaped their genetic architecture. We present the first analysis of the genetic ancestry of 440 

present-day Native Hawaiians and suggest that it may have an impact on the risk of these 441 
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diseases. However, genetic ancestry also reflects non-genetic cultural or environmental 442 

effects and we cannot exclude residual confounding by these variables. Nevertheless, if 443 

specific genetic susceptibility variants could be identified, they may be useful in clarifying 444 

underlying biological mechanisms. Further studies focusing on indigenous Polynesian 445 

populations, such as Native Hawaiians, will advance the findings reported here and may 446 

help alleviate the disparity in genomic medical research existing for Native Hawaiians.  447 
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Materials and Methods 448 

Study population. In this study, we used genetic and epidemiologic data from Native 449 

Hawaiian individuals from the Multiethnic Cohort (MEC). MEC is a prospective 450 

epidemiological cohort of >215,000 individuals spanning five major ethnicities, including 451 

biospecimen samples on >5,300 Native Hawaiians. It is currently the largest single cohort 452 

with genetic information on Native Hawaiians, and thus is ideal for our study. In this study, 453 

we used a subcohort of >3,900 individuals genotyped on the MEGA genotyping array [21] 454 

as part of the PAGE consortium [32]. The institutional review boards of the University of 455 

Hawai‘i and the University of Southern California approved the study protocol. All 456 

participants signed an informed consent form.  457 

        Quality control of MEGA array was previously described [24]. In general, individual 458 

and genotype level quality control filters were previously applied as part of PAGE, and 459 

additionally we applied the following steps: All variant names were updated to dbSNP 460 

v144; duplicated loci and indels were removed; triallelic variants or variants with non-461 

matching alleles to 1000 Genomes Project phase 3 (1KGP) were discarded; loci with 462 

unique positions not found in 1KGP were removed from the dataset; alleles were 463 

standardized to the positive strand by comparing to 1KGP. Finally, a genotype 464 

missingness filter of 5% and a minor allele frequency filter of 1% were applied, resulting 465 

in a total of 3,940 MEC Native Hawaiian (MEC-NH) individuals genotyped at 697,505 466 

SNPs. 467 

 468 

Global and local ancestry inference. In addition to a predominant Polynesian (PNS) 469 

ancestry, Native Hawaiians are known to be recently admixed with individuals of 470 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.18.102996doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.102996


 

 26 

European and East Asian ancestry [14]. In order to define individual genetic ancestry, 471 

whether locally or globally, we needed a reference panel for the Polynesian component 472 

of the Native Hawaiian ancestry. As such a reference panel does not exist, we sought to 473 

construct an internal reference panel by identifying MEC-NH individuals with the largest 474 

amount of global Polynesian ancestry as previously described [24]. Briefly, we combined 475 

all MEC individuals genotyped on the same MEGA array (3,940 Native Hawaiians, 3,465 476 

Japanese, 30 Hispanic/Latinos, 5,325 African Americans) and all individuals from 1000 477 

genomes Project,  pruned SNPs with r2 > 0.1 (using window sizes of 50 SNPs with steps 478 

of 10 SNPs across the genome), and partitioned the samples to two groups of related (up 479 

to and including 2nd degree) and unrelated individuals by KING (default threshold used). 480 

We then ran ADMIXTURE (v. 1.3.0) in unsupervised mode for unrelated samples, then 481 

projected the estimated ancestral allele frequency to the related samples to infer the 482 

genomic ancestries of the related group. We found stable estimates at k=4 after 5 483 

iterations. MEC-NH individuals at k=4 exhibited known components of ancestry from 484 

European, East Asian and African, as well as a component of ancestry that is unique to 485 

the MEC-NH, presumed to be Polynesian (S5  Fig). We then identified 178 unrelated 486 

MEC-NH individuals (kinship coefficient <0.2 estimated from PC-relate [33]) whose 487 

Polynesian component of ancestry were estimated to be over 0.9 as reference for the 488 

Polynesian component of the Native Hawaiian ancestry. 489 

To call local ancestry, we merged the MEC-NH samples with the above 1000 490 

Genomes reference individuals, and rephrased the merged dataset using EAGLE2 (v 491 

2.4.1). Next, we combined the 178 MEC-NH reference with the above 1KGP reference 492 

individuals to form the reference panel. Using this reference panel, we then inferred local 493 
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ancestry used RFMix [34] (version 2.03-r0). One key parameter for RFMix is the local 494 

recombination rates, which vary across continental populations [35,36] but has not been 495 

estimated for Native Hawaiians or Polynesians. However, using multi-way admixed 1KGP 496 

American (AMR) populations, we evaluated the impact of misspecification of a 497 

recombination map. We found that RFMix inferences of local ancestry are robust even 498 

using a constant recombination map (>98% concordance, S21 Table). Therefore we used 499 

HapMap2 pooled recombination map (ftp://ftp-500 

trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20110106_recombination_hotspo501 

ts/) to infer local ancestry in Native Hawaiians. To obtain global ancestry estimates, we 502 

summed the local ancestry estimates across the genome, after excluding tracts that have 503 

any ancestral probability < 0.9. We observed that on average, a self-reported Native 504 

Hawaiian individual derived ~29.6% ancestry from EUR, ~29.0% ancestry from EAS, ~1.2% 505 

ancestry from AFR, and the remaining ~40.2% ancestry from PNS. These values are 506 

similar to previous estimates of proportions of genetic ancestry from MEC using ancestry 507 

informative markers [37]. The summed PNS ancestry from RFMix is highly concordant 508 

with that inferred from ADMIXTURE [24], and is thus used for phenotype association and 509 

covariate adjustments in admixture mapping (below). 510 

 511 

Phenotype transformation. We focused on three categories of traits for which the Native 512 

Hawaiians exhibit excess risk in past epidemiological studies [2–4,6–9]: (1) adiposity traits, 513 

which include BMI at baseline and obesity; (2) metabolic traits, which include fasting 514 

glucose level, fasting insulin level, and Type-2 diabetes (T2D); and (3) cardiovascular 515 

traits, which include HDL, LDL, triglycerides (TG), total cholesterol (TC), heart failure (HF), 516 
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hyperlipidemia (HYPERL), hypertension (HYPERT), ischemic heart disease (IHD), and 517 

stroke and transient ischemic attacks (TIA). Fasting glucose and insulin levels were 518 

collected after entry to the MEC, between 2001-2006. Obesity, T2D, HF, HYPERL, 519 

HYPERT, IHD, and TIA are binary disease outcomes. The metabolic and the quantitative 520 

cardiovascular traits were previously studied by PAGE consortium; we thus followed the 521 

inclusion criteria and phenotype transformation (based on medication use) as previously 522 

suggested by PAGE [32] (S22 Table). At a given BMI, Polynesians have a higher 523 

proportion of lean muscle mass to fat mass than Europeans so we use the recommended 524 

BMI cut-off of 32 kg/m2 to define obesity cases and controls [25,38]. T2D includes 525 

prevalent cases at cohort entry and incident cases during follow-up, based on self-report 526 

with medication use in questionnaires or a report from linkage to Hawai‘i insurers, CMS, 527 

or CHDD [32]. For incident binary cardiovascular traits we utilized the Medicare fee-for-528 

service linkage data for MEC [39] defined as 529 

https://www2.ccwdata.org/web/guest/condition-categories. Descriptive summaries of the 530 

traits and covariates can be found in S23 Table. 531 

 532 

Associations between binary and quantitative traits with global ancestries. We 533 

tested the association of global Polynesian ancestry with quantitative and binary traits 534 

using linear and logistic regressions, respectively. We focused on the 3428 unrelated 535 

individuals after removing first degree relatives determined by KING [40] and  individuals 536 

used in the internal PNS reference panel. To account for the impact of non-genetic factors 537 

that can confound the association between traits and genetic ancestry, covariate-adjusted 538 

outcomes were create by regressing out the impact of the non-genetic factors. These 539 
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include behavioral traits such as smoking and education, as proxies for socioeconomic 540 

status. For quantitative traits, we first conducted univariate regression of the trait of 541 

interest on the non-genetic covariates. We then retained age and sex in the model, as 542 

well as all covariates that are nominally significantly associated with the trait. For 543 

categorical covariates retained in this procedure, we grouped the non-significantly 544 

associated level to reduce the variable down to a ternary or binary variable. We then 545 

model the covariates jointly in a multivariate regression model, and then standarized the 546 

residuals from this model. The standardized residuals were then used in a multivariate 547 

regression model with estimated global Polynesian, East Asian and African ancestries as 548 

independent variables, leaving European as the reference. For binary traits, we 549 

maintained the same structure, first removing uncorrelated covariates based on univariate 550 

logistic regression models. The remaining covariates are then used in a multivariate 551 

logistic regression with the addition of global ancestry estimates. The coefficients and p-552 

values associated with the non-genetic covariates and global ancestries from the 553 

multivariate regression model are provided in S1-15 Tables.  554 

 555 

Adjusting for neighborhood socioeconomic status (nSES) measures. To further 556 

assess if the association between global ancestry and outcome could be explained by 557 

uncaptured non-genetic factors, we included the nSES variable in our regression models 558 

[22]. We determined nSES by subjects’ residential census tract using an index derived 559 

from principal components of indicator variables of SES (education level; proportion 560 

unemployed and with blue collar job; proportion <200% poverty line; proportion employed; 561 

median household income, rent and home value) based on 1990 Hawaii Census data. 562 
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Each Native Hawaiian geocoded baseline address (1993-1996) was assigned a nSES 563 

qunitle based on the distribution of neighborhood SES across all census tracts in Hawaii. 564 

For traits that showed strong association in Table 1 (i.e. BMI/obesity, HDL, T2D, and HF), 565 

we added nSES in the model to account for confounding in the assessment of the 566 

association with global ancestry. Because of the area-based design, Native Hawaiian 567 

participants residing in the same census tract were assigned the same nSES measure. 568 

We thus used a mixed effect model to account for this spatial clustering by including the 569 

census tract ID as random effect. We used lmer and glmer (version 1.1-21) function in R 570 

(version 3.6.2) with default parameters. 571 

 572 

Mapping of binary and quantitative traits using local Polynesian ancestry. To 573 

identify local genomic segments in which the Polynesian ancestry is associated with a 574 

trait of interest, we conducted admixture mapping using logistic or linear regression. We 575 

focused on the same 3428 unrelated individuals used in global ancestry analysis (above). 576 

We used linear or logistic regression to test the association of estimated dosage of 577 

Polynesian ancestry from RFMix at each genomic location, while controlling for estimated 578 

global ancestry from EUR, EAS, and AFR. Traits were modeled in the same way as above 579 

in the global ancestry analysis, except we focused only on individual-level covariates for 580 

computational efficiency of genome-wide testing. 581 

 We determined the significance threshold for admixture mapping for a given trait 582 

using two approaches: by a recently published simulation-based approach [41] and by 583 

permutation. For the simulation-based approach, because we were only interested in 584 

testing the association of Polynesian ancestry to a trait of interest, we dichotomized 585 
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estimated local ancestry into Polynesian and non-Polynesian segments to estimate the 586 

covariance in local ancestry across the genome. We then estimated the genome-wide 587 

significance threshold in admixture mapping to be 2.28x10-5 using 10,000 simulations in 588 

STEAM [41]. For permutation-based approach, we simulated 1,000 runs of genome-wide 589 

admixture mapping, each based on a random phenotype drawn from a standard normal 590 

distribution. We then examined the distribution of the most significantly associated p-591 

value from each of the simulations and set at the 5% false discovery level to the threshold 592 

of 2.24x10-5. The two thresholds are nearly identical, and are similar to previously 593 

suggested threshold among Latinos [42] (4.8x10-5). We thus used 2.2x10-5 as the 594 

genome-wide significance threshold for admixture mapping, and also considered regions 595 

with local ancestry association p-values between 1x10-4 and 2.2x10-5 as suggestive and 596 

report these findings. 597 

 598 

Conditional analysis and single variant tests in associated admixture region. For 599 

the locus we identified through local ancestry association (Table 4), we defined the signal 600 

region as contiguous variants with admixture P-values lower than the genome-wide 601 

significance threshold (2.2x10-5, or -log10P>4.64). We then defined a broad region by 602 

extending the signal region to nearby flanking regions that are (1) < 5Mbp away upstream 603 

or downstream from the signal region, and (2) with -log10P>4. We then imputed our 604 

rephased dataset using Sanger Imputation Service (https://imputation.sanger.ac.uk/). We 605 

used 1KGP as the reference panel, and PBWT as the imputation software. We 606 

subsequently filtered out indels and loci with low imputation quality (INFO score <0.4), 607 

and applied a minor allele frequency filter of 1%. We then investigated whether a 608 
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previously known variant from the GWAS catalog [43] for the same trait could drive this 609 

signal by including all GWAS catalog variants residing in the broad region and passed 610 

quality control in our study as covariates in a conditional regression analysis. 611 

We also conducted single variant association based on imputed dosages in the 612 

entire broad region. We included all 3,940 samples in this analysis, and corrected the 613 

relatedness by using a linear mixed model from EMMAX [44]. The inter-sample 614 

relatedness was calculated from PC-relate [33] so to be freed from possible population 615 

structure. We followed the same covariate model and phenotype transformation as was 616 

done in admixture mapping, except for using the top 10 principal components (PCs) from 617 

PC-air [45] as substitutes for the global ancestry covariates. 1,000 permutations were 618 

carried out to estimate the regional critical values for significance. 619 

 620 

Replication analysis in Samoans. We attempted to replicate the association of 621 

rs370140172 and nine other proxies showing the strongest single-variant associations 622 

with a cross-sectional population based study of Samoans recruited from Independent 623 

Samoa in 2010 [38,46]. This study was approved by the institutional review board of 624 

Brown University and the Health Research Committee of the Samoa Ministry of Health. 625 

All participants gave written informed consent via consent forms in Samoan language. 626 

The Samoan participants from 2010 were genotyped genome-wide with Affymetrix 627 

6.0 genotyping arrays [38]. A subset of 1,284 Samoan participants were whole-genome 628 

sequenced as part of the Trans-Omics for Precision Medicine (TOPMed) Program 629 

sponsored by the National Institutes of Health (NIH) National Heart, Lung, and Blood 630 

Institute (NHLBI). The sequences were used to produce a Samoan-specific reference 631 
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panel for genotype imputation. Genotypes absent from the Affymetrix genotyping array 632 

and present in the reference panel were imputed in the remaining Samoan participants. 633 

T2D case and control exclusion criteria were defined to mirror that used in the MEC-NH 634 

analyses. Specifically, we removed cases who were pregnant, diagnosed with type 1 635 

diabetes, or under 20 years old. We removed controls with fasting glucose greater than 636 

7 mmol/L. This resulted in 475 cases and 2,377 controls. Association testing was 637 

conducted using logistic mixed model regression implemented in lme4qtl [47]. Empirical 638 

kinship as estimated from the genotypes was included as a random effect covariate. Age, 639 

BMI, education (coded as a continuous variable in six levels), and the first ten PCs were 640 

included as fixed effect covariates in the logistic mixed model regression. 641 

The Power of the replication analysis was conducted using the Genetic 642 

Association Study power calculator 643 

(http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/), assuming the case 644 

control sample size, estimated frequency of rs370140172, and a prevalence rate of T2D 645 

of 17.1% [46] in Samoans, and a significance threshold of 0.05. 646 

 647 

Test of Natural Selection. We calculated the nSL score [48] of derived alleles across all 648 

imputed loci using Selscan [49], after the post imputation quality control. We calculated 649 

nSL among 178 MEC-NH reference individuals who had estimated PNS ancestry > 90%, 650 

and compared the nSL value for rs370140172 (derived allele of 0.24, and INFO score of 651 

0.87) to that of 44,266 variants selected from the genome matched by imputation 652 

uncertainty (INFO score 0.77-0.97) and derived allele frequency (0.23-0.25). 653 

 654 
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Supporting Information 832 

S1 Fig: Correlation of effect sizes attributed to PNS ancestry in the regression model with 833 

or without adjustment for BMI. Across the binary traits tested, even if the effect attributable to 834 

PNS ancestry is not significant, the effect sizes are lowered if accounting for BMI, suggesting at 835 

least part of the excess risk for these traits among Native Hawaiians are mediated through higher 836 
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BMI associated with the ancestry. Hyperlipidemia was excluded because BMI is not associated 837 

with the disease risk in univariate regression model. HF, heart failure; HYPERT, hypertension; 838 

IHD, ischemic heart disease; T2D, type-2 diabetes; TIA, stroke and transient ischemic attack. 839 

S2 Fig: Admixture mapping P-value with or without conditioning on variants previously 840 

reported in GWAS catalog to be associated with T2D (rs79976124 and rs10498828). Green 841 

and blue colors denote SNP level P-value in association testing with and without, respectively, 842 

conditioning on known GWAS variants. 843 

S3 Fig: Admixture mapping P-value after conditioning on the most strongly associated 844 

variant in single variant analysis in chr6 (T2D) broad region. The originally reported admixture 845 

signal (blue) can be explained by the conditioned variant (green), suggesting that these single 846 

variants might be novel variants associated with these traits. 847 

S4 Fig: Power of replicating the top signal from single variant analysis with T2D in 848 

Samoans. We estimated the power to replicate the top signal (rs370140172) from single variant 849 

analysis with T2D in the Samoan cohort, using GAS power calculator 850 

(http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html). The prevalence rate 851 

of T2D in Samoans set as 17.1%, which was the value averaged over the reported values in both 852 

sex. The number of cases (N=475) and controls (N=2377) were set to the observed sample size 853 

in Samoans. The genotype relative risk was set to estimated OR (1.096) from MEC-NH. 854 

S5 Fig: Global ancestry proportion estimated from unsupervised ADMIXTURE analysis, 855 

after integrating runs of relatedness and unrelatedness. 3,465 MEC Japanese (MEC-JA), 30 856 

MEC Latinos (MEC-LA), 5,325 MEC African Americans (MEC-AA), and 3,940 MEC Native 857 

Hawaiians (MEC-NH) were merged with the 1000 Genomes Project populations. At K = 4 we 858 

identified an ancestral component (colored red) that are found largely in Native Hawaiians, 859 

presumed to be the Polynesian ancestry. 860 

S1 Table: Details of the association statistics of the covariates and global ancestries of 861 

BMI. Model 1 models the non-genetic covariates according to the heuristic described in the 862 
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Methods. The residual from model 1 is then inverse normalized and tested in model 2. Models 863 

1A and 2A repeats the procedure but included quintiles of nSES levels in a mixed effect model 864 

(Method); in this case, the R2 in Model 1A reported include both the fixed and the random effect. 865 

* edu4 was a binary variable created from the original categorical variable of education status by 866 

grouping levels 1,2,3 and coded 0, while education status level 4 was coded as 1. This was done 867 

because there were no significant associations between education levels 1 through 3 and BMI. 868 

See Supplemental Table 21 for description of these education levels.  869 

S2 Table: Details of the association statistics of the covariates and global ancestries of 870 

WHR. Model 1 models the non-genetic covariates according to the heuristic described in the 871 

Methods. The residual from model 1 is then inverse normalized and tested in model 2. The top 872 

panels were conducted in males only; the bottom in females only. See Supplemental Table 21 for 873 

description of these education and cigarette smoking levels.  874 

S3 Table: Details of the association statistics of the covariates and global ancestries of 875 

fasting glucose. Model 1 models the non-genetic covariates according to the heuristic described 876 

in the Methods. The residual from model 1 is then inverse normalized and tested in model 2.  877 

S4 Table: Details of the association statistics of the covariates and global ancestries of 878 

fasting insulin. Model 1 models the non-genetic covariates according to the heuristic described 879 

in the Methods. The residual from model 1 is then inverse normalized and tested in model 2.  880 

S5 Table: Details of the association statistics of the covariates and global ancestries of 881 

HDL. Model 1 models the non-genetic covariates according to the heuristic described in the 882 

Methods. The residual from model 1 is then inverse normalized and tested in model 2. Models 1A 883 

and 2A repeats the procedure but included quintiles of nSES levels in a mixed effect model 884 

(Method); in this case, the R2 in Model 1A reported include both the fixed and the random effect. 885 

S6 Table: Details of the association statistics of the covariates and global ancestries of 886 

LDL. Model 1 models the non-genetic covariates according to the heuristic described in the 887 

Methods. The residual from model 1 is then inverse normalized and tested in model 2. 888 
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S7 Table: Details of the association statistics of the covariates and global ancestries of TG. 889 

Model 1 models the non-genetic covariates according to the heuristic described in the Methods. 890 

The residual from model 1 is then inverse normalized and tested in model 2. * edu4 was a binary 891 

variable created from the original categorical variable of education status by grouping levels 1,2,3 892 

and coded 0, while education status level 4 was coded as 1. This was done because there were 893 

no significant associations between education levels 1 through 3 and BMI. 894 

S8 Table: Details of the association statistics of the covariates and global ancestries of 895 

total cholesterol. Model 1 models the non-genetic covariates according to the heuristic described 896 

in the Methods. The residual from model 1 is then inverse normalized and tested in model 2.  897 

S9 Table: Details of the association statistics of the covariates and global ancestries of 898 

obesity. Model 1 models the non-genetic covariates according to the heuristic described in the 899 

Methods. Model 2 then includes global ancestries in addition to the significant covariates. * edu4 900 

was a binary variable created from the original categorical variable of education status by 901 

grouping levels 1,2,3 and coded 0, while education status level 4 was coded as 1. This was done 902 

because there were no significant associations between education levels 1 through 3 and obesity. 903 

Model 3 included quintiles of nSES levels in a mixed effect model. 904 

S10 Table: Details of the association statistics of the covariates and global ancestries of 905 

Type-2 Diabetes. Model 1 models the non-genetic covariates according to the heuristic described 906 

in the Methods. Model 2 then includes global ancestries in addition to the significant covariates. 907 

Model 3 included quintiles of nSES levels in a mixed effect model.  * edu3 was a ternary variable 908 

created from the original categorical variable of education status by grouping levels 1 and 2. This 909 

was done because there were no significant associations between education levels 1 and 2 with 910 

T2D.  911 

S11 Table: Details of the association statistics of the covariates and global ancestries of 912 

heart failure. Model 1 models the non-genetic covariates according to the heuristic described in 913 

the Methods. Model 2 then includes global ancestries in addition to the significant covariates. 914 
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Model 3 included quintiles of nSES levels in a mixed effect model.   * edu3 was a ternary variable 915 

created from the original categorical variable of education status by grouping levels 1 and 2. This 916 

was done because there were no significant associations between education levels 1 and 2 with 917 

heart failure. 918 

S12 Table: Details of the association statistics of the covariates and global ancestries of 919 

hyperlipidemia. Model 1 models the non-genetic covariates according to the heuristic described 920 

in the Methods. Model 2 then includes global ancestries in addition to the significant covariates. * 921 

edu4 was a binary variable created from the original categorical variable of education status by 922 

grouping levels 1,2,3 and coded 0, while education status level 4 was coded as 1. This was done 923 

because there were no significant associations between education levels 1 through 3 and 924 

hyperlipidemia. 925 

S13 Table: Details of the association statistics of the covariates and global ancestries of 926 

hypertension. Model 1 models the non-genetic covariates according to the heuristic described 927 

in the Methods. Model 2 then includes global ancestries in addition to the significant covariates. 928 

S14 Table: Details of the association statistics of the covariates and global ancestries for 929 

ischemic heart disease. Model 1 models the non-genetic covariates according to the heuristic 930 

described in the Methods. Model 2 then includes global ancestries in addition to the significant 931 

covariates. * edu3 was a ternary variable created from the original categorical variable of 932 

education status by grouping levels 1 and 2. This was done because there were no significant 933 

associations between education levels 1 and 2 with ischemic heart disease. 934 

S15 Table: Details of the association statistics of the covariates and global ancestries for 935 

stroke and transient ischemic attacks. Model 1 models the non-genetic covariates according 936 

to the heuristic described in the Methods. Model 2 then includes global ancestries in addition to 937 

the significant covariates.  938 

S16 Table: Stratified analysis of association between global genetic ancestry and BMI 939 

among T2D cases and controls. Model testing was performed in the same manner as the global 940 
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analysis with BMI (S1 Table), except for stratifying based on T2D disease status. Model column 941 

provided the final model with association coefficients. * edu4 was a binary variable created from 942 

the original categorical variable of education status by grouping levels 1,2,3 and coded 0, while 943 

education status level 4 was coded as 1. This was done because there were no significant 944 

associations between education levels 1 through 3 and BMI. 945 

S17 Table: Model of association between global ancestry and BMI, including interaction 946 

with type-2 diabetes. Model 1 models the non-genetic covariates according to the heuristic 947 

described in the Methods, except for type-2 diabetes status. The residual from model 1 was then 948 

inverse normalized and tested in model 2, which includes global ancestries, type-2 diabetes status, 949 

and interactions between global ancestries and type-2 diabetes status. * edu4 was a binary 950 

variable created from the original categorical variable of education status by grouping levels 1,2,3 951 

and coded 0, while education status level 4 was coded as 1. This was done because there were 952 

no significant associations between education levels 1 through 3 and BMI. 953 

S18 Table: Variants within the admixture signal region that were reported to be associated 954 

with the tested or related traits in GWAS catalog. Reported P-value, associated trait, and 955 

mapped genes were provided by the GWAS catalog. Allele frequencies were either calculated 956 

from the imputed data of the 178 reference MEC Native Hawaiian individuals with estimated PNS 957 

ancestry > 90%, or obtained from 1000 Genomes Project. Frequencies were reported with respect 958 

to the minor allele in the Native Hawaiians, given in parenthesis next to the Native Hawaiian 959 

frequency estimates. 960 

S19 Table: Allele frequencies across populations for the most strongly associated variant 961 

in chr6 for T2D in single variant association test. Allele frequencies were either calculated 962 

from the imputed data of the 178 reference MEC Native Hawaiian individuals with estimated PNS 963 

ancestry > 90%, or obtained from 1000 Genomes Project (reported on dbSNP: 964 
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https://www.ncbi.nlm.nih.gov/snp/). Frequencies were reported with respect to the derived 965 

allele, given in parenthesis next to the Native Hawaiian frequency estimates. 966 

S20 Table: Association results to T2D in 2,852 Samoan Replication Cohort. We attempted 967 

to replicate the association of rs370140172 and nine other proxies showing the strongest single-968 

variant associations with a cross-sectional population based study of Samoans recruited from 969 

Independent Samoa (Methods). EAF, effect allele frequency in Samoans. BETA and SE refers 970 

to the effect size and standard errors, respectively, from the logistic mixed model association tests 971 

in the Samoan cohort. P-val (Samoa) and P-val (MEC-NH) provide the p-value from the logistic 972 

mixed model association tests in the Samoan cohort and MEC Native Hawaiian cohort, 973 

respectively. 974 

S21 Table: Local ancestry inference using RFMix is robust to the choice of recombination 975 

map. To evaluate the impact of recombination map on local ancestry inference, we used the 1000 976 

Genomes AMR population. Following the same procedure used for Native Hawaiians, we 977 

identified through unsupervised ADMIXTURE analysis 49 Peruvian (PEL) and 3 Mexican (MEX) 978 

individuals from 1000 Genomes as having > 80% Native American ancestry. We then inferred 979 

local ancestry using RFMix in 71 HapMap3 MEX individuals using the constructed reference panel 980 

of 99 CEU, 108 YRI, and 52 NA individuals from 1000 Genomes. We used three recombination 981 

map in the local ancestry inference: a HapMap2 pooled recombination map, a mis-specified 982 

African-American map, and a constant map that assumes a constant rate of 1cM / Mb across the 983 

genome. We compared in pairwise fashion the concordance of inferred ancestry across common 984 

variants between runs, and calculated concordance rate as the sum of the diagonal of the 985 

contingency table.  Across all comparisons, even when using a constant rate map, the 986 

concordance rate is extremely high (0.987, 0.981, and 0.981 for the comparisons of default vs. 987 

AA map, default to constant rate map, and constant rate to AA map, respectively), suggesting 988 

that the choice of recombination map does not strongly impact the local ancestry inference using 989 

RFMix. 990 
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S22 Table: phenotype inclusion and transformation for metabolic and quantitative 991 

cardiovascular traits. These traits were studied in PAGE consortium and we thus follow the 992 

same criteria and transformation. 993 

S23 Table: Descriptive summary statistics of the traits and covariates analyzed. Summary 994 

statistics reported after exclusion and transformation as described in S20 Table. For biomarkers 995 

(glucose, insulin, HDL, LDL, TG, and TC), a subset of participants were invited after cohort entry. 996 

Thus there is an age at baseline and an age at blood draw. 997 
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