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Abstract

In this work, we investigate the importance of explicitly accounting for cross-trial variability in neuroimaging
data analysis. To attempt to obtain reliable estimates in a task-based experiment, each condition is usually
repeated across many trials. The investigator may be interested in (a) condition-level effects, (b) trial-level
effects, or (c) the association of trial-level effects with the corresponding behavior data. The typical strategy
for condition-level modeling is to create one regressor per condition at the subject level with the underlying
assumption that responses do not change across trials. In this methodology of complete pooling, all cross-
trial variability is ignored and dismissed as random noise that is swept under the rug of model residuals.
Unfortunately, this framework invalidates the generalizability from the confine of specific trials (e.g., particular
faces) to the associated stimulus category (“face”), and may inflate the statistical evidence when the trial sample
size is not large enough. Here we propose an adaptive and computationally tractable framework that meshes
well with the current two-level pipeline and explicitly accounts for trial-by-trial variability. The trial-level effects
are first estimated per subject through no pooling. To allow generalizing beyond the particular stimulus set
employed, the cross-trial variability is modeled at the population level through partial pooling in a multilevel
model, which permits accurate effect estimation and characterization. Alternatively, trial-level estimates can be
used to investigate, for example, brain-behavior associations or correlations between brain regions. Furthermore,
our approach allows appropriate accounting for serial correlation, handling outliers, adapting to data skew, and
capturing nonlinear brain-behavior relationships. By applying a Bayesian multilevel model framework at the
level of regions of interest to an experimental dataset, we show how multiple testing can be addressed and
full results reported without arbitrary dichotomization. Our approach revealed important differences compared
to the conventional method at the condition level, including how the latter can distort effect magnitude and
precision. Notably, in some cases our approach led to increased statistical sensitivity. In summary, our proposed
framework provides an effective strategy to capture trial-by-trial responses that should be of interest to a wide
community of experimentalists.
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Introduction

The workhorse of functional magnetic resonance imaging (FMRI) studies is the task design, where it is
possible to experimentally manipulate conditions to investigate the brain basis of perception, cognition, emotion,
and so on. The reliability of a task-based experiment hinges on having a reasonably large number of repetitions
associated with a condition. Such repetitions are usually termed “trials”, and each trial is considered to be
an instantiation of an idealized condition. For example, in an emotion study with three conditions (positive,
neutral and negative), the investigator may show 20 different human faces of each emotional valence to the
subject in the scanner. From the statistical perspective, the number of trials serves as the sample size for each
condition and, per the law of large numbers in probability theory, the average effect estimate for a specific
condition should approximate the (idealized) expected effect with increased certainty as the number of trials
grows.

Statistics lives by and flourishes in the rich variability of the data. The ultimate goal of most neuroimaging
studies lies in generalizing results at the population level: the objective is to make statements that go beyond
the particular samples studied. Thus, variability across samples serves as a key yardstick to gauge the evidence
for the impact of experimental manipulations. More generally, in a neuroimaging study, at least four separate
levels of variability are woven into the data tapestry, all of which deserve proper statistical treatment:1

• Cross-subject variability. Among these four levels, cross-subject variability is the easiest and most
straightforward to handle. As the experimental subjects usually can be considered as independent and
identically distributed, cross-subject variability is typically captured through a Gaussian distribution at
the population level. In other words, each participant’s effect is considered to be drawn from a hypothetical
population that follows a Gaussian distribution.

• Cross-TR variability. Because FMRI data inherently form a time series, strategies must be developed
to handle the sequential dependency in the data. As the underlying mechanisms of BOLD response are
not fully understood, the current models cannot exhaustively account for various effects and confounds;
thus, temporal structure remains in the model residuals. The awareness of this issue has indeed generated
various strategies of autoregressive (AR) modeling to tackle it.

• Cross-region variability. Multiplicity is an intrinsic issue of the massively univariate approach adopted
in neuroimaging with voxels or regions treated as independent units. Various strategies have been de-
veloped, including cluster-based inferences, random field theory and permutation-based methods. At the
level of regions, we recently proposed an integrative approach that handles cross-region variability with a
Bayesian multilevel (BML) model that dissolves the conventional multiplicity issue (Chen et al., 2019a,
2019b).

• Cross-trial variability. Until recently, trial-by-trial response variability had received little attention
(Westfall et al., 2017; Yarkoni, 2019). That is, traditional FMRI paradigms include repetitions of trials
for the purpose of providing a more reliable estimate of condition-level response, and the variability is
ignored. The central objective of the present study is to develop a multilevel framework to effectively
handle this source of variability (along with the other sources of variability, above) in a computationally
scalable approach.

What is trial-by-trial variability? Clearly, multiple sources contribute to cross-trial fluctuations, although
these are rather poorly understood. When the fluctuations are of no research interest, they are often treated
as random noise under the assumption that the “true” response to, say, a fearful face in the amygdala exists,

1The variabilities across these four levels are usually considered random effects under the conventional statistical framework.
In contrast, variations associated with, for example, conditions (e.g. positive, neutral and negative), subject groups (e.g., patients
and controls) or quantitative variables (e.g., age, RT), are treated as fixed effects at the population level.
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Figure 1: Time series modeling in neuroimaging. Consider an experiment with five face stimuli. (a) Hypothetical times
series (scaled by mean value) is shown at a brain region associated with five stimuli. (b) The conventional modeling
approach assumes that all stimuli produce the same response with one regressor. (c) An effect estimate (in percent
signal change or scaling factor for the regressor (b)) is associated with the fit (green) at the condition level. (d) An
alternative approach models each stimulus separately with one regressor per stimulus. (e) Trial-level modeling provides
an improved fit (dashed blue). (f) The set of five stimuli (specific faces, blurred for privacy only) serves as a representation
of and potential generalization to a condition category (face). (g) As described in the paper, trial-level estimates can be
integrated via partial pooling such that inferences can be made at the general category level.

and deviations from that response constitute random variability originating from the measurement itself or
from neuronal/hemodynamic sources. Consider a segment of a simple experiment presenting five faces (Fig.1).
In the standard approach, the time series is modeled with a single regressor that takes into account all face
instances (Fig. 1a,b). The fit, which tries to capture the mean response, does a reasonable job at explaining
signal fluctuations. However, the fit is clearly poor in several places (Fig. 1c). Traditional FMRI paradigms
would ignore this variability across trials; in the present study, we propose to explicitly account for it in the
modeling.

Why is it important to properly account for cross-trial variability? Under the condition-level modeling
utilized in standard data analysis, trial-by-trial fluctuations are flatly swept under the rug of the model residuals,
creating at least three problems:

1) an unrealistic assumption of “fixed” responses across trials;

2) the loss of hierarchical structure across the two different levels – trial and TR – of data variability;

3) the inability to legitimately generalize from the confine of specific trials (e.g., 5 neutral faces from a given
stimulus dataset, Fig. 1f) to the condition category (e.g., neutral face, Fig. 1g).

This last point means that, strictly speaking, the domain of generalizability of experiment is the set of trials,
which is clearly not the way experimentalists interpret their findings. If one adopts a principled trial-level
modeling as developed here (see also an earlier work on trial-level modeling via a different approach, Westfall et
al., 2017; we discuss the methodology differences and outcomes in our approach, below), trial-based regressors
can be utilized to capture trial-by-trial fluctuations, thereby potentially capturing overall signal fluctuations
better (Fig. 1d,e). Importantly, as the varying trial response is explicitly accounted for, inferences can be made
at the desired level (e.g., neutral face, Fig. 1g).
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There are at least three major instances where the investigator is actually interested in trial-by-trial vari-
ability. First, and perhaps most common, an investigator may associate cross-trial fluctuations to behavior.
For example, trial-level effects can be associated with success/failure in task performance (Ress et al., 2000;
Pessoa et al., 2002; Sapir et al., 2005; Lim et al., 2009). Second, correlation analyses can be established in a
trial-by-trial fashion, at times called “beta series correlation” (Rissman et al., 2004). Third, trial-level responses
are also used for prediction purposes, including multivoxel pattern analysis (MVPA), support vector machines
(SVM), reinforcement learning and neural networks more generally. Our present research goal is to develop
an adaptive methodology that can capture cross-trial fluctuations effectively, thus allowing them to be applied
to the cases above as well as typical population-level analysis. Indeed, while we illustrate the approach with
behavioral and FMRI data, it can equally be applied to MEG, EEG and calcium imaging data, and to several
other paradigms—this methodology is quite general.

Conventional time series modeling strategies

The conventional whole-brain voxel-wise analysis adopts a massively univariate approach with a two-level
procedure: the first is at the subject level, and the second at the population level.2 The split between these two
levels is usually due to two reasons. One is model complexity: because of idiosyncrasies across subjects (e.g.,
different trial effects and confounds, varying AR structures), it is generally unwieldy to integrate all subjects
into a single model. The second consideration is practicality. In particular, it is computationally impractical to
solve one “giant”, integrative model even if one could build it.

The statistical model at the subject level is time series regression3 solved through generalized least squares
(GLS). The preprocessed EPI data yk is fed into a time series regression model as the response variable on the
left-hand side,

GLS : yk = α0 + α1z1k + ...+ αmzmk + β1x1k + β2x2k + ...+ βnxnk + εk, k = 1, 2, ...,K, (1)

where k indexes discrete time points, and the residuals εk are assumed to follow a Gaussian distribution. Between
the two sets of regressors, the first set zik (i = 1, 2, ..,m) contains various covariates including slow drifts (e.g.,
polynomial or sine/cosine terms associated with low-frequency signals), head-motion variables, outlier censoring
and physiological confounds such as cardiac and breathing effects, while the second set xjk (j = 1, 2, .., n) is
associated with the experimental conditions. Correspondingly, there are two groups of effect parameters: the
first set αi (i = 1, 2, ..,m) is usually of no interest to the investigator while the second set βj , j = 1, 2, ..., n is
the focus of specific research questions.

The construction of condition regressors xjk (j = 1, 2, .., n) in the GLS model (1) largely depends on the
research focus. For most investigations, the interest is placed on the effects at the condition level, and the
trials of each condition are treated as multiple instantiations of the event of interest. While various approaches
are adopted to construct the condition regressors xjk, they are typically treated with the assumption that
the response magnitude remains the same across all trials of a condition (Fig. 1b,c). Specifically, one regres-
sor per condition is constructed through the convolution of the individual trial duration with a fixed-shape

2Due to the difficulty and varying strategies of handling the discontinuities cross runs and sessions, the analytical pipeline of
FMRI analysis can be described in the literature with a two-, three- or even four-level procedure depending on the specific pipeline
or software. For example, the analysis for each run may be labeled as the first level, followed by a second level that summarizes the
effect estimates across runs (and a third level for across-session summary) through simple averaging or a fixed-effects model; the
analysis for generalization at the population level is thus termed as third (or fourth) level. As the data across runs and sessions
can be integrated into one model at the subject level through a numerical scheme (e.g., Chen et al., 2012), here we stick to a
two-level description for simplification. To avoid the messy terminology in the field, we directly describe the two levels as subject
and population instead of their ordinal sequence.

3The popular term for the subject-level analysis is general linear model (GLM) in neuroimaging. However, a more accurate
description of the modeling approach is time series regression, especially considering the nature of input data and the complex
issue of delicately handling the temporal structure embedded in the residuals through generalized least squares (GLS) (cf., ordinary
least squares (OLS) for GLM).
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hemodynamic response function.4 Note that the fixed-response-magnitude approach can be relaxed in certain
scenarios. For example, one may modulate the trial-level response by creating another regressor through aux-
iliary information (e.g., reaction time (RT)). At present, we will focus on an alternative approach: to capture
the trial-level effects, one feeds one regressor per trial to the GLS model (1); trial-level modulation, if desired,
will be performed at the population level.

Another complexity involves the residuals εk in the GLS model (1). If the residuals are white (i.e., no
autocorrelation), time series regression can be numerically solved through ordinary least squares (OLS) or
maximum likelihood. However, it has been long recognized that temporal correlation structure exists in the
residuals (e.g., Bullmore et al., 1996) because some components in the data either are unknown or cannot be
properly accounted for. Failure to model the autocorrelation may lead to inflated reliability (or underestimated
uncertainty) of the effect estimates. Three strategies that utilize GLS have been proposed to improve the model
by characterizing the temporal correlations in the residuals εk. First, an early approach was to characterize
the autocorrelation with a uniform first-order AR model for the whole brain (Friston et al., 2002). Second,
a localized AR(1) model was developed later so as to consider neighboring voxels within each tissue type
(Woolrich et al., 2001). Third, an even more flexible approach was created using an autoregressive moving
average ARMA(1,1) structure that accommodates the model at the voxel level through the program 3dREMLfit
in AFNI (Chen et al., 2012). A recent comparison study has shown that the performances of the three methods
match their respective modeling flexibility, complexity and adaptivity (Olszowy et al., 2019).

The conventional modeling of condition regressors in the GLS model (1) can be further extended. For
one, we can take inspiration from typical population-level analysis, which includes a term for each subject so
that subject-specific effects are properly accounted for. The same approach can be adopted at the trial level
to account for trial-by-trial variability. In particular, the assumption that all the trials of a given condition
share the same brain response magnitude should be viewed skeptically (Fig. 1d,e). Critically, from a model-
ing perspective, treating trials as “fixed effects” is tantamount to limiting the focus of the study to the trial
instantiations employed, potentially exaggerating the statistical evidence and foiling the validity of the experi-
menter’s goal to generalize from the particular samples used (e.g., specific faces utilized in the experiment) to
the generic level (e.g., human faces in general). Needless to say, the latter generalization is taken for granted
in neuroimaging studies. Here, we argue that the modeling strategy adopted should address this issue head on,
and we demonstrate a trial-level modeling approach to achieving this goal.

Methods

Perspectives on trial-level modeling

Our motivation is to directly model trial-level effects at the subject level and to account for across-trial
variability at the population level. In doing so, the conventional assumption of constant response across trials
is abandoned in light of the following two perspectives.

1) Research focus. Depending on the specific research hypothesis, one may be interested in: (a) trial-level
effect estimates for each subject, so that those effects can be utilized for predictions or correlativity among
regions; (b) association of trial-level effects with behavioral data; or (c) condition-level effects. We will focus
on the latter two which involve population-level analysis.

2) Modeling perspective. The BOLD response magnitude varies across trials, but what is the nature
of the trial-to-trial fluctuations? There are three modeling strategies depending on the ultimate research
goal, mapping to three different data pooling methods (Chen et al., 2019b). The first, commonly adopted
approach assumes that the underlying BOLD response does not change from trial to trial and that the observed

4The alternative approaches with multiple basis functions share the common assumption of same response magnitude across
trials.
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fluctuations are noise or random sampling variability (Fig. 1b,c). Thus, the average response is estimated
across trials to represent condition-level effects. This approach can be considered to be complete pooling, where
all the “individuality” of trials is ignored in the model. Technically, the approach precludes generalization to
the trial category in question, and does not allow extending one’s conclusions from the specific trials used in the
experiment to situations beyond the trials employed (Yarkoni, 2019). In contrast, it is possible to adopt a no
pooling strategy at the subject level, and estimate each trial’s response separately (Fig. 1d,e); in other words,
each trial is fully unique and assumed to be unrelated to other trials. Between the two extremes, a middle
ground can be taken at the population level such that the cross-trial variations are considered as random
samples of the condition-level effect (cf. subjects as samples of an idealized population). This characterization
of randomness allows the investigator to make the generalization from the specific trials instantiated in the
experiment to the concept of a condition category, the idealized population from which trials are envisioned to
be random samples. With such partial pooling approach, information can be loosely but meaningfully shared
across trials.

Neuroimaging is no stranger to dealing with the three pooling methods. In fact, the issue about cross-trial
variability basically runs parallel to its cross-subject counterpart. The typical split between the subject- and
population-level analyses means that a no-pooling strategy is adopted at the individual subject level in the
sense that each subject is assumed to have unique response effects; then partial-pooling is typically followed
up at the population level with a Gaussian distribution for cross-subject variability. In the early days, there
were even choices between fixed- versus random-effects analysis at the population level; such a comparison is
just another way to elaborate the differences between complete and partial pooling. Today, complete pooling
for cross-subject variability (or fixed-effects analysis) is typically considered unacceptable (leading to paper
rejection!), and the adoption of partial pooling (or random-effects analysis) at the population level is routine
practice. It is exactly the same underlying rationale that we wish to address in the context of cross-trial
variability, thus we believe there are no legitimate reasons preventing the analyst from the adoption of a more
general pooling methodology.

Population analysis through trial-level modeling

We start with a linear mixed-effects (LME) platform for population analysis. The model incorporates
trial-level effect estimates yst under one condition from individual subjects based on the GLS model (1),

yst = α0 + ξs + ηt + εst;

ξs ∼ N (0, λ2), ηt ∼ N (0, ω2), εst ∼ N (0, σ2);

s = 1, 2, ..., S; t = 1, 2, .., T.

(2)

The indices s and t code subjects and trials, respectively; α0 is the intercept that embodies the overall effect at
the population level; ξs and ηt represent cross-subject and cross-trial effects (random effects); εst is the residual
term and usually assumed to follow a Gaussian distribution. When explanatory variables are involved (e.g.,
between- and/or within-subject variables), the model can be naturally extended by augmenting the intercept
term α0. The LME framework (2) with a crossed or factorial random-effects structure can be numerically
analyzed by, for example, the program 3dLMEr5 in AFNI (Cox, 1996) at the whole-brain voxel-wise level.

How does the conventional approach compare to the LME formulation for trial-level modeling? The former
can be conceptualized as a dimensional reduction step of so-called “summary statistics”, a common practice
in neuroimaging. With the assumption that the effects from the T trials follow Gaussian distribution, the
conventional approach essentially reduces the whole distribution, one-dimensional curve, with one number, its

5The program 3dLMEr adopts the same LME framework as its predecessor 3dLME (Chen et al., 2013), but utilizes the R
package lme4 instead of nlme to accommodate broader modeling capabilities (e.g., handling crossed random-effects structure such
as the LME formulation (2)).
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mean. Such dimensional reduction may substantially decreases the amount of data and simplifies the model at
the population level, information loss or distortion naturally becomes a legitimate concern.

What is the exact direct impact when cross-trial variability is ignored? In the conventional approach trial
effects are obviously not modeled at the subject level. To a first approximation, the condition-level effect can
be conceptualized as the arithmetic mean of the trial-level effect estimates ys· = 1

T

∑T
t=1 yst. When no trial-

level information is available, the LME model (2) simply reduces to the conventional Student’s t-test for the
condition-level effects ys·:

ys· = α0 + εs;

s = 1, 2, ..., S.
(3)

With assumption of an identical and independent distribution of cross-trial effects ηt
i.i.d.∼ N (0, ω2), the missing

component of the cross-trial effects ηt in the GLM (3) relative to the LME counterpart (2) means that the
variability,

Var(
1

T

T∑
t=1

ηt) =
1

T 2

T∑
t=1

Var(ηt) =
ω2

T
, (4)

is not accounted for in the condition-level approach.6 Notice that this variability depends on and is sensitive to
T , the number of trials. Therefore, if T is large enough, the variability may become inconsequential, in which
case complete pooling could be justified as a reasonable approximation. However, given that the number of trial
repetitions is relatively small, such scenario appears unrealistic. Accurately mapping the data hierarchy and
explicitly characterizing cross-trial variability, as represented by the trial-specific terms ηt and its distribution
N (0, ω2) in the LME model (2), legitimizes the generalizability from the specific trials to a general category.

The early history of FMRI data analysis sheds some light on the issue of ignoring cross-trial variability. In
the early 2000s, there was an active debate in the field about population-level analysis, specifically between
aggregating cross-subject estimates through complete pooling (or fixed-effects analysis) versus partial pooling
(or random-effects analysis). Presently, it is clear that ignoring cross-subject variability leads to underestimated
uncertainty and inflated statistical evidence (Penny and Holmes, 2007), and there is now consensus that partial
pooling/random-effects is necessary to draw adequate inferences at the population level. Our investigation
of cross-trial variability can be conceptualized along the same lines as the older debate, but now considering
another source of variability, namely, trials. Although the analytical aspects are now more complex given the
additional dimension of effect decomposition (i.e., trials), we believe the consequences (e.g., effect inflation) of
ignoring cross-trial variability are similar to those of ignoring cross-subject variability (e.g., Baayen et al., 2008;
Westfall et al., 2017).

We reiterate that it is through the explicit capture of cross-trial variability that provides a solid foundation
for generalization. As a routine practice, nowadays cross-subject variability is properly accounted for at the
population level, and such accountability is evidenced in conventional models as simple as Student’s t-tests,
GLM and AN(C)OVA, or as the subject-specific terms ξs and their distribution N (0, λ2) in the above LME
platform (2). However, the same rationale has not been adopted and applied to the cross-trial variability, even
though the adoption of many exemplars of a condition in experimental designs is intended for generalization.

One potential improvement of the LME model (2) is the incorporation of effect precision. The subject-level
effect estimates (e.g., yst in the LME model (2)) from the GLS model (1) are estimated, naturally, with some
degree of uncertainty (embodied by the standard error, σ̂st). As the whole analysis pipeline is broken into
the two levels of subject and population, theoretically it is desirable to explicitly incorporate the reliability

6The i.i.d assumption about cross-trial effects ηt in the derivation is likely violated for several reasons including potential serial
correlation. However, the overall logic remains applicable.
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information of the effect estimates into the population-level model so that the information hierarchy would be
largely maintained. In standard practices, subject-level standard error is usually ignored at the population level;
such practice assumes that the uncertainty is either exactly the same across subjects or negligible relative to the
cross-subject variability (Chen et al., 2012). To address this shortcoming, some population-level methods have
been developed to incorporate both effect estimates from the subject level and their standard errors (Worsley
et al., 2002; Woolrich et al., 2004; Chen et al., 2012). However, this integration approach has not gained much
traction in practice due to its small potential gain (Mumford et al., 2009; Chen et al., 2012; Olszowy et al.,
2019). Within the LME framework, unfortunately there is no easy solution to consider these standard errors.
In contrast, taking them into account is a natural component of BML modeling, and we will explore the role
of precision information in the current context of trial-level modeling.

Another possible improvement of the LME model (2) is outlier handling. Due to the substantial expansion
in the number of regressors involved in trial-level modeling, the chance of having outlying effect estimates
cannot be ignored. However, it is a challenge to handle outliers and data skew within the LME framework. A
typical approach is to set hard bounds, thus constraining data to a predetermined interval in order to exclude
outliers. In contrast, by adopting a BML framework, outliers can be accommodated in a principled manner
with the utilization of non-Gaussian distributions for data variability.

Handling behavioral covariates and nonlinearity

Trial-level modeling can be extended to incorporate behavioral variables. In conventional approaches, the
association between trial-level effects and behavior can be modeled by creating a modulatory variable at the
subject level. Accordingly, instead of one, two regressors are constructed per condition. The first is the typical
regressor for the average condition effect (here, the behavioral measure is considered at a center value, such
as the subject’s mean). The second regressor codes, for example, for the linear relationship between BOLD
response and the behavioral measure. When trial-level effects are directly estimated at the subject level, the
following LME can be adopted at the population level:

yst = α0 + α1xst + ξ0s + ξ1sxst + εst;

(ξ0s, ξ1s)
′ ∼N (0,Λ), εst ∼ N (0, σ2);

s = 1, 2, ..., S; t = 1, 2, .., T ;

(5)

where xst is the behavioral measure of the sth subject at the tth trial. The parameters α0 and ξ0s are population-
and subject-level intercepts, respectively. The effect of the behavioral variable xst on the response variable yst
is captured through the slope parameter α1 at the population level, while its subject-level counterpart is
characterized by the slope parameters ξ1s. The 2 × 2 variance-covariance matrix Λ reflects the relationship
between the subject-level intercept ξ0s and slope ξ1s.

The modeling of behavioral covariates can be altered to relax the linearity assumption. Polynomials (e.g.,
quadratic terms) can be used but still require some extent of prior knowledge and assumption about the
relationship. Alternatively, we can adopt smoothing splines with a set of basis functions defined by a modest
sized set of knots. For example, we can use penalized cubic smoothing splines s(·) to achieve a counterbalance
between the goodness of fit and the curvature or wiggliness measured by the integrated square of second
derivative (Wood, 2017):

yst = s(xst) + ξs + εst;

ξs ∼ N (0, λ2), εst ∼ N (0, σ2);

s = 1, 2, ..., S; t = 1, 2, .., T.

(6)

The approach of smoothing splines can be conceptualized as an adaptive and calibrating process. On one hand,
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we could simply adopt a naive fit with a straight line to the data; on the other hand, we could fully rely on the
data and trace faithfully each data point, regardless of the roughness of the fitting curve. Between these two
extremes, we intend to learn from the data by searching for a middle ground through an adaptive process of
partial pooling with the imposition of curve smoothness.

Alternative trial-level modeling

Previously, Westfall et al. (2017) proposed an integrative approach to address the trial-level generalization
problem. They relaxed the assumption of fixed BOLD response across trials and directly modeled trial-to-trial
fluctuations with the presumption of an AR structure in the data ysk as opposed to the residuals in addition
to a few oversimplifications. Furthermore, both the subject and population levels were merged into one model.
In the following description, we have slightly modified and generalized their original notation with data of I
experimental conditions from S subjects,

ysk = α0 + α1ys,k−1 + α2ys,k−2 +
I∑

i=1

(βi + ξsi)

Ti∑
t=1

xsitk +
I∑

i=1

Ti∑
t=1

ηitxsitk + εsitk;

ξsi
i.i.d.∼ N (0, λ2i ), ηit

i.i.d.∼ N (0, ω2
i ), εsk

i.i.d.∼ N (0, σ2);

i = 1, 2, ..., I; s = 1, 2, ..., S; k = 3, 4, ...,K; t = 1, 2, ..., Ti.

(7)

Indices s, i, t and k code subject, condition, trial and time, respectively; Ti is the number of trials for the
ith condition; α0 is the overall intercept; λ2i and ω2

i characterize the cross-subject and cross-trial variability,
respectively, for the ith condition; xsitk is the trial-level regressor; the effect associated with the regressor xsitk
of the ith condition is partitioned into two components, βi for the average (fixed) component across all trials
and ξsi for the subject-specific (random) component; ηit represents the cross-trial (random) effect shared by
all subjects; εsitk is the residual term with the assumption of white noise (no serial correlation) and variance
σ2. Note that an AR(2) structure with two parameters α1 and α2 is explicitly modeled with lagged effects
as regressors, instead of being embedded in the residuals as is typically practiced in the field (Woolrich et al.,
2001; Worsley et al., 2002; Chen et al., 2012). All random effects and residuals are assumed Gaussian. In
addition, likely for computational simplifications, the intercept α0, AR effects α1 and α2, cross-trial effect ηit
are assumed to be the same across subjects. Due to the unavailability of numerical implementations and the
intractable computational cost, the above LME model was solved at the region level in Westfall et al. (2017)
through the NiPyMC Python package. Finally, they focused solely on conventional statistical evidence and
its dichotomization (i.e., thresholding), whereas we wish to consider both effect magnitude and the associated
statistical evidence through a more continuous view of statistical support (Chen et al., 2017).

Trial-level modeling and study goals

We will use an FMRI dataset to demonstrate our trial-level modeling framework that blends in well with
the current analytical pipeline. At the subject level, the effect estimate at each trial is obtained with no
pooling through the GLS model (1), with the temporal correlation in the residuals captured via an ARMA(1,1)
structure. At the population level, in parallel to cross-subject variability, the trial-level effects are modeled
through partial pooling to address the following question: What are the differences and consequences compared
to the conventional approach of complete pooling? The common practice in neuroimaging is largely limited
on statistical evidence followed by artificial dichotomization; thus, relatively little attention is paid to effect
magnitude. For example, Westfall et al. (2017) reported substantially inflated statistical values (1.5-3.0 times)
when complete pooling was adopted. Here, we wish to explore whether we could develop a computationally
economical approach to incorporating trial-level effects while emphasizing the impact of trial-level modeling on
both effect estimate and its uncertainty. Overall, the issues that we want to raise and explore include:
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1) extent of cross-trial variability;
2) variability of autocorrelation structure in the subject-level residuals;
3) impact of directly modeling the autocorrelation with lagged effects;
4) cross-trial fluctuations as an indication of synchrony among regions;
5) importance of incorporating precision information in model formulation;
6) handling of data skew and outliers;
7) reporting full results in a comprehensive fashion.

Most of the models in this paper are under the Bayesian framework using Stan (Carpenter et al., 2017)
through the R package brms (Bürkner, 2018). The choice of Bayesian modeling was made for multiple reasons,
most notably its ability to incorporate multiplicity and to provide a straightforward interpretation of effect
estimates through posterior distributions, instead of using point estimates and significance testing thresholding.
Each Bayesian model here is specified with a likelihood function, followed by priors for lower-level effects (e.g.,
trial, region, subject). The hyperpriors employed for model parameters (e.g., population-level effects, variances
in prior distributions) are discussed in Appendix B. Note, however, that if the ROI-related components in our
models are excluded, the models can be applied at the whole-brain voxel level under the conventional LME
framework.

Trial-level modeling of FMRI data

Experimental data

We adopted a dataset from a previous experiment (Padmala et al., 2017). A cohort of 57 subjects was
investigated in a 3T scanner. Each subject performed 4 task types,7 each of which was repeated across 48
trials. Each task started with a 1 s cue phase indicating the prospect of either reward (Rew) or no-reward
(NoRew) for performing the subsequent task correctly. The cue was followed by a 2-6 s variable delay period.
The task stimulus itself was displayed for 0.2 s. Participants had to perform a challenging perceptual task when
confronted with either a negative (Neg) or neutral (Neu) distractor. The subject was then expected to respond
within 1.5 s. The total 4 × 48 = 192 trials were randomly arranged and evenly divided across 6 runs with 32
trials in each run. The TR was 2.5 s. In the analyses that follow, only correct trials were employed.

We sought to investigate the interaction between motivation (reward) and emotion (distraction) in both
behavior and brain data. The experiment manipulated two factors: one was the prospect (Pro) of being either
rewarded or not while the other was the distractor (Dis) displayed, which was either negative or neutral. In
terms of brain responses, there were six effects of interest: two cue types (Rew, NoRew) and four prospect-by-
distractor task types (NoRew_Neg, NoRew_Neu, Rew_Neg, Rew_Neu) following a 2 × 2 factorial structure. In terms
of behavior, the focus was the recorded trial-level RT on the same four task types. In addition, the relationship
between brain response and behavioral RT was of interest. Here, variable names with a first capital letter (e.g.,
Pro and Dis for the manipulation factors) symbolize population effects (or fixed effects under the conventional
framework), whereas those with a first lowercase letter (e.g. subj, trial and roi for subject, trial and ROI)
indicate lower-level (or random) effects.

Behavioral data analysis

We first analyzed behavioral performance at the condition level. The success rate, rateijs, measures the
proportion of correct responses (out of 48 trials) of sth subject under the task of ith prospect and jth distractor.
The data could be analyzed with a binomial distribution through a logistic model. However, to aid interpretabil-
ity, as the number of trials of each task was reasonably large, the binomial distribution was approximated as

7The terms “condition” and “task” are interchangeable in the literature in describing a stimulus type. Here we use “condition”
to describe a general category of trials to avoid any potential confusion since the experiment involves both cues and tasks.
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(a) Posterior distributions of correct response rates
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Figure 2: Summary of accuracy based on the BML model (8). (a) Response accuracy and the associated 95% quantile
interval were estimated for each of the 4 tasks. (b) Among the posterior distributions of accuracy, the bottom two rows
are the main effects while the top five rows show the interactions. At the right side of each distribution lists the posterior
probability of each effect being positive, P+ (area under the curve to the right of the green line indicating zero effect), also
color-coded in the distribution shading. The vertical black line under each distribution is the median (or 50% quantile).
Each distribution is a kernel density estimate which smooths the posterior samples. This figure corresponds to Fig. 3B
in Padmala et al. (2017).

Gaussian; thus, we opted to model the success rate data in a manner that follows the model:

rateijs ∼ N (µ, σ2);

µ = Proi ∗Disj + subjs;

subjs ∼ N (0, λ2);

i = 1, 2, j = 1, 2, s = 1, 2, ..., 57;

(8)

where subjs is the subject-specific effect, Proi is the effect associated with the ith level of prospect, and Disj is
the effect associated with the jth level of distractor; the expression Proi∗Disj is α0+Proi+Disj+Proi : Disj with
Proi : Disj being the second-order interaction between the two variables (borrowing the notation convention
from the statistical programming language R).8 We also fitted the success measure data using a t-distribution
instead of Gaussian in the model (8); however, the modification did not improve model fit considerably.

The response accuracy data rateijs is consistent with the following conclusions. Accuracy varied to some
extent across the four conditions (Fig. 2a). For the main effects of the two factors (prospect and distractor,
bottom two rows, Fig. 2b), the subjects had a lower response accuracy for the NoRew condition than Rew,
while the accuracy for the two distractors types Neg and Neu was comparable. The overall interaction between
prospect and distractor, (NoRew−Rew):(Neg−Neu), was fairly robust (top row, Fig. 2b). Specifically, the prospect
effect (NoRew−Rew) was larger under the Neg distractor than Neu (second and third row, Fig. 2b) while the
distractor effect (Neg−Neu) was largely in the opposite direction between the two prospects of NoRew and Rew

(fourth and fifth row, Fig. 2b).
Now we focus on the RT data at the trial level. The RT analyses had to deal with the issue of trial-

versus condition-level dichotomy, illustrating the differentiation between complete and partial pooling. Across
participants, the number of correct responses ranged from 28 to 47 out of 48. We constructed the following
model that directly accounts for cross-trial variability,

RTijst ∼ N (µ, σ2);

µ = Proi ∗Disj + subjs + trialt + subjs : trialt;

subjs
i.i.d.∼ N (0, λ2); trialt

i.i.d.∼ N (0, ω2); subj:trialst
i.i.d.∼ N (0, π2);

i = 1, 2; j = 1, 2; s = 1, 2, ..., 57; t = 1, 2, ..., Tijs (28 ≤ Tijs ≤ 47).

(9)

8In general, two factors of m and n levels, respectively, have an intercept, m− 1 and n− 1 terms for the individual effects of the
two factors, and (m − 1)(n − 1) interactions. How these total mn terms are formulated depends on the specific parameterization
method such as dummy and deviation coding.
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(a) RT histogram among correct responses
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(d) Effects: condition-level modeling
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Figure 3: Summary of RT data based on the BML model (9) with t-distribution. (a) The histogram of RT among correct
response trials shows the aggregated information across the trials (within [28, 47]), 4 tasks and 57 subjects (bin width:
30 ms). (b) RT and the associated 95% quantile intervals were shown for each of the 4 tasks with an overall mean of
689.3ms and s.d. of 8.8ms. (c) Among the posterior distributions based on the model (9), the bottom two rows are the
main effects while the top five rows show the the interactions. At the right side of each distribution lists the posterior
probability of each effect being positive, P+ (area under the curve to the right of the green line indicating zero effect),
also color-coded in the distribution shading. The black vertical segment under each distribution shows the median. (d)
The counterpart result of (c) based on the condition-level RT effects aggregated cross trials (corresponding to Fig. 3A in
Padmala et al. (2017)).

The terms Proi and Disj are the effects associated with the prospect and distractor level, respectively; subjs,
trialt, and subj:trialst are the varying effects associated with the sth subject, tth trial and their interaction,
respectively; Tijs is the number of correct responses of the sth subject during the task of ith prospect and jth
distractor. Examination of the RT data indicated that the overall distribution was skewed to some extent (Fig.
3a). Thus, we explored two modified models using either a Student t-student or an exponentially modified
Gaussian distribution (Palmer et al., 2011) to handle the skew, simply by replacing N (µ, σ2) in the model
(9) with the Student’s t-distribution T (ν, µ, σ2) or EMG(µ, σ2, β), respectively, where ν is the parameter that
codes the degrees of freedom for the t-distribution, and β is an exponential decay parameter for the exGaussian
distribution. These two models produced similar effect estimates and statistical evidence. However, they
provided improved fitting: the estimated degrees of freedom, ν, had a mean of 3.4 with 95% quantile interval of
[3.1, 3.7], consistent with the skewness of the data; skewness was also accommodated by the exponential decay
parameter estimate β = 106.19± 1.81 ms.

The RT data supports the following conclusions. The posterior distribution was different among the four
tasks (Fig. 3b). For the main effects of the two factors (prospect and distractor, bottom two rows, Fig. 3c), RTs
were substantially shorter during Rew trials, and Neg distractors robustly slowed down behavior. The overall
interaction between prospect and distractor had strong support (top row, Fig. 3c).

To gauge the effectiveness of trial-level modeling, we also analyzed the RT data at the condition level. As
typically practiced for condition-level effects in neuroimaging, we aggregated the RT data across trials within
each condition through averaging (i.e., complete pooling), thereby assuming the same RT across all trials under
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each task:

RTijs· ∼ T (µ, σ2);

µ = Proi ∗Disj + subjs;

subjs
i.i.d.∼ N (0, λ2);

i = 1, 2; j = 1, 2; s = 1, 2, ..., 57;

(10)

where RTijs· =
1

Tijs

∑Tijs

t=1 RTijst. The major difference of the model (10) relative to the trial-level model (9) lies
in the omission of terms related to the trial-level effects, trialt. On the surface, the statistical evidence (Fig. 3d)
based on the condition-level model (10) was similar to its trial-level counterpart (Fig. 3c). This is not surprising
given the massive evidence for most effects. However, the results also illustrate the higher sensitivity and
efficiency of partial pooling relative to complete pooling in that the interaction effect, (NoRew−Rew):(Neg−Neu),
received only modest support under the condition-based model while being convincingly affirmed by the trial-
level model. We note that the interaction was the chief concern in the original study (Padmala et al., 2017),
which would not be deemed “statistically significant” under the traditional dichotomous framework. Overall,
this example illustrates how data variability is more accurately decomposed and characterized through the
trial-level model than the aggregation approach.

Neuroimaging data analysis

Time series data were preprocessed using AFNI at each voxel. Steps included cross-slice alignment, cross-
TR alignment (mitigation of head motion), cross-subject alignment (normalization to standard space), spatial
smoothing (FWHM: 6 mm) and voxel-wise scaling to 100 through dividing the data by the mean signal.
To illustrate our modeling framework, we analyzed the data at the ROI level to highlight effective ways to
visualize the full results without thresholding, and to demonstrate how BML aids in handling multiplicity.
Among the 11 selected ROIs, seven were based on their involvement in attention and executive function more
generally: left/right frontal eye fields (FEF), left/right anterior insula (Ins), left/right intraparietal sulcus (IPS),
supplementary/pre-supplementary motor area (SMA). We included four additional ROIs, the left/right ventral
striatum (VS) and left/right amygdala (Amyg), which are known for their involvement in reward and affective
processing, respectively. The ROIs were defined as follows: insula masks were from Faillenot et al. (2017);
ventral striatum masks were based on Pauli et al. (2016); amygdala ROIs were defined from Nacewicz et al.
(2014); for the remaining regions the peak coordinates of the analysis by Toro et al. (2008) were used to create
spherical ROIs.

Trial-level effect estimation at the subject level

Trial-level effects were estimated for each subject as follows.9 For each ROI, time series data were extracted
and averaged across all voxels. The resulting representative time series was analyzed by applying the model (1)
with the program 3dREMLfit in AFNI that performs GLS regression combined with REML estimation of the
serial correlation parameters in the residuals. Six effects of interest were considered at the condition level: two
cue types (Rew and NoRew) and four tasks (Rew_Neg, Rew_Neu, NoRew_Neg and NoRew_Neu factorially combined
in terms of the factors Pro and Dis). We compared two approaches: the conventional condition-level method of
creating one regressor per condition, and the trial-level approach of modeling each trial with a separate regressor.
Each regressor was created by convolving a 1 s rectangular wave with an assumed HRF filter (Gamma variate).
Multiple regressors of no interest were also included in the model: separate third-order Legendre polynomials
for each run; regressors associated with 6 head-motion effects and their first-order derivatives; and regressors
for trials with incorrect responses. In addition, we censored time points for which head motion was deemed

9The modeling scripts used in the paper are publicly available at https://github.com/afni-gangc/tlm
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(a) Cross-trial synchrony between the two amygdala regions
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Figure 4: Synchronization among brain regions. The effect estimates (dots) with their standard errors (line segments)
were obtained through the GLS model with ARMA(1,1). Some extent of synchrony existed across trials between the left
and right amygdalas of a subject under two different tasks of NoRew_Neg (upper panel) and Rew_Neg (lower panel).

substantial (differential movement of 0.3 mm Euclidean distance or above per TR). The 6 runs of data were
concatenated with the cross-run gaps properly handled (Chen et al., 2012). With 48 originally planned trials per
task, each of the four tasks were modeled at the trial level, resulting in Tijs (28 ≤ Tijs ≤ 47) regressors associated
with the ith prospect and jth distractor; each of the two cues were modeled with Ti·s =

∑2
j=1 Tijs regressors.

Each of the error trials and the corresponding cues were modeled separately. For comparison, condition-level
effects were also estimated directly for each subject through two approaches. First, each condition was modeled
with a regressor that is associated with the Tijs trials. Second, each condition was modeled with two regressors,
one was associated with the average RT across the Tijs trials while the other captured the modulation effect of
RT.

Four approaches were adopted in handling the correlation structure in the residuals: (i) OLS with the
assumption of white noise, (ii) AR(1), (iii) AR(2) and (iv) ARMA(1,1), with the latter three models numerically
solved through GLS. In addition, we compared the model with AR(2) for the residuals to an AR(2) model
with lagged effects of the BOLD signal, as suggested in Westfall et al. (2017). Our comparisons (Appendix
C) indicated that AR(2) and ARMA(1,1) for the model residuals rendered similar effect estimates and both
slightly outperformed AR(1); thus, all the effect estimates for further analyses were from ARMA(1,1).

Trial-level modeling is vulnerable to the multicollinearity problem. The original experiment was neither
intended nor optimally designed for trial-level modeling. Indeed, a few subjects had highly correlated regressors
at the trial level between a cue and its subsequent task (correlations among the regressors were below 0.6 for
most subjects except for seven who had correlation values above 0.9 among a few regressors). Close inspection
revealed that the high correlations were mostly caused by motion effects and the associated data censoring, or
by a short separation between a cue and the following task.

Trial-level effects varied substantially without a clear pattern (Figs. 4,13). Across trials, the estimated
BOLD response changed substantially, and occasionally showed negative estimates. Such seemingly random
fluctuations appeared across all conditions, regions and subjects. Possible factors influencing trial responses
include fluctuations in attention, poor modeling and pure noise. Despite the absence of a clear pattern, it
is quite revealing to observe some degree of synchronization between the five contralateral region pairs: an
association analysis rendered a regression coefficient of 0.73± 0.04 between the region pairs, indicating that a
1% signal change at a right brain region was associated with about 0.73% signal change at its left counterpart
(Figs. 4,13).
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Figure 5: Distribution of the effect estimates from the GLS model with ARMA(1,1). With 11 ROIs and 57 subjects,
there were 11 ×

∑57
s=1

∑2
i=1

∑2
j=1 Tijs = 98461 trial-level effect estimates (28 ≤ Tijs ≤ 47) among the 4 tasks. A small

portion (450, 0.42%) were outlying values beyond the range of [-2, 2] with the most extremes reaching -70000 and 23900.
To effectively accommodate outliers, the x-axis was shrunk beyond (-1, 1).

Condition effect estimation at the population level

(a) Trial-level modeling

Amyg_L

Amyg_R

IPS_L

IPS_R

VS_L

VS_R

FEF_L

FEF_R

Ins_L

Ins_R

SMA

0.542

0.631

0.962

0.976

0.996

0.966

0.998

0.996

0.932

0.962

0.997

−0.02 0.00 0.02 0.04 0.06

percent signal change

0
0.05
0.1

0.9
0.95
1

P+

(b) Conventional approach: condition-level effects as input
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(c) Trial-level modeling: trial RT effects adjusted
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(d) Conventional approach: condition effects as input with RT
modulated at subject level
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Figure 6: Interaction (NoRew−Rew):(Neg−Neu) at the population level. The value at the right end of each posterior
distribution indicates the posterior probability of the effect being great than 0 (vertical green line), color-coded in the
area under each posterior density. Four approaches were adopted to capture the interaction effect: (a) trial-level modeling
through the BML model (11); (b) conventional approach: condition-level effects from each subject were fitted in the model
(12); (c) covariate modeling: trial-level effects were modeled with RT as a covariate at the population level in the BML
model (15); (d) conventional approach: condition-level effects with trial-level RT adjusted from each subject were fitted
in the BML model (12).

We started with population-level analyses for the four tasks. Inspection of the histogram of effect estimates
from the GLS model with ARMA(1,1) in (1) revealed a fraction of outliers that were beyond [-2, 2] in percent
signal change (Fig. 5), which were traced mostly to the censoring of time points due to head motion. If not
handled properly, extreme values would likely distort the population-level analysis. Unlike the conventional
ANOVA framework, BML and LME do not require a balanced data structure without missing data as long as
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(a) Prospect effects: trial-level-modeling
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(b) Prospect effects: condition-level-modeling

SMA

VS_L

VS_R

IPS_L

IPS_R

FEF_L

FEF_R

Ins_L

Ins_R

Amyg_L

Amyg_R

1

1

1

1

1

1

1

1

1

0.736

0.83

0.000 0.025 0.050 0.075

percent signal change

0
0.05
0.1

0.9
0.95
1

P+

Figure 7: Prospect effect (Rew−NoRew) during cue phase at the population level. Even though the two approaches of
trial- and condition-level modeling agreed with each other to some extent in terms of statistical evidence for the contrast
between Rew and NoRew, trial-level modeling (a) showed stronger evidence for both left and right amygdala than its
condition-level counterpart (b).

the absence/omission can be considered at random. Specifically, we adopted a BML model with a t-distribution
to accommodate potential outliers and skewness (Appendix A) and applied to the effect estimates yijrst and
their variances σ̂2ijrst with the indices i and j coding for the two factors of prospect and distractor:

yijrst ∼ T (ν, µ, σ̂2ijrst), µ = Proi ∗Disj + Proi ∗Disj : roir + subjs + trialt + roir:subjs + roir:trialt + subjs:trialt;

(Proi ∗Disj : roir) ∼N (0, Θ), subjs ∼ N (0, λ2), trialt ∼ N (0, ω2),

roir:subjs ∼ N (0, φ2), roir:trialt ∼ N (0, ψ2), subjs:trialt ∼ N (0, π2);

i = 1, 2; j = 1, 2; s = 1, 2, ..., S; t = 1, 2, .., Tijs; r = 1, 2, ..., R;

(11)

where the 4× 4 variance-covariance matrix Θ captures the cross-region variability among the four tasks. The
results are in Fig. 6a.

How do the results in (11) compare to the conventional approach of condition-level modeling through
complete pooling? To perform this evaluation, we defined a GLS model (1) with ARMA(1,1) at the subject
level that contained six condition-level effects with the assumption that the BOLD response was the same across
the trials under each condition. At the population level, task effects yijrs and their standard errors σ̂ijrs were
fitted with the BML model:

yijrs ∼ T (ν, µ, σ̂2ijrs), µ = Proi ∗Disj + Proi ∗Disj : roir + subjs + roir:subjs;

Pro : Dis : roir ∼N (0, Θ), subjs ∼ N (0, λ2), roir:subjs ∼ N (0, φ2);

i = 1, 2; j = 1, 2; s = 1, 2, ..., S; r = 1, 2, ..., R;

(12)

with definitions as before, and where Θ is a 4 × 4 variance-covariance matrix for the cross-region variability
among the four tasks. Compared to the trial-level modeling approach (Fig. 6a), the condition-level model-
ing approach produced similar statistical evidence (Fig. 6b), but exhibited inflated reliability (i.e., narrower
posteriors), as well as underestimated effect magnitude (densities closer to 0) at most ROIs. In other words,
complete pooling tended to homogenize effect estimates and inflate their certainty.

How about the conventional modulation analysis? Under this approach, cross-trial variability is accounted
for via a linear modulation of the RT data at the subject level. At the population level we applied model (12)
to the condition-level estimates that associated with RT modulation. The resulting interaction effects at the
population level (Fig. 6d) were very similar to the ones without the RT modulation (Fig. 6b). Thus, in this
case, a modulation regressor did not substantially alter the posterior densities of the interaction effects.
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Now we switch to investigate the cue-phase responses with the following BML model applied with the
trial-level effect estimates yirst and standard errors σ̂irst for the cue types NoRew and Rew:

yirst ∼ T (µ, σ̂2irst), µ = Proi + Proi : roir + subjs + trialt + roir:subjs + roir:trialt + subjs:trialt;

Pro : roir ∼N (0, Θ), subjs ∼ N (0, λ2), trialt ∼ N (0, ω2),

roir:subjs ∼ N (0, φ2), roir:trialt ∼ N (0, ψ2), subjs:trialt ∼ N (0, π2);

i = 1, 2; s = 1, 2, ..., S; t = 1, 2, .., Tijs; r = 1, 2, ..., R;

(13)

where Θ is a 2× 2 variance-covariance matrix for the cross-region variablity between the two cue types. Most
ROIs showed extremely strong evidence for a prospect effect with greater responses during Rew relative to NoRew
(Fig. 7a), although the righ/left amygdala showed weaker support.

Again, to compare the trial-level approach to the conventional condition-level strategy, we fitted with the
condition-level effect yirs and standard errors σ̂irs for the cue types NoRew and Rew with the following:

yirs ∼ T (µ, σ̂2irs), µ = Proi + Proi : roir + subjs + roir:subjs;

Pro : roir ∼N (0, Θ), subjs ∼ N (0, λ2), roir:subjs ∼ N (0, φ2);

i = 1, 2; s = 1, 2, ..., S; r = 1, 2, ..., R.

(14)

Most of the results from the condition-level approach (Fig. 7b) were similar to the trial-based analysis (Fig. 7a),
because of the large effects sizes. However, the condition-level approach did not capture the amygdala effects
well, where evidence in their favor was rather weak. In contrast, the trial-based analysis garnered much stronger
evidence, and at least the left amygdala would cross a typical one-sided 0.05 statistical threshold (although we
believe this dichotomous procedure is detrimental to progress).

Association analysis with behavioral data

To probe the linear association between the BOLD response during the task phase and the RT data, we
adopted the BML model below for the trial-level effect estimates yijrst and their standard errors σ̂ijrst:

yijrst ∼ T (µ, σ̂2ijrst), µ = Proi ∗Disj ∗ RTijst + Proi ∗Disj ∗ RTijst : roir + RTijst : subjs + RTijst : roir:subjs;

Proi ∗Disj ∗ RTt : roir ∼ N (0, Θ), RTijst : subjs ∼ N (0, Λ), RTijst : roir:subjs ∼ N (0, Φ),

t = 1, 2, .., Tijs; r = 1, 2, ..., R; i = 1, 2; j = 1, 2; s = 1, 2, ..., S;

(15)

where Θ, Λ and Φ are 8 × 8, 2 × 2 and 2 × 2 variance-covariance matrices for the respective effects across
regions, subjects and the interactions between regions and subjects. As each quantitative variable requires two
parameters (intercept and slope) in the model, Proi ∗ Disj ∗ RTijst expands to 8 effects, leading to a 8 × 8

variance-covariance matrix Θ for the cross-region variability. There was a strong indication of linearity between
the overall task effects and RT in all the ROIs, except in the left and right ventral striatum (Fig. 8a). In
addition, when RT was considered as a confounding variable, the interaction (NoRew-Rew):(Neg-Neu) showed
compatible result (Fig. 6c) as its counterpart (Fig. 6a) from the model (11) without RT modulation.

The linear association between cue effects and subsequent task phase RT was also explored. In other words,
how were trial-by-trial fluctuations during the cue phase related to task execution? To do so, the following
BML model was applied to the behavior data RTist as response variable and the cue effects xirst as explanatory
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(a) Linearity of task effects with RT: TLM
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(b) Linearity of task phase RT with cue effects: TLM
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(c) Linearity of task effects with RT modulation
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Figure 8: Linear associations of task and cue effects with task phase RT at the population level. (a) Linear association
of trial-level effects during the task phase with RT was assessed in the model (15). (b) Linear association of RT during
the task phase with the trial-level effects during the cue phase was assessed in the model (16). (c) RT modulation effect
during the task phase from the subject level was evaluated in the model (12).

variable,

yirst ∼ N (µ, σ2), µ = xirst + xirst : roir + xirst : subjs + xirst : roir:subjs;

xirst : roir ∼ N (0, Θ2), xirst : subjs ∼ N (0, Λ2), xirst : roir:subjs ∼ N (0, Φ2),

s = 1, 2, ..., S; t = 1, 2, .., Ti·s; r = 1, 2, ..., R; i = 1, 2.

(16)

where Θ, Λ and Φ are 2× 2 variance-covariance matrices for the respective effects across regions, subjects and
the interactions between regions and subjects. Evidence for linear association between the cue phase responses
and subsequent behavior was very robust in the SMA, left FEF, and left/right insula (Fig. 8b).

How does the linearity assessed above compare to the conventional modulation nethod? To evaluate such
scenario, we applied the formulation (12) to the RT effects yijs for the four tasks and their standard error σ̂ijs
from the modulation analysis at the subject level. Compared to trial-level modeling (Fig. 8a), the RT effects
based on modulation (Fig. 8c) showed very similar results.

Is linearity too strong an assumption even though frequently assumed in investigating the relationship
between FMRI signals and covariates of interest (e.g., RT)? To address this question, we focused on one of the
cue/task combinations, namely Rew_Neg, involving reward cues and negative distractors. The trial-level effects
yrst and its variance σ̂2rst under the task Rew_Neg were fitted as follows,

yrst ∼ T (ν, µ, σ̂2rst); µ = RTst : ROIr + RTst : subjs + roir:subjs;

RTst : subjs ∼ N (0, Λ), roir:subjs ∼ N (0, Φ);

t = 1, 2, .., Ts; r = 1, 2, ..., R. s = 1, 2, ..., S.

(17)
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(a) Linear fitting: Rew_Neg effects with corresponding RT
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(b) Smooth splines: Rew_Neg effects with corresponding RT
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Figure 9: Comparisons of association analysis under the task Rew_Neg between linear fitting and smoothing splines. For
better visualization on the dependence of trial-level effects on RT, the trends are shown with their 95% uncertainty bands.
(a) Linear fitting was assessed in the model (17). (b) Association analysis was evaluated through smoothing splines in
the model (18).

Separately, a nonlinear function was applied to the RT via smoothing splines:

yrst ∼ T (ν, µ, σ̂2rst); µ = s(RTst) : ROIr + subjs + roir:subjs;

subjs ∼ N (0, Λ), roir:subjs ∼ N (0, Φ);

t = 1, 2, .., Ts; r = 1, 2, ..., R; s = 1, 2, ..., S;

(18)

where the smoothing function s(·) adopts a cubic spline basis defined by a set of knots spread evenly across the
RT range and penalized by the conventional integrated square second-derivative cubic-spline term. With the
narrow range of the RT values, the dimensionality of the basis expansion (i.e., number of knots) was set to 10
through a generalized additive model so that simplicity was balanced against explanatory power. Due to the
adaptive nature of regularization, the exact choice of knots is not generally critical as long as it is large enough
to represent the underlying mechanism reasonably well, but small enough to maintain adequate computational
efficiency (Wood, 2017).

Fitting the data with linear and nonlinear models yielded some similarities, but multiple differences were
also observed (Fig. 9). For example, linear fitting revealed positive trends at the SMA and the right/left IPS
between task responses and the corresponding RT (Fig. 9a), whereas the spline fittings uncovered more complex
relationships (Fig. 9b). The largely parallel trends observed across the contralateral region pairs provide some
validation for both the linear and nonlinear fittings. Nevertheless, the nonlinear results suggest that linearity
is likely too strong an assumption across the whole RT range; thus, the statistical evidence for linearity might
have been inflated. For example, linearity might be applicable for certain RT ranges, but support for it might
be limited at lower and higher values of RT with fewer data points. In addition, the uncertainty under the
model assuming linearity (17) appears to have been considerably underestimated, especially when RT is away
from the central values.

Discussion

Experimental sciences aim for generalizability. In doing so, they draw inferences about populations –
idealized, theoretical constructs – from samples of, for example, trials and subjects. The ability to generalize is
typically achieved through framing the cross-sample variability with an appropriate statistical distribution (e.g.,
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Gaussian, Student-t). At the same time, when carefully choosing a stimulus set and subjects, an experimentalist
obviously aims to draw conclusions that reach beyond the particular instances utilized. As recognized byWestfall
et al. (2017), the standard analysis framework in neuroimaging does not lend itself to such a goal in the case
of stimuli, and the same logic employed in bridging subjects to “population effects” is required. The present
paper develops a two-level approach that is well adapted to the current analytical streamline; in addition,
partial pooling is applied to trial-level effects at the population level to tackle the generalizability problem. We
illustrated the effectiveness of the approach via a series of analyses of an FMRI dataset from a rich experimental
paradigm with multi-phase trials, including cue stimuli and subsequent task execution.

Why should we more accurately account for trial-level variability?

The issue of cross-sample variability has been recognized for several decades across multiple research areas.
For example, Clark (1973) pointed out that neglecting the problem of the “language-as-fixed-effect fallacy ...
can lead to serious error” (p. 335), and even alluded to earlier warnings that were largely ignored in the
literature, including the report by Coleman (1964). Given the common practice of aggregation across trials,
even classical experiments such as Stroop and flanker tasks, which one would anticipate to show high reliability,
yielded lackluster results (Rouder and Haaf, 2019).

In neuroimaging, trial-level variability is typically bundled together and flattened with the residuals of the
GLS model at the subject level when condition-level effects are of interest. Such practice assumes that all
trials have exactly the same BOLD response. In our analysis of an FMRI dataset, considerable variability
was observed across trials (Figs. 4, 13). Although the attribution of this variability to “pure noise” cannot
be excluded, our results collectively point in a different direction: the variability is meaningful. Indeed, we
interpret our results as suggesting that, without directly capturing trial-level effects, population-level estimates
can be compromised. In particular, our results suggest that condition-level modeling may underestimate effect
magnitudes, while in some cases overestimating certainty (Fig. 6d,e; Fig. 7).

Ignoring cross-trial variability also leads to the loss of legitimately being able to generalize beyond the stimu-
lus set used. As emphasized by Clark (1973), a serious implication is that studies will be “particularly vulnerable
to lack of replicability”. Generalization from a stimulus set to a category requires proper model construction
(Coleman, 1964; Clark, 1973; Westfall et al., 2017; Baayen et al., 2008; Yarkoni, 2019). When condition-level
effects are inferred without accounting for cross-trial variability, technically speaking, the conclusions are appli-
cable only to the particular trials in the experimental design, not even to similar cases from the same category.
Trials are typically conceptualized as originating from a population that follows specific distributional assump-
tions (e.g., Gaussian), thus supporting the generalization from specific trials to the associated category. In
addition, the explicit accountability of cross-trial variability provides more accurate characterization of both
the effect magnitude and its uncertainty. Currently, modeling cross-subject variability is considered standard in
the field as a way to draw population-level inferences. We believe the same should be considered for cross-trial
variability.

Modeling cross-trial variability is important even if the difference in statistical evidence is small practically.
First, although the fact that cross-trial variability diminishes as the sample size increases (see expression (4)),
it is not practically possible to realistically determine the “required” number of trials. As the sample size in
our experimental data was reasonably large (57 subjects and 28-47 trials per task), the differences in statistical
evidence between trial- and condition-level modeling were not large (e.g., Fig. 6a,b). Nevertheless, meaningful
differences were observed, such as the strength of the evidence for cue effects in the amygdala (Fig. 7). More
importantly, condition-level modeling showed distortions (e.g., underestimation) in both the magnitude and
uncertainty of effect estimates (e.g., Fig. 6a,b). Furthermore, whereas investigators are generally cognizant of
the need to employ enough subjects, awareness about requirements about trial sample size remains limited. We
believe that considerations about trial sample size should be on a comparable footing as those of the number
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of participants.
Modeling trial-level responses is also of great value when studying brain-behavior relationships. A rich

literature has investigated how trial-by-trial fluctuations in behavior are associated with intertrial variability
(Ress et al., 2000; Pessoa et al., 2002; Pessoa and Padmala, 2005; Sapir et al., 2005; Lim et al., 2009). Many
of these studies have proposed that the most likely source of the association is related to trial-by-trial changes
in attention. Another potential source (Fox et al., 2006; Fox et al., 2007) is that intrinsic signal fluctuations
account for much of intertrial variability in human behavior. Specifically, spontaneous fluctuations of the BOLD
signal in resting-state studies also contributed to fluctuations during behavioral tasks. Evidences showed that
ongoing intrinsic activity accounted for 60% of the variability in brain responses during a simple button-pressing
task (Fox et al., 2007). Overall, although cross-trial variability has been framed in terms of issues of “fixed”
versus “random” effects (Westfall et al., 2017), we believe it is of potential value to conceptualize the problem
from a much broader perspective.

We also investigated the performance of the integrative LME modeling approach previously proposed by
Westfall et al. (2017), which utilizes a different modeling approach than our proposed one, from the following
perspectives.

1) AR structure. Their model aims to explicitly accounts for the serial correlation of the times series with
lagged effects as explanatory variables, instead of capturing the AR structure in the residuals as typically
practiced in the field. Such an approach remains controversial (e.g., Achen, 2000; Keele and Kelly, 2006;
Bellemare et al., 2017; Wilkins, 2018), and it had a dramatically large impact on the results with the
present dataset (Figs. 13b,14 in Appendix C). In addition, the following assumptions of their model are
likely inaccurate: that all subjects share the exactly same AR structure, as well as the same baseline and
cross-trial effects.

2) Assumption of white noise. Due to the violation of endogeneity (e.g., omitted variables, measurement
error), the residuals in their integrative LME model (7) would be correlated with the lagged response
variables. Accordingly, it would still be important to model the temporal structure in the residuals.

3) Focus on statistical evidence. Westfall et al. (2017) reported statistic values without accompanying
effect estimates. We believe this practice, which is common in neuroimaging, is problematic (see Chen
et al., 2017) because it leads to information loss by reducing the effect estimates to a simple binary
statement. Instead, we advocate in favor of documenting voxel- or region-wise magnitudes and their
respective uncertainty; in addition, study reports without revealing effect magnitudes contribute to the
reproducibility problem.

At the population level, what are the practical consequences of ignoring cross-trial variability? Westfall et
al. (2017) made the strong cautionary warning that it could produce inflation 1.5 to 3 times of the values of
the relevant statistic employed. The changes that we observed, important as they were, were less dramatic,
and in some cases involved deflation of statistical evidence (e.g., cue effects, Fig. 7). In addition, some
substantial differences in effect magnitude and reliability were observed too (e.g., interactions between prospect
and distractor, Fig. 6a,b). It is possible that differences between the present approach and that by Westfall
et al. (2017) were partly influenced by some modeling choices including AR handling and other modeling
assumptions. In this context, it is informative that we also observed a small amount of deflation in statistical
evidence when data were aggregated across trials for the behavioral data (Fig. 3). In fact, our observations
are more aligned with a similar assessment of test-retest reliability in psychometrics (Rouder and Haaf, 2019).
We emphasize that our observations here were based on a relatively large number of trials, and we recognize
the difficulty of making a general assessment about the practical impact due to the involvement of multiple
factors, such as task type, sample size, the number of trial repetitions, and the type of experimental design
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Table 1: Parallelism between cross-subject and cross-trial variability

Strategy No Pooling Partial Pooling Complete Pooling Association
Info. Sharing none (individual) some (adaptive) full (uniform) some (associative)

Subject Effect
unique for sth subject:
ξs ∼ U(−∞,∞)
(current practice)

regularized:
ξs ∼ N (0, λ2)
(current practice)

same across subjects:
ξs = 0
(‘fixed effects’)

subject-level
covariate
(e.g., age)

Trial Effect
unique for tth trial:
ηt ∼ U(−∞,∞)
(proposed practice)

regularized:
ηt ∼ N (0, ω2)
(proposed practice)

same across trials:
ηt = 0
(current practice)

trial-level
behavior
(e.g., RT)

Variance Prior ∞ finite (λ2, ω2) 0 -
Properties unbiased but unreliable biased but more accurate homogenized -

Applicability
prep. for population
analysis; predictions;
cross-region correlations

subjects to population,
trials to category - controllability,

correlation

(event-related vs block). The risk of statistical evidence inflation, when cross-trial variability is not properly
accounted for, can be substantial when trial samples are not large, as demonstrated by Westfall et al. (2017).

Benefits of the two-level modeling approach

We propose a unified statistical platform that addresses the generalizeability issue through a two-level
modeling approach (Table 1). Instead of adopting the conventional complete pooling (all trials essentially
averaged), we directly estimate the trial-level effects at the subject level through no pooling (parameter estimates
obtained for each trial separately). At the population level partial pooling is adopted via a hierarchical model
to achieve generalizability from specific trials to condition category. Note that although we adopted a Bayesian
platform here, the framework can also be implemented with an LME model, if one employs a whole-brain
voxel-wise approach and is not interested in partial pooling across ROIs. We now discuss a few strengths of
our approach.

1) Computational feasibility. Our two-level approach attains computational tractability by segregating
subject and population analyses. Importantly, at the same time, with subject-level uncertainty (standard
errors) carried to the population level, any potential information loss is likely minimal relative to a “single-
step” integrative method. The BML models can be implemented through the R package brms, which builds
on top of the Stan language. At the same time, equivalent LME models can be performed at the voxel
level through the program 3dLMEr publicly available in the AFNI suite.

2) Flexibility and adaptivity. The two-level approach can be adopted for several research objectives,
including: (a) condition-level effect estimation at the population level; (b) classification and machine
learning applications utilizing trial-level estimates; (c) correlativity analysis based on trial-level effects;
and (d) brain-behavior association. At a basic level, close examination and visualization of the trial-level
effects become possible (e.g., synchrony between contralateral regions or among regions in a network).

3) Outlier handling. The possibility of outliers and data skew needs to be carefully considered in trial-
by-trial analyses. The present framework flexibility accounts for these possibilities by (a) incorporating
reliability information and (b) regularizing the estimation via, for example, Student’s t-distribution.

4) Modeling options. Standard modulation analysis is able to investigate associations between behavioral
variables and BOLD responses at the trial level. Our approach allows the evaluation of brain-behavior
associations by assuming a linear relationship at the population level. In addition, the approach offers
the investigator the opportunity to flexibly explore nonlinear relationships with smoothing splines.

Additional trial-level modeling issues

Our study also sheds insights about other aspects of FMRI data analysis.
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1) The importance of modeling AR structure in the residuals. Our investigation on AR effects
(Appendix C) confirmed a previous study (Olszowy et al., 2019) and indicated that the AR structure in
the residuals varies substantially across regions, tasks and subjects. Therefore, we recommend that, to
obtain reasonably accurate standard errors for effect estimates, a GLS model with the temporal structure
in the residuals be accounted for with preferably AR(2) or ARMA(1, 1) for a TR around 2 s. With shorter
TRs, a higher-order AR structure would be likely needed (Olszowy et al., 2019; Luo et al., 2020).

2) Incorporating effect uncertainty in population analysis. Should standard errors of effect estimates
be modeled at the population level? Previous studies suggested that the benefit was minimal (Mumford
et al., 2009; Chen et al., 2012; Olszowy et al., 2019). However, since trial-level modeling is more prone to
multicollinearity and may result in unreliable effect estimates, uncertainty information provides a robust
mechanism to counter the impact of outliers at the population level. As the accountability of the serial
correlation in the residuals of the time series regression model is influential on the accuracy of the standard
error for each effect estimate, it becomes important to more accurately model the AR structure at the
subject level.

3) Multicollinearity. As each trial is estimated as a separate regressor, careful experimental design and
trial-order optimization should be considered, especially when the TR is relatively short. In particular,
stimulus timing can be determined to reduce multicollinearity using tools such as RSFgen in AFNI or
optseq10. For analyses based on behavioral performance which cannot be optimized in advance, particular
attention should be paid to multicollinearty. However, given the overall two-stage estimation procedure,
mutlicollnearity may pose less of a problem than typically assumed, although it will likely affect the
precision of the estimated effects.

4) Hemodynamic response modeling (HDR). The HDR can vary in shape in several ways, including
response delay and speed, peak width, recovery length, and presence of onset and recovery undershoots.
The HDR variability may occur across trials, tasks, brain regions, subjects and groups. It might be eco-
nomical and efficient to adopt a generic and fixed-shape HDR function if the model provides a reasonably
close fit to the data, but such a methodology likely becomes overly simplistic to model the HDR across
more general scenarios. Importantly, it is possible that some of the cross-trial variability is due to the
poor HDR fitting currently adopted in the field. At present, two approaches are available to provide
fitting flexibility. One is to include one or two more adjusting functions (e.g., temporal derivative and
dispersion curve), and the other is to adopt a data-driven approach through response estimation with
multiple basis functions (e.g., linear or cubic splines). However, due to the large number of regressors
involved, trial-level modeling is largely confined to using a fixed-shape HDR, which limits the ability of
the approach to handle deviations from more canonical-shaped responses.

Conclusions

In the present study, we investigated the extent and impact of trial-by-trial responses in FMRI data.
While the importance of trial-leveling modeling has been raised previously, we propose and evaluate several
new modeling strategies to address the issue. Using real FMRI data, we demonstrated the benefits of these
new approaches in terms of both mathematical structure and in terms of interpretable outcomes. At the
trial level, responses were estimated through a GLS model with serial correlations accounted for, whereas
population-level analysis was carried via a hierarchical model that effectively characterized effect structure,
allowing generalizability from the specific stimuli employed to the generic category. Additional applications of

10https://surfer.nmr.mgh.harvard.edu/optseq/

23

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.05.19.102111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.19.102111
http://creativecommons.org/licenses/by-nc/4.0/


the approach employed here include the analysis of brain-behavior associations, trial-based correlation analysis,
as well as trial-level classification and machine learning.
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Appendix A. Four BML models for trial-level modeling

Four different BML models are considered for trial-level modeling. Following our recent Bayesian approach
(Chen et al., 2019a), we formulate the models within a single integrative platform at the level of region of
interest (ROI) to capture the hierarchical structure among three intersecting levels: subjects, trials and regions.
Specifically, the trial-level effect estimates ystr are modeled as follows:

base model - M0 : ystr ∼ N (µ, σ2);

model with standard error - Me : ystr ∼ N (µ, σ̂2str);

model with t-distribution - Mt : ystr ∼ T (ν, µ, σ2);

hybrid model - Mh : ystr ∼ T (ν, µ, σ̂2str);

s = 1, 2, ..., S; t = 1, 2, .., T ; r = 1, 2, ..., R;

(19)

where r, s and t index the ROIs, subjects and trials, and the parameter ν is the number of degrees of freedom
for the t-distribution. The four BML models differ along two dimensions in a crossed manner: (a) whether
the uncertainty information σ̂2str (effect variance from the subject level) is incorporated and propagated from
the subject to population level, and (b) whether Gaussian N or Student’s t-distribution T is assumed for the
response variable. Under the Bayesian framework, the BML models (19) are expressed as a distribution or
likelihood function, rather than as an equation (like the LME model in (2)). Hence, the parameter µ in the
four models (19) can be further specified as follows:

µ = α0 + (ξs + ηt + ζr) + (ιst + κsr + υtr);

ξs ∼ N (0, λ2), ηt ∼ N (0, ω2), ζr ∼ N (0, θ2), ιst ∼ N (0, π2), κsr ∼ N (0, φ2), υtr ∼ N (0, ψ2);

s = 1, 2, ..., S; t = 1, 2, .., T ; r = 1, 2, ..., R;

(20)

where the indices s and t code for subjects and trials, respectively; α0 is the intercept; ξs and ηt represent cross-
subject and cross-trial effects; ζr accounts for the effect of the rth region. Compared to its LME counterpart
(2), the four BML models incorporate brain regions (indexed by r), augmenting the LME model to a platform
with three crisscross levels. Due to the addition of this cross-region dimension, it is possible to further include
the three two-way interaction terms, ιst, κsr and υtr among the three effects of subjects, trials and regions (with
parentheses grouping the three single levels and their interactions).

The relationships among the four BML models are as follows. Relative to the base model M0, Me takes into
account the precision of the effect estimate ystr by utilizing the standard error σ̂str from the subject level. To
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handle outliers and skew in the data ystr, we replace the Gaussian distribution with Student’s t-distribution
and formulate the third BML model, Mt. Thanks to its leptokurtic property (i.e., having “heavy tails”), the
t-distribution (with the Gaussian distribution as its asymptote) has increasingly more mass in the tails as the
degrees of freedom decrease, effectively counteracting the potential impact of outlying values. Lastly, the models
Me and Mt can be combined to incorporate uncertainty and to handle outliers simultaneously, leading to the
hybrid Mh. In all model versions, the intercept α0 can be expanded with terms to accommodate terms such as
subject-grouping and quantitative covariates.

(a) Model M0: outlier removal
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(b) Model Mt: Student’s t
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(c) Model Me: uncertainty incorporated
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(d) Model Mh: hybrid of Mt and Me
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Figure 10: Interaction (NoRew−Rew):(Neg−Neu) at the population level through four different BML versions. The value
at the right end of each line indicates the posterior probability of the effect being great than 0 (vertical green line),
color-coded in the area under each posterior density. Four BML models were adopted to handle outliers: (a) M0: brute
force removal of values outside [-2, 2]; (b) Me: incorporation of uncertainty for effect estimates; (c) Mt: adoption of
t-distribution to accommodate outliers and skewness; and (d) Mh: hybrid of Me and Mt with both the uncertainty of
effect estimates and t-distribution.

The four BML models generated relatively similar posterior distributions (Fig.10a-d). First, the base model
M0 overestimated the effect magnitude for the two amygdala ROIs. To appreciate the differences between
the four models, consider the degrees of freedom for the t-distribution, ν, in Mt which is adaptively estimated
from the shape of the data distribution. The strength of t-distribution in handling heavier tails and potential
outliers is demonstrated by the small degrees of freedom estimated as ν = 3.24± 0.03 in Mt (cf. the Gaussian
distribution of M0 with ν =∞). The inclusion of uncertainty in Me also allowed effective handling of extreme
values (similar estimates as Mt, in particular for the left/right amygdala), noticeable in the decreased role of
the t-distribution in the hybrid model Mh, where ν = 61.8± 5.1. Overall, instead of relying on a predetermined
threshold value to handle outliers in M0, models Mt, Me and Mh offer principled approaches to adjusting to the
shape of the data distribution and the presence of potential outliers. The important role of standard errors in
the models Me and Mh necessitates the accurate accountability of the serial correlation in the GLS model (1).
In the main text of the paper, the model Mh is adopted, whenever applicable, for its more adaptive formulation.
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Appendix B. Hyperpriors adopted for BML modeling

The prior distribution for all the lower-level (e.g., trial, ROI, subject) effects considered here is Gaussian,
as specified in the respective model; for example, see the distribution assumptions in the BML model (20). If
justified, one could adopt other priors like Student’s t for the effects across trials, regions and subjects, just
as for the likelihood (or the prior for the response variable y in the BML model (19)). In addition, prior
distributions (usually called hyperpriors) are needed for three types of model parameters in each model: (a)
population effects or location parameters (“fixed effects” under LME, such as intercept and slopes), (b) standard
deviations or scaling parameters for lower-level effects (“random effects” under LME), and (c) various parameters
such as the covariances in a variance-covariance matrix and the degrees of freedom in Student’s t-distribution.
Noninformative hyperpriors are adopted for population effects (e.g., population-level intercept and slopes). In
contrast, weakly-informative priors are utilized for standard deviations of lower-level parameters such as varying
slope, subject-, trial- and region-level effects, and such hyperpriors include a Student’s half-t(3, 0, 1) or a half-
Gaussian N+(0, 1) (a Gaussian distribution with restriction to the positive side of the respective distribution).
For variance-covariance matrices, the LKJ correlation prior (Lewandowski, Kurowicka, and Joe, 2009) is used
with the shape parameter taking the value of 1 (i.e., jointly uniform over all correlation matrices of the respective
dimension). Lastly, the standard deviation σ for the residuals utilizes a half Cauchy prior with a scale parameter
depending on the standard deviation of the input data. The hyperprior for the degrees of freedom, ν, of the
Student’s t-distribution is Γ(2, 0.1). The consistency and full convergence of the Markov chains were confirmed
through the split statistic R̂ being less than 1.1 (Gelman et al., 2013). The effective sample size (or the number
of independent draws) from the posterior distributions based on Markov chain Monte Carlo simulations was
more than 200 so that the quantile (or compatibility) intervals of the posterior distributions could be estimated
with reasonable accuracy.

Appendix C. Handling autocorrelation in FMRI data

The amount of temporal correlation embedded in the residuals of the time series regression with trial-level
modeling was substantial with large variations across regions, tasks and subjects (Fig. 11). Specifically, the
overall serial correlation across the 11 ROIs and 57 subjects was 0.50 ±0.20, 0.47 ±0.28 and 0.33 ±0.38 assessed
from the AR(1), AR(2) and ARMA(1,1) models, respectively), indicating that some large amount of effects
were not properly accounted for through the explanatory variables. With condition-level modeling, cross-trial
fluctuations would become part of the residuals; thus, the AR effects would be different and likely stronger,

The performances of the OLS approach were compromised due to the presence of persistent temporal
correlation in the model residuals. Based on the Gauss-Markov theorem, the OLS method would still provide
consistently unbiased estimates, with the caveat that the precision for the effect estimates tends to be inflated.
However, the asymptotic property of the unbiasedness heavily relies on a large sample size, which cannot
necessarily be met nor easily predetermined in real practice. With the current dataset, the OLS solutions
showed some extent of over- and under-estimation compared to the three AR models (Fig. 12). In addition, a
slight amount of underestimated uncertainty (or inflated precision) about the OLS effect estimates is evident
compared to their AR counterparts (Fig. 12).

Among the three AR models, both the AR(2) and ARMA(1,1) models slightly edged out AR(1) due to the
extra accountability from the second AR parameter. While a large amount of autocorrelation was explained
through the first-order parameters among the three AR models (first, second and fourth columns, Fig. 13),
the second parameter for AR(2) and ARMA(1,1) provided less but still sizeable amount of autocorrelation
accountability (third and fifth columns, Fig. 13). In light of the observations that both the AR(2) and
ARMA(1,1) results were hardly differentiable (Fig. 13), we opted to adopt the ARMA(1,1) model in the
current study.
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(a) Serial correlation estimation across 11 ROIs of one subject
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(b) Serial correlation estimation across 57 subjects at VS_L
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Figure 11: Variations of temporal correlation across regions and subjects. The overall average first-order AR parameter
of trial-level modeling across all the 11 ROIs and 57 subjects was 0.50 ±0.20, 0.47 ±0.28 and 0.33 ±0.38 for AR(1), AR(2)
and ARMA(1,1), respectively; the second-order parameter for AR(2) and moving average parameter for ARMA(1,1) were
−0.13∓−0.17 and 0.18 ±0.34, respectively. The relative magnitude of these AR parameters indicated that the first AR
parameter captured substantially large proportion of the serial correlation while the second parameter in AR(2) and
ARMA(1,1) remained helpful.

Figure 12: Comparisons of OLS and ARMA(1,1) in effect estimate and uncertainty. The effect estimates (left) and their
standard errors (right) are shown for the total 2× 11×

∑57
s=1

∑2
i=1

∑2
j=1 Tijs = 200640 trial-level effects among the two

cues and four tasks. The theoretical unbiasedness of OLS estimates can be verified by the roughly equal number of data
points on the two sides of the diagonal line (dotted red). However, the instability of OLS estimation is shown by the
fat cloud surrounding the diagonal line: slightly overestimation (or underestimation) of OLS was shown by 52.7% (or
45.5%) of data points above (or below) the x-axis. The precision inflation of OLS can be assessed by the proportion of
data points (97.5%) above the dotted red line.
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(a) Comparisons of effect estimates for NoRew_Neg among 4 AR models
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(b) Comparison of effect estimates for NoRew_Neg between residual AR(2) and response AR(2)
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Figure 13: Trial-level effects under the task NoRew_Neg from one subject. (a) Effect estimates are shown at two contralat-
eral regions, left (upper row) and right (lower row) ventral striatum. Black segments indicate one standard error, and
the colors code the four different AR models (OLS, AR(1), AR(2) and ARMA(1,1)) for the residuals in the GLS model
(1). Only 35 trials (out of 48) were successfully completed by the subject. Despite substantial amount of cross-trial
variability, some consistent extent of synchronization was revealed across all the four models and all the five contralateral
region pairs (only one pair shown here). (b) Effect estimates (AR2L, black) at left ventral striatum were obtained with
AR effects modeled as second-order lagged effects of the EPI time series in the model (21) as implemented in Westfall et
al. (2017). The same AR(2) results from (a) are shown (AR2, iris blue) as a comparison. The impact of incorporating
lagged effects in the model was quite evident with both effect estimates and their precision substantially higher at some
trials.

Figure 14: Comparisons of two approaches in AR handling. Two models were adopted to fit the data at the 11 ROIs, one
(x-axis: AR2) with the GLS model (1) plus an AR(2) structure and the other (y-axis: AR2L) with the model (21) that
mimicked the approach by Westfall et al. (2017). The effect estimates (left) and their standard errors (right) are shown
for the total 2×11×

∑57
s=1

∑2
i=1

∑2
j=1 Tijs = 200640 trial-level effects among the two cues and four tasks. The substantial

amount of deviation of the effect estimates from the diagonal line (dotted red) indicates the dramatic differences between
the two models. The precision underestimation of the model with lagged effects (AR2L) can be assessed by the proportion
of data points (98.3%) below the dotted red line.
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What if the serial correlation is directly modeled as delayed effects of the EPI time series, as adopted in
Westfall et al. (2017)? To explore the impact of such approach, we analyzed the EPI data of the 11 ROIs at
the subject level with the following model,

yk = φ1yk−1 + φ2yk−2 + α0 + α1z1k + ...+ αmzmk + β1x1k + β2x2k + ...+ βnxnk + εk;

εk
i.i.d.∼ N (0, σ2); k = 1, 2, ...,K.

(21)

where k indexes the time points, φ1 and φ2 are the first- and second-order AR parameters for the lagged effects
of the EPI signal yk. As both yk−1 and yk−2 are largely correlated with all the regressors, the impact on effect
estimates was substantially evident across subjects, regions, conditions and trials (Figs. 13b,14). In addition
to a varying amount of increase on some effect estimates, the uncertainty (standard error) was quite smaller
for most effect estimates.
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