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ABSTRACT  

The size and shape of peptide ions in the gas phase are an under-explored dimension for 
mass spectrometry-based proteomics. To explore the nature and utility of the entire 
peptide collisional cross section (CCS) space, we measure more than a million data points 
from whole-proteome digests of five organisms with trapped ion mobility spectrometry 
(TIMS) and parallel accumulation – serial fragmentation (PASEF). The scale and 
precision (CV <1%) of our data is sufficient to train a deep recurrent neural network that 
accurately predicts CCS values solely based on the peptide sequence.  Cross section 
predictions for the synthetic ProteomeTools library validate the model within a 1.3% 
median relative error (R > 0.99). Hydrophobicity, position of prolines and histidines are 
main determinants of the cross sections in addition to sequence-specific interactions. CCS 
values can now be predicted for any peptide and organism, forming a basis for advanced 
proteomics workflows that make full use of the additional information.    
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The combination of ion mobility 
spectrometry (IMS) and mass spectrometry 
(MS) extends conventional liquid 
chromatography-mass spectrometry by an 
extra dimension of separation, increasing 
peak capacity, selectivity and depth of 
analysis1–5. Recent advances have greatly 
improved the sensitivity of commercially 
available IMS devices and the technology 
is now set for a broader application in MS-
based proteomics6–10.  

IMS separates ions in the gas phase 
(typically in the mbar pressure range) based 
on their size and shape within milliseconds. 
This time scale allows recording full ion 
mobility spectra between typical 
chromatographic peaks (seconds) and the 
acquisition pulses of time-of-flight 
instruments (~100 µs). We have recently 
integrated trapped ion mobility 
spectrometry (TIMS)11,12, a relatively new 
and particularly compact ion mobility 
device, with a high-resolution quadrupole 
time-of-flight mass analyzer10,13,14. In 
MS/MS mode, this opens up the possibility 
to step the precursor selection window as a 
function of ion mobility, allowing the 
fragmentation of multiple precursors during 
a single TIMS scan13. We termed this novel 
scan mode parallel accumulation – serial 
fragmentation (PASEF) and demonstrated 
that it increases MS/MS rates more than 
ten-fold without any loss in sensitivity as is 
otherwise inherent to faster scanning 
rates10,15.  

An intriguing feature of the combination of 
TIMS and PASEF is that it should allow the 
acquisition of ion mobility values on a very 
large scale. Such data have previously been 
measured on a case by case basis by 
classical drift tube IMS, in which a weak 
electrical field drags ions through an inert 
buffer gas16–18. Larger ions collide more 

frequently with gas molecules and hence 
traverse the drift tube with a lower speed 
compared with their smaller counterparts. 
In TIMS the physical process is the same, 
except that the setup is reversed with the 
electrical field holding ions stationary 
against an incoming gas flow, prior to their 
controlled release from the device by 
lowering the electrical field19,20. In both 
cases, the measured ion mobility (reported 
as the reduced ion mobility coefficient K0) 
can be used to derive a collisional cross 
section (CCS), which is a measure of the 
ions’ rotationally averaged gas phase 
conformation21,22. The CCS intrinsically 
depends on the ion structure, which is also 
illustrated by the fact that different classes 
of biomolecules (e.g. metabolites, 
carbohydrates, peptides) have quite distinct 
shapes by this measure23. Interestingly, 
conformations also vary within a 
compound class - to the extent that isobaric 
peptide sequences can be distinguishable 
by their  different CCS24,25. 

The link between the amino acids of a 
peptide and its measured cross section has 
the potential to increase the confidence in 
its identifications through reference or 
predicted CCS values. This has motivated 
researchers to develop various (machine 
learning) models based on amino acid-
specific parametrization and 
physicochemical properties16,26–29. 
However, as comprehensive experimental 
data are not available, predicting the full 
complexity of the peptide conformational 
space remains elusive. Furthermore, it is 
not clear which properties should be 
considered to best parameterize such 
models and make them generalizable. We 
reasoned that a combination of very large 
and consistent data sets acquired by PASEF 
with state of the art deep learning methods 
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would address both challenges. Due to their 
inherent flexibility and their ability to scale 
to large data sets, deep learning methods 
have proven very successful in 
genomics30,31 and more recently in 
proteomics for the prediction of retention 
times and fragmentation spectra32–35.   

We here set out to explore the nature and 
utility of the peptide CCS space in 
proteomics by first measuring a very large 
data set of collisional cross sections by 
TIMS-TOF PASEF across five different 
biological species. Building on this dataset, 
we developed and trained a bi-directional 
recurrent neural network with long short-
term memory (LSTM) units to predict CCS 
values for any peptide sequence in the 
tryptic peptide universe. Interpreting our 
network based on recent approaches from 
explainable AI allowed us to investigate the 
nature of the underlying relationship 
between linear peptide sequence and 
peptide cross section.  

 
RESULTS  

Construction of a very large scale 
peptide CCS data set  

To fully capture the conformational 
diversity of peptides in the gas phase, we 
generated peptides from whole-cell 
proteomes of C. elegans, Drosophila, E. 
coli, HeLa and budding yeast using up to 
three different enzymes with 
complementary cleavage specificity 
(trypsin, LysC and LysN). To increase the 
depth of our analysis, we split peptide 
mixtures into 24 fractions per organism and 
analyzed each of them separately with 
PASEF on a TIMS quadrupole time-of-
flight MS (Methods; Fig. 1a). As this is the 
same setup we used before, we combined 
our new experimental data with our 

previously reported dataset from a tryptic 
HeLa digest10.  

In total, we compiled 360 LC-MS/MS runs 
and processed them in the MaxQuant36,37 
software. This resulted in about 2.5 million 
peptide spectrum matches and 426,845 
unique peptide sequences at globally 
controlled false discovery (FDR) rates of 
less than 1% at the peptide and protein 
levels for each organism and enzyme. 
MaxQuant links each peptide spectrum 
match to a four-dimensional isotope cluster 
(or ‘feature’) in mass, retention time, ion 
mobility and intensity dimension. For each 
of these, the ion mobility value is 
determined as the intensity-weighted 
average of the corresponding mobilogram 
trace and can be converted into an ion-
neutral CCS value using the Mason Schamp 
equation21. Some peptides occur in more 
than one conformation and have multiple 
peaks in an LC-TIMS-MS experiment, but 
for simplicity we here chose to keep only 
the most abundant feature per charge state 
(Supplementary Fig. 1).  

Overall, our dataset comprises over two 
million CCS values, which we collapsed to 
about 570,000 unique combinations of 
peptide sequence, charge state and, if 
applicable, side chain modifications such as 
oxidation of methionine (Fig. 1b). Peptide 
sequence lengths ranged from 7 up to 55 
amino acids with a median length of 15. 
The trypsin and LysC data sets contributed 
79% of the peptide sequences (C-terminal 
R or K) whereas LysN peptide (N-terminal 
K) accounted for the remaining 21%. 
Within the two classes of peptides, the 
proportion of the terminal amino acids 
conformed to their expected frequencies 
from the database (Fig. 1c, d). Due to our 
selection of enzymes, peptides should have 
at least one basic amino acid. 
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Consequently, singly-charged ions were a 
small minority (2%), which we excluded 
from further analysis. We detected 69% of 
them in the doubly-charged, and 25% in the 
triply-charged and 4% in the quadruply-
charged state. Plotting the mass-to-charge 
(m/z) vs CCS distribution of all peptides 
separates them by their charge state over the 
m/z range 400 to 1,700 and 300 to 1,000 Å2 
in cross section (Fig. 1e). Within each 
charge state, m/z and CCS were correlated 
in accordance with previous observations in 
smaller datasets10,18,23,38–40. Overall, 95% of 
all tryptic peptides were distributed within 
±8% around power-law trend lines for each 
charge state (Supplementary Fig. 2). 
Interestingly, the deviation increases with 
charge state and mass – to the extent that 

there are two distinct sub-populations for 
charge state 3 - perhaps due to the increased 
amino acid variability and structural 
flexibility in longer sequences. Our data 
show that peptides occupy about one 
quarter of the two-dimensional m/z-
mobility space, whereas a fully orthogonal 
2D separation would occupy the full space. 
Assuming an average ion mobility 
resolution of 60, this translates into a 10-
fold increased analytical peak capacity as 
compared with only MS (Supplementary 
Fig 3).  

 

 

Figure 1 | Large scale peptide collisional cross section (CCS) measurement with TIMS and PASEF. a, 
Workflow from extraction of whole-cell proteomes through digestion, fractionation and chromatographic 
separation each fraction. The TIMS-QTOF mass spectrometer was operated in PASEF mode. b, Overview of the 
CCS data set in this study by organism. c, Frequency of peptide  C-terminal amino acids. d, Frequency of peptide 
N-terminal amino acids. e, Distribution of 559,979 unique data points, including modified sequence and charge 
state, in the CCS vs. m/z space color-coded by charge state. Density distributions for m/z and CCS are projected 
on the top and right axes, respectively.  
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Evaluating the precision and utility of 
TIMS CCS measurements 

Peak capacity indicates how many peptides 
can be analytically resolved from each 
other. However, for their identification it is 
sufficient to determine their apex positions 
with adequate precision. In MS-based 
proteomics, accurate measurement of the 
peptide mass greatly reduces the number of 
candidates in database searches36, and the 
retention time can likewise be employed as 
a filter, as is typically done in the analysis 
of data-independent acquisition (DIA) 
experiments41. We reasoned that ion 
mobility values should be precise and 
reproducible as they are based on gas phase 

interactions and defined electrical fields, in 
contrast to chromatographic retention 
times, which depend on surface interactions 
that vary according to sample matrices and 
over time. We therefore investigated the 
precision, accuracy and added benefit of 
ion mobility measurements at a large scale.  

First, we calculated correlation coefficients 
for retention times and CCS values from 
pair-wise overlapping tryptic peptides in 
the 168 LC-MS/MS runs that had the 
highest number of shared peptides across 
organisms. Depending on evolutionary 
distance, this number ranged from none to 
hundreds and these formed the basis of our 
calculations. We obtain two triangular half-

Figure 2 | Precision, accuracy and utility of experimental peptide CCS values. a, Color-coded pairwise Pearson 
correlation values of peptide retention time (upper triangular matrix) and CCS values (lower triangular matrix) 
between 168 LC-MS/MS runs of fractionated tryptic digests. Experimental meta-data are indicated below the x-
axis. White (n/a) indicates less than 5 data points for pairwise comparison. b, CCS values of shared tryptic peptides 
independently measured in two typical LC-MS runs of fractions from Drosophila and HeLa (n = 68). c, CVs of 
repeatedly measured peptide CCS values in the full data set (n=374,862 peptides). d, Specificity of combined 
peptide m/z and CCS information for doubly- and triply-charged tryptic peptides (n = 300,442 and 105,448) with a 
fixed m/z tolerance of ±1.5 ppm and as a function of CCS tolerance. For details, see main text and Methods. 
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matrices of color coded Pearson correlation 
coefficients – one for the retention time 
correlations and one for collisional cross 
sections (upper and lower part of Figure 
2a, respectively). Correlation values were 
generally above 0.9 for both retention time 
and cross section, although experiments 
were done over several months on three 
different instruments. However, 
correlations of CCS values were 
systematically higher than those for 
retention times, for example, median 
correlation between the HeLa runs from 
May 2018 to June 2019 is r2 = 0.986 for 
retention times and r2 = 0.995 for the cross 
sections (based on 1,645 peptides per pair-
wise comparison on average). Further, the 
upper triangle of the heatmap shows 
patches of similar color, unlike the mirrored 
positions in the lower triangle (Figure 2a). 
This indicates chromatographic batch 
effects resulting in non-linear shifts or 
changes in the peptide elution order. In 
contrast, the absence of similar patterns in 
the CCS comparisons supports our starting 
hypothesis that the ion mobility is largely 
independent of experimental 
circumstances.  

Closer inspection of the variation in CCS 
values, revealed mostly linear shifts, which 
do not affect the correlation coefficient. 
These shifts were only in the range from 0 
to 40 Å2 (median 9.4 Å2) even for very 
distant measurements, and they are mainly 
due variations of gas flow in the TIMS 
tunnel. Importantly, a linear alignment 
based on a few peptide CCS values almost 
completely corrects for these shifts 
(Methods, Fig. 2b). With such an 
alignment, CCS values can be compared 
across disparate datasets, which we did for 
all analyses shown here. Across the 
374,862 peptide CCS values measured at 

least in duplicate, the median coefficient of 
variation (CV) was only 0.4%, which 
highlights the excellent reproducibility of 
TIMS CCS measurements also over longer 
periods of time and across instruments (Fig. 
2c). This may even be improvable as 
suggested by our previously reported CVs 
of 0.1% for replicate injections of a whole 
proteome digest on a single instrument10.   

To investigate the utility of the additional 
CCS information for peptide identification, 
we returned to Fig. 1e and defined tolerance 
windows in m/z and CCS dimensions for 
each tryptic peptide. We then determined 
the fraction of windows in this map that 
were exclusively occupied by a single 
peptide, meaning a unique match between 
experimental measurement and our large 
peptide dataset (Fig. 2d). We set the mass 
tolerance at the median mass accuracy 
(±1.5 ppm) and varied the CCS tolerance 
separately for doubly- and triply-charged 
peptides, because they occupy different 
cross sectional areas (Methods). Without 
the CCS information, at ±50% tolerance, 
about 84% of the charge 2 and 65% of the 
charge 3 peptides had at least one other 
peptide within 1.5 ppm distance (‘non-
unique’). The fraction of unique peptides 
increase once the CCS window was 
restricted to less than ±10%, in accordance 
with the roughly 20% spread of CCS values 
in Fig. 1e. Within three standard deviations 
(±1.5%) of the measured CCS values, about 
half of the doubly charged and 75% of the 
triply charged species were unique and 
these fractions increased progressively for 
narrower CCS windows. We thus conclude 
that ion mobility can substantially reduce 
the number of potential peptides that need 
to be considered, benefiting peptide 
identification or MS1 level feature 
matching. At current CCS value accuracy, 
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this is about a factor two to three. As Fig. 
2d also shows, an increase in accuracy 
down to 0.1% could make the large 
majority of peptides unique (70% for 2+ and 
90% and 3+ in a ± 0.5% CCS window).  

 
Dependence of CCS values on linear 
sequence determinants 

Having investigated the accuracy and 
utility of peptide CCS values, we asked 
whether a dataset of this scale could also 
shed a light on potential substructures in the 
m/z vs ion mobility space and the 
relationships between linear peptide 
sequences and their corresponding gas 
phase structures. In the m/z vs CCS space of 
Fig 1e, more compact conformations 
appear below and more extended 
confirmations appear above the overall 
trend lines between m/z and CCS values. 

We first explored whether amino acids with 
preferences for secondary structures in 
solution42, would also effect peptide ion 
structures in the gas phase and form clusters 
in this global view (Supplementary Fig. 
4). This is a long-standing interest in ion 
mobility research and detailed studies of 
model peptides revealed that in particular 
helical structures can be stable in the gas 

phase43–45. Mapping the amino acids in 
each peptide sequence that favor helices in 
solution, we found a tendency towards 
higher CCS with an increasing fraction of 
A, L, M, H, Q and E. This suggests that 
such peptides indeed have a propensity to 
adopt extended helical rather than more 
compact globular structures. In contrast, 
peptides with a high fraction of amino acids 
favoring turn structures (G, S, D, N and P) 
tended to more compact conformations. 
Note, however, that these are subtle, 
population wide effects. An interesting 
result was that peptides with <10% of the 
mostly non-polar amino acids V, I, F, T and 
Y (favoring sheet structures in solution) 
formed a narrow band of compact gas phase 
conformations.  

Such tendencies have been ascribed to 
intra-molecular interactions such as 
coulombic repulsion, charge solvation and 
hydrogen bonding44–48. We reasoned that 
the hydrophobicity of peptides could thus 
be a good indicator of these interactions in 
a global view. Indeed, the GRAVY score49, 
a commonly used index of hydrophobicity, 
highlighted distinct areas of the m/z vs ion 
mobility space and within the CCS value 
distributions of each charge state, the 
peptides below the trend line had lower 

Figure 3 | A global view on peptide cross sections. a, Mass-to-charge vs. collisional cross section distribution 
of all peptides in this study colored by the GRAVY hydrophobicity index (n = 528,737). b, Tryptic peptides 
colored by the fraction of prolines in the linear sequence (n = 421,780). c, Histidine-containing tryptic peptides 
colored by the relative position of histidine (n = 159,471). Trend lines (dashed) are fitted to the overall peptide 
distribution to visualize the correlation of ion mass and mobility in each charge state. 
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GRAVY scores than those above (Fig. 3a). 
Interestingly, the two major subgroups of 
the triply-charge peptides also followed this 
trend in that hydrophobic peptides had a 
higher propensity to be in the upper 
population and vice versa. These results are 
in line with early work in ion mobility, 
indicating that non-polar amino acids 
contribute over-proportionately to the 
peptide CCS value50 and stabilize helices in 
the absence of solvent44. When rotationally 
averaged, this results in larger, effective 
cross sections. 

To resolve structural trends at the level of 
individual amino acids, we visualized their 
relative distribution in the same two-
dimensional space. Proline is unique due to 
its cyclic structure, which results in an 
inability to donate hydrogen bonds and to 
disruption of secondary structures in 
proteins. We found that peptides with more 
prolines had somewhat smaller CCS values 
on a global scale (Fig. 3b). In line with the 
reasoning above, this could be explained by 
a disruption of extended conformations and 
preference for globular ones.   

A peptide’s CCS value is not only 
determined by its amino acid composition, 
but also by its amino acid sequence. As a 
large scale example of this, we generated 
complementary peptide sequences with 
lysine either at the N-terminus (LysN 
digestion) or at the C-terminus (LysC 
digestion). As described before39, the two 
peptide populations most distinct in triply-
charge species (Supplementary Fig. 5). 
Comparing 41,449 complementary 
sequences of doubly-charged peptides, we 
found changing CCS values in the range of 
-5% up to +10% with a slight median shift 
of about 1% toward higher CCS values for 
peptides with C-terminal lysine. Strikingly, 
the 14,124 triply-charged species split in 

two sub-populations, with one maximum at 
about +1% similar to the doubly-charged 
species and a second maximum at a shift of 
about +8%. This indicates that for the latter, 
switching the position of lysine from the C- 
to the N-terminus destabilizes the extended 
conformation. Assuming that the LysC 
peptides have a more extended 
conformation due to charge repulsion of the 
terminal charges, this again conforms to the 
above considerations.  

We next investigated such effects in 
histidine containing tryptic peptides, by 
color-coding them by their relative 
histidine position in the linear sequences 
(Fig. 3c). Peptides with histidines close to 
the N-terminus are more likely to adopt an 
extended conformation and peptides with 
histidines closer to the C-terminal lysine or 
arginine are more compact in the gas phase. 
This again emphasizes that the internal 
charge distribution and the ability to solvate 
charges intra-molecularly have a strong 
influence on peptide CCS values.  

Although our analysis revealed interesting 
general trends and suggested common 
principles, it is challenging to combine 
them into robust models that rationalize the 
trends and determine the CCS value of a 
given peptide from its linear sequence. 
More importantly, peptide CCS values do 
not lend themselves to global ab initio 
calculations as this is beyond the 
capabilities of computational chemistry. To 
that end, we next turned to deep learning.  
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Deep learning accurately predicts 
peptide CCS values 

To construct an accurate CCS predictor 
able to incorporate these large-scale peptide 
measurements, we decided to employ a 
flexible deep learning model. We set out to 
define a network architecture that is capable 
of learning a non-linear mapping function 
connecting the linear amino acid peptide 
sequence with associated charge states to 
the experimentally measured CCS value 
with the following properties: (i) Exploit 
the sequential structure of the data where 
each peptide is encoded as a string of amino 
acid sequences. (ii) Account for the 
influence of an amino acid in the context of 
the entire peptide sequence; (iii) Process 
peptide sequences of arbitrary length. An 
architecture fulfilling those properties is a 
bi-directional LSTM network on top of the 
raw sequence followed by a two-layer 

multilayer perceptron (MLP) (Fig. 4a, 
Methods). Similar models have already 
proven successful in proteomics32,34,35. The 
bi-directional LSTM layers enable the 
model to interpret each amino acid in the 
context of neighboring amino acids, while 
the following concatenation step layer 
reduces the resulting N (sequence length) 
vectors into a single set of 256 features, 
together encoding the properties of the 
entirety of the peptide sequence. Together 
with the charge state, this vector constitutes 
the input to the MLP module for the final 
CCS value regression. The entire 
architecture is implemented with 
differentiable modules and is end-to-end 
trainable. We trained our model with the set 
of 431,541 unique sequences from our 
experimental data of the five organisms.  

Machine learning models, in particular 
deep learning models, can easily be over-

Figure 4 | Deep learning peptide CCS values. a, Architecture of the neural network. Bidirectional long short 
term model (LSTM): (i) amino acid sequence input, (ii) vectorization of amino acid information for processing, 
(iii) bidirectional LSTM layers (iv) reduction to fixed length peptide feature vector by concatenating the last output 
neurons of both directional LSTMs (v) CCS prediction. b, Relative deviation of predicted CCS values from an 
independent experimental validation dataset of synthetic peptides from the ProteomeTools project. c, Correlation 
of predicted versus experimental CCS values. Dashed lines indicate the 90% confidence interval. d, Dependence 
of the median relative error on training dataset size. e, Same for Pearson correlation coefficient.   
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fitted, resulting in poor generalization 
performance on new data sets. While 
holding out samples with-in the data set 
helps, for a more rigorous safe-guard, we 
acquired an independent additional dataset 
from the synthetic ProteomeTools library51. 
This yielded 155,004 unique peptide 
sequences as an external test set, which was 
never seen by the model during training. In 
this test set, our model reached a high 
accuracy with a 1.3% absolute median 
deviation and a Pearson correlation 
coefficient of 0.992 (Fig 4b,c). Of all 
predicted CCS values, 90% were within +-
4.00% deviation from the experimental 
data. In comparison, the experimental 
absolute median deviation between tryptic 
peptides from the ProteomeTools library 
and endogenous peptides was 0.6% (r = 
0.995, n = 54,914).   

Given that datasets in the hundreds of 
thousands may still not be seen as large in 
deep learning, we next investigated the 
dependency between model accuracy and 
training dataset size (Fig 4 d,e). We 
observed a monotonous improvement in 
relative prediction accuracy as well as in the 
Pearson correlation with growing training 
dataset size. The model error decreased 
from 1.67% median relative error at 10,800 
samples to 1.31% for a set of 216,000 
training samples, reflecting a substantial 
decrease in relative error of more than 20%. 
In contrast, moving from 216,000 samples 
to the full set of 431,541 samples resulted 
in a relative improvement of only 1.8% to a 
median relative error or 1.28%. These 
diminishing returns in accuracy of 
prediction indicated that the number of 
CCS values was sufficient – at least for 
currently achievable data quality. 

 
 

Resolving amino acids contributions  

Deep learning models are often deemed 
black boxes, as they are powerful predictors 
but learned relationships are typically hard 
to interpret. To make our model 
interpretable in relation to our experimental 
findings and to extract further molecular 
insights we calculated Shapley Additive 
Explanation values (SHAP)52,53 for each 
amino acid in each sequence. SHAP values 
indicate the influence of a specific amino 
acid on the peptide CCS value by 
comparing it to reference values 
determined by randomly sampling 
sequences. This allowed us to interpret the 
CCS prediction for a peptide sequence by 
determining the individual, contextual 
attribution of each amino acid (Methods).  

Figure 5a illustrates our analysis of 
sequence-specific amino acid SHAP values 
for three representative peptide sequences. 
In the regular tryptic peptide sequence (i), 
arginine and leucine with long side chains 
shifted the prediction value to larger CCS 
as compared with a random sequence, 
while the smaller glycine contributed less 
than average. In the atypical peptide 
sequence (ii), the attribution of leucine was 
similar, however, the attribution of arginine 
was largely reduced in the N-terminal 
position. The context-dependent attribution 
of each amino acid was also evident from 
the long peptide sequence (iii), indicating a 
relatively large contribution of the small 
amino acid alanine to the prediction value. 
Interestingly, in this particular sequence, 
glutamic acid had a positive attribution, 
whereas asparagine somewhat reduced the 
prediction value, despite the fact that both 
are similar in size and mass.    
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Plotting the aggregated SHAP value 
distribution over the entire test dataset for 
each individual amino acid, showed the 
expected relative order in terms of their 
average contribution (Fig. 5b): light and 
small amino acids such as glycine and 
proline had smaller SHAP values, whereas 
large and bulky amino acids such as 
tryptophan, arginine and lysine had larger 
attributions on average. In line with this 
observation, the average SHAP values 
correlated well with the amino acid mass 
and bulkiness54, as indicated by Pearson 
correlation coefficients of 0.79 and 0.69, 
respectively (Fig. 5c,d). Deviations from 
these correlations, for example for 
asparagine, aspartic acid, leucine and 
isoleucine, which all have similar mass, 
could be explained by differences in their 
bulkiness and hydrophobicity, in line with 

our experimental results above. 
Collectively, these results highlight that our 
deep learning model learned plausible 
features, extracting related physical 
quantities on the level of individual amino 
acids automatically from the training data, 
even though we solely used the linear 
peptide sequence as an input.  

Beyond the average values, the contribution 
of individual amino acids to a CCS 
prediction had vastly different values 
depending on their position in a sequence 
(Fig. 5a). Whereas the contributions of 
glycine, serine, glutamic acid and 
methionine were quite constant, those of 
lysine, arginine and histidine nearly varied 
over the entire range of observed SHAP 
values. Specifically for histidine, this 
agrees with our empirical observation that 

Figure 5 | Explainable artificial intelligence reveals context-dependent amino acid contributions. a, 
Example peptide sequences with SHAP value attributions of the most influential amino acids in the linear 
sequence. b, Amino acid specific SHAP value distributions over the full test dataset. c, Correlation between 
amino acid mass and mean SHAP value. d, Correlation between amino acid bulkiness54 and mean SHAP value. 
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the position in the linear sequence had a 
distinct effect on the cross section (Fig. 3c). 
We thus conclude that our model for the 
first time resolves substantial structural 
effects for some of the amino acids within 
each sequence to provide a very accurate 
CCS estimate for the entire peptide.  

 

Whole human proteome level CCS 
prediction  

The human proteome gives rise to 616,948 
unique tryptic peptide sequences 
(considering a minimum length of 7 amino 
acids and no missed cleavages), of which 
we measured about 18% in the course of 
this study. To investigate the entire peptide 
universe and to create a reference database 
of all tryptic peptides in the human 
organism, we next used our trained deep 
learning model to predict CCS values for 
the remaining 82%. Given the importance 
of charge in ion mobility and the fact that it 
does not follow from the linear sequence in 
a trivial manner, we first trained a second 
charge deep learning model on our 
experimental training data to also predict 
the charge state (Methods). We then fed 

each human peptide sequence together with 
its predicted charge state into the trained 
CCS model, resulting in a virtually 
complete compendium of human peptide 
CCS values.  

To provide a birds-eye overview of the 
structure of this data, we visualized the data 
manifold learned in the last layer of the 
neural network, in which each sequence is 
described by a vector of 256 neural network 
features. These features represent all 
information relevant to the prediction and 
were used to regress the final CCS values. 
However, the data manifold is too high 
dimensional to be directly accessible to 
human interpretation, hence we used a 
nonlinear dimension reduction  algorithm 
(Uniform Manifold Approximation and 
Projection, UMAP55) to visualize the data 
in a two dimensional space. In this view, 
each point represents a single peptide 
sequence and each local structure 
represents classes of peptides with similar 
features. Distances in this space can be 
interpreted as similarities between 
sequences in terms of the features extracted 
by the network, meaning that sequences 
with similar gas phase properties are close 

Figure 6 | The human peptide CCS universe. a, Two-dimensional UMAP representation of 616,948 unique 
tryptic peptide sequences colored by their predicted CCS value. b, Same UMAP plot. Peptide sequences with 
experimental values in this study are highlighted in orange (18%). Zoom views 1 and 2 indicate a good overlap 
of sequences with experimental and only predicted CCS values (blue) even in sparse areas of the UMAP plot.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.19.102285doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.19.102285


12 
 

to each other. Figure 6a reveals that the 
neural network organized the data in three 
connected manifolds, in which the 
sequences are ordered in terms of their 
associated CCS value, starting with low 
CCS values (<300 Å2) in the first cluster 
and increasing to high values (>900 Å2) in 
the third cluster. Similar to the 
representation in m/z vs. CCS space, we 
found that the main clusters were directly 
associated with the charge state and, within 
each charge state, there were apparent local 
structures.  

Importantly, our experimental CCS values 
are distributed across the entire predicted 
peptide universe (orange and blue points in 
Fig. 6b), with very high densities in the 
CCS regions 400 Å2-800 Å2, and lower 
densities in the region below 300 Å2.   This 
re-assures that the depth of our 
experimental dataset was sufficient to 
sample the full feature space and therefore 
suggests that our model can be applied to 
predict CCS values of any tryptic peptide 
sequence with similar high accuracy. 

 

 
DISCUSSION  

Technological advances have rekindled the 
interest in ion mobility spectrometry, which 
is now about to become mainstream in 
proteomics laboratories. Differential ion 
mobility devices act as filters, only 
allowing selected ions to enter the mass 
spectrometer. In contrast, trapped ion 
mobility (TIMS) allows to measure ion 
mobility values and to derive CCS values 
that reflect an ion’s size and shape. To 
investigate the benefit of this additional 
information in proteomics and making use 
of the speed and sensitivity of PASEF, we 
measured over two million CCS values of 

about 500,000 unique peptide sequences 
from five biological species. This covers a 
substantial proportion of the peptide space 
and is by far the most comprehensive data 
set of CCS values to date.  

This unprecedented scale allowed us to first 
assess the analytical benefits of CCS 
values, which turn out to correspond to a 
roughly ten-fold increase in separation 
power. We further established that at an 
accuracy of 1% the number of possible 
precursors of a peptide in a proteomics 
experiment decreases about two- to three-
fold. Such an accuracy can be achieved 
with a simple linear re-calibration across 
distant measurements and different 
instruments. With this re-calibration CCS 
values essentially become intrinsic 
properties of a molecule – meaning they do 
not depend on external circumstances – 
similar to their molecular weights and 
unlike their retention times. In repeat 
injections, TIMSCCS values can be as 
accurate as 0.1% at which point precursors 
measured within 1.5 ppm usually become 
unique.  

The scale and uniformity of our dataset 
makes it a valuable resource to investigate 
fundamentals of peptide gas phase 
structures in detail. Beyond the well-known 
correlation of CCS values on peptide mass, 
they also correlated with physicochemical 
amino acid properties such as 
hydrophobicity, while the contribution of 
certain amino acids varied based on their 
position in the sequence. A limitation of our 
analysis is that we only considered one 
CCS per peptide and charge state for 
simplicity. In the future, more information 
could be derived from resolving the ion 
mobility fine structure, for example of 
proline-containing peptides. However, 
simple considerations of the linear amino 
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acid sequences clearly do not capture the 
rich structure of the overall cross sectional 
space.   

As peptide CCS values in the gas phase are 
fully determined by their linear amino acid 
sequences, we reasoned that they should 
also be predictable with high accuracy. 
Indeed, after training our state of the art 
deep learning model on our extensive data 
set, it achieved a median accuracy of about 
1% for independently measured synthetic 
peptides, close to the experimental 
uncertainty. Our model generalized very 
well to the extent that it accurately 
predicted CCS values even for unseen 
peptides, such as those from the ‘missing 
genes’ subset in ProteomeTools51. Adding 
even more data values would have 
diminishing returns, however, prediction 
accuracy could be further improved with 
even more consistent measurements and 
higher ion mobility resolution.  

We also interrogated our deep-learning 
model with regard to the determinants of its 
predictions with Shapley Additive 
Explanation (SHAP). Amino acids greatly 
differ in the extent to which their CCS 
contribution depends on their sequence 
context – ranging from almost none to a 
rather wide positive or negative 
contribution compared to an average amino 
acid. This highlights how our model indeed 
learned underlying principles. These could 
readily be extended to other peptide classes, 
such as modified or cross-linked56 peptides, 
using transfer learning57, with little 
additional experimental effort.  

Our study complements recent efforts in 
predicting properties of peptides on the 
basis of their sequences alone, especially 
those using deep learning for retention 
times and MS/MS spectra intensities. 

Taken together, almost any peptide 
property relevant to proteomics workflows 
can now be predicted accurately, even in an 
ion mobility set-up. Conceptually, this 
allows the community to nearly fully 
reconstruct the expected experimental 
values of a MS-based proteomics 
experiment, given a list of identified and 
quantified peptides. In more narrow terms, 
there is great potential to render time- and 
cost-intensive experimental libraries 
largely dispensable. This is especially 
important in challenging applications such 
as peptidomics or proteomics of 
microbiomes34 that have a very large search 
space. The CCS model presented here 
further extends the capabilities of such 
strategies to make full use of the ion 
mobility dimension. To foster its 
application and further developments, we 
make the source code available for training 
and predictions, in addition to the ready-to-
use predictions of the human peptide 
universe included here.  
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METHODS  
 
Sample preparation. The human HeLa 
cell line (ATCC), Caenorhabditis elegans, 
Caenorhabditis elegans, Drosophila 
Melanogaster, Escherichia coli and 
Saccharomyces cerevisiae were cultivated 
following standard protocols. Whole 
organisms were first grinded in liquid 
nitrogen and cell pellets were directly 
suspended in lysis buffer with 
chloroacetamide (PreOmics, Germany) to 
simultaneously lyse cells, reduce protein 
disulfide bonds and alkylate cysteine side 
chains as previously described58. The 
samples were boiled at 95°C for 10 min and 
subsequently sonicated at maximum power 
(Bioruptor, Diagenode, Belgium). 
Proteolytic digestion was performed 
overnight at 37 °C by adding either i) equal 
amounts of LysC and trypsin, ii) LysC, or 
iii) LysN in a 1:100 enzyme:protein (wt/wt) 
ratio. The resulting peptides were de-salted 
and purified via solid phase extraction on 
styrenedivinylbenzene reversed-phase 
sulfonate (SDB-RPS) sorbent according to 
our ‘in-StageTip’ protocol (PreOmics). The 
dried eluates were reconstituted in water 
with 2% acetonitrile (ACN) and 0.1% 
trifluoroacetic acid (TFA) for further 
analysis. The synthetic ProteomeTools51 
library was reconstituted in the same buffer.    
 
High-pH reversed-phase fractionation. 
Peptide fractionation was performed at pH 
10 on an EASY-nLC 1000 (Thermo Fisher 
Scientific, Germany) using a 30 cm x 250 
µm C18 reversed-phase column (PreOmics). 
Approximately 50 µg peptides were 
separated at a flow rate of 2 µL/min with a 
binary gradient starting from 3% B, which 
was linearly increased to 30% B within 45 
min, to 60% B within 17 min and to 95% B 
within 5 min before re-equilibration. 

Fractions were collected into 24 wells by 
switching the rotor valve of an automated 
concatenation system59 (Spider 
fractionator, PreOmics) in 90 s intervals. 
Peptide fractions were vacuum-centrifuged 
to dryness and reconstituted in water with 
2% ACN and 0.1% TFA.      
 
Liquid chromatography and mass 
spectrometry (LC-MS). LC-MS was 
performed on an EASY-nLC 1200 (Thermo 
Fisher Scientific) system coupled online to 
a hybrid trapped ion mobility spectrometry 
– quadrupole time-of-flight mass 
spectrometer10 (Bruker Daltonik timsTOF 
Pro, Germany) via a nano-electrospray ion 
source (Bruker Daltonik Captive Spray). 
Approximately 200 ng of peptides were 
separated on an in-house 45 cm x 75 µm 
reversed-phase column at a flow rate of 300 
nL/min in an oven compartment heated to 
60°C. The column was packed in-house 
with 1.9 µm C18 beads (Dr. Maisch 
Reprosil-Pur AQ, Germany) up to the laser-
pulled electrospray emitter tip. Mobile 
phases A and B were water and 80/20% 
ACN/water (v/v), respectively, and both 
buffered with 0.1% formic acid (v/v). To 
analyze fractionated peptides from whole-
proteome digests, we used a gradient 
starting with a linear increase from 5% B to 
30% B over 95 min, followed by a further 
linear increases to 60% B and 95% B within 
5 min each, which was held constant for 5 
min before returning to 5% and re-
equilibration for a total of 10 min. The 
pooled synthetic peptides were analyzed 
with a gradient starting from 5% B to 30% 
B within 35 min, followed by linear 
increases to 60% B and 95% within 2.5 min 
each before washing and re-equilibration 
for a total of 5 min. 
The mass spectrometer was operated in 
data-dependent PASEF13 mode with one 
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survey TIMS-MS and ten PASEF MS/MS 
scans per acquisition cycle. We analyzed an 
ion mobility range from 1/K0 = 1.6 Vs cm-2 
to 0.6 Vs cm-2 using equal ion accumulation 
and ramp time in the dual TIMS analyzer of 
100 ms each. Suitable precursor ions for 
MS/MS analysis were isolated in a window 
of 2 Th for m/z < 700 and 3 Th for m/z > 
700 by rapidly switching the quadrupole 
position in sync with the elution of 
precursors from the TIMS device. The 
collision energy was lowered stepwise as a 
function of increasing ion mobility, starting 
from 52 eV for 0-19% of the TIMS ramp 
time, 47 eV from 19-38%, 42 eV from 38-
57% 37 eV from 57-76% and 32 eV until 
the end. We made use of the m/z and ion 
mobility information to exclude singly 
charged precursor ions with a polygon filter 
mask and further used ‘dynamic exclusion’ 
to avoid re-sequencing of precursors that 
reached a ‘target value’ of 20,000 a.u. The 
ion mobility dimension was calibrated 
linearly using three ions from the Agilent 
ESI LC/MS tuning mix (m/z, 1/K0: 
622.0289, 0.9848 Vs cm-2; 922.0097, 
1.1895 Vs cm-2; 1221.9906, 1.3820 Vs cm-

2). 
 
Data processing. Mass spectrometry raw 
files were analyzed with MaxQuant36,37 
version 1.6.5.0, which extracts four-
dimensional isotope patterns (‘features’) 
and associated MS/MS spectra. The built-in 
search engine Andromeda60 was used to 
match observed fragment ions to theoretical 
peptide fragment ion masses derived from 
in silico digests of a reference proteome and 
a list of 245 potential contaminants using 
the appropriate digestion rules for each 
proteolytic enzyme (trypsin, LysC or 
LysN). We allowed a maximum of two 
missing values and required a minimum 
sequence length of 7 amino acids while 

limiting the maximum peptide mass to 
4,600 Da. Carbamidomethylation of 
cysteine was defined as a fixed 
modification, and oxidation of methionine 
and acetylation of protein N-termini were 
included in the search as variable 
modifications. Reference proteomes for 
each organism including isoforms were 
accessed from UniProt (H. sapiens: 91,618 
entries, 2019/05; E. coli: 4,403 entries, 
2019/01; C. elegans: 28,403 entries, 
2019/01; S. cerevisiae: 6,049 entries, 
2019/01; D. melanogaster: 23,304 entries, 
2019/01). The synthetic peptide library 
(ProteomeTools51) was searched against the 
entire human reference proteome. The 
maximum mass tolerances were set to 20 
ppm and 35 ppm for precursor and fragment 
ions, respectively. False discovery rates 
were controlled at 1% on both the peptide 
spectrum match and protein level with a 
target-decoy approach. The analyses were 
performed separately for each organism 
and each set of synthetic peptides 
(‘proteotypic set’, ‘SRM atlas’ and 
‘missing gene set’). 
 
Bioinformatic analysis. Bioinformatic 
analysis of the MaxQuant output files and 
data visualization was performed with 
Perseus61 and Python version 3.6 
employing the following packages: numpy, 
pandas, scipy62, biopython63, matplotlib 
and seaborn. Decoy database hits were 
excluded from the analysis as well as 
peptide features assigned with zero 
intensity values. Peptides can adopt 
multiple conformations, both in the liquid 
and in the gas phase. For simplification, we 
here selected only the most abundant 
feature for each modified peptide sequence 
and charge state per LC-TIMS-MS run. To 
account for experimental drifts in the 
measurements of TIMSCCS values over 
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time, we performed a hierarchical 
clustering (similar to 37) and aligned all 
experiments by calculating pair-wise linear 
offsets (y = x+b) going from the closest to 
the most distant nodes. To perform nearest 
neighbor analysis in the m/z vs. CCS space 
we represented the data in a Kd-tree 
structure using the Tschebyschow distance 
metric to define a rectangular area with a 
given mass and CCS tolerance surrounding 
a node of interest.  
 
Deep learning model for CCS prediction. 
The deep learning model takes a raw 
(modified) peptide sequence as input. First, 
each amino acid gets one-hot encoded into 
a 26-dimensional vector representation for 
processing. This one-hot encoding also is 
applied to the elements “(ox)” and “(ac)”, 
resulting in a total feature vector with 
dimension Lx26 with L being the length of 
a given peptide. This vector is connected to 
a two-layer bi-directional recurrent network 
with Long-Short-Term-Memory (LSTM)64 
units with 500 hidden nodes each, which 
extract context-based features for each 
individual amino acid. This feature 
embedding gets further reduced to a global 
256-dimensional peptide feature vector by 
concatenating the last output neurons of 
both LSTM networks aggregating from left 
or right over the sequence. This peptide 
feature vector is further concatenated with 
additional charge state of the sequence and 
then is fed to a logistic regression layer 
which regresses the expected CCS value for 
the sequence. The most significant 
hyperparameters, namely: number of 
hidden neurons, number of layers where 
chosen by running a small search in a first 
preliminary step on a validation set 
consisting of 10 percent of the training data. 
The combination of recurrent layers with 
the concatenation step allows the model 

architecture to process peptides sequences 
with arbitrary lengths. The final model is 
end-to-end optimized by an ADAM 
Optimizer on 431,541 unique peptide 
sequences and validated on 155,004 
holdout peptides from the synthetic 
ProteomeTools library. The full framework 
is implemented using python with 
TensorFlow65 as the autograd library 
enabling the neural network optimization. 
 
Deep learning model for peptide charge 
state prediction. To predict the most 
probable (most abundant) charge state from 
the linear peptide sequence, we built a 
charge prediction neural network which has 
the identical structure as our CCS 
prediction model. It takes the raw peptide 
sequence as input following the same one-
hot encoding procedure and predicts a 
single associated charge value. We trained 
the charge prediction model on the same 
431,541 unique training sequences and 
validated it on the holdout set of 155,004 
peptides from ProteomeTools. The charge 
prediction model reaches a final accuracy 
of 93.5% for predicting the three observed 
charge states 2, 3 and 4. 
 
Analysis of amino acid feature 
attribution of the learnt network. For a 
given sequence and its CCS prediction, 
every Amino Acid is associated with a 
SHAP value52,53. This SHAP value 
quantifies how the presence of the amino 
acid influences the final prediction. By the 
summation-to-delta property the SHAP 
values are constrained in way such that the 
sum of all SHAP values in a sequence 
results in the final CCS prediction. SHAP 
values are a unification of multiple existing 
approaches66–70 for explaining predictions 
by feature attribution. For interpreting the 
predictions of our model we use the 
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DeepExplainer from the official SHAP 
implementation 
(https://github.com/slundberg/shap). The 
DeepExplainer approximates SHAP values 
and is based on DeepLift71. Here the 
importances of individual features are 
approximated by comparing the model 
output for an input where the feature is 
present to the model output where the 
feature is set to a reference value. A crucial 
step for this approach is to define the 
reference values. In our case the inputs are 
sequences of one-hot-encoded Amino 
Acids and we use 128 randomly chosen 
background sequences from the dataset in 
order to define meaningful reference values 
for all neurons. In order to capture non-
linearities the DeepLift approach 
approximates feature attributions for every 
neuron in the model. It starts at the output 
layer and propagates the values to the input 
by backpropagation, which is called 
applying the chain rule for multipliers in the 
original publication68. Applying this 
approach to the input sequences in our CCS 
model we are able to capture the SHAP 
value for an individual amino acid in a 
peptide sequence. 
 
Visualization of learnt network 
representation of the human proteome. 
To visualize the 256-dimensional neural 
network feature space we use apply the 
Uniform Manifold Approximation and 
Projection (UMAP)55 algorithm, which is a 
dimension reduction technique for general 
non-linear dimension reduction, which 
assumes uniform distribution of the data on 
a Riemannian manifold. Under certain 
conditions this manifold can be modelled 
with a fuzzy topological structure. The 2D 
embedding, which is used for visualization 
is found by searching for a low dimensional 
projection of the data that has the closest 

possible equivalent fuzzy topological 
structure. Therefore pairwise similarities 
between peptide sequences in the high 
dimensional NN space approximately 
resemble positions in the low-dimensional 
embedding visualization. 
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