New Results
Deep learning the collisional cross sections of the peptide universe from a million training samples
View ORCID ProfileFlorian Meier, Niklas D. Köhler, Andreas-David Brunner, Jean-Marc H. Wanka, Eugenia Voytik, Maximilian T. Strauss, Fabian J. Theis, Matthias Mann
doi: https://doi.org/10.1101/2020.05.19.102285
Florian Meier
1Max Planck Institute of Biochemistry, Department Proteomics and Signal Transduction, Martinsried, Germany
Niklas D. Köhler
2Helmholtz Zentrum München—German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
Andreas-David Brunner
1Max Planck Institute of Biochemistry, Department Proteomics and Signal Transduction, Martinsried, Germany
Jean-Marc H. Wanka
2Helmholtz Zentrum München—German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
Eugenia Voytik
1Max Planck Institute of Biochemistry, Department Proteomics and Signal Transduction, Martinsried, Germany
Maximilian T. Strauss
1Max Planck Institute of Biochemistry, Department Proteomics and Signal Transduction, Martinsried, Germany
Fabian J. Theis
2Helmholtz Zentrum München—German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
3Department of Mathematics, TU München, Munich, Germany
Matthias Mann
1Max Planck Institute of Biochemistry, Department Proteomics and Signal Transduction, Martinsried, Germany
4NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

- Supplementary Figures[supplements/102285_file03.pdf]
Posted May 21, 2020.
Deep learning the collisional cross sections of the peptide universe from a million training samples
Florian Meier, Niklas D. Köhler, Andreas-David Brunner, Jean-Marc H. Wanka, Eugenia Voytik, Maximilian T. Strauss, Fabian J. Theis, Matthias Mann
bioRxiv 2020.05.19.102285; doi: https://doi.org/10.1101/2020.05.19.102285
Deep learning the collisional cross sections of the peptide universe from a million training samples
Florian Meier, Niklas D. Köhler, Andreas-David Brunner, Jean-Marc H. Wanka, Eugenia Voytik, Maximilian T. Strauss, Fabian J. Theis, Matthias Mann
bioRxiv 2020.05.19.102285; doi: https://doi.org/10.1101/2020.05.19.102285
Subject Area
Subject Areas
- Biochemistry (8806)
- Bioengineering (6505)
- Bioinformatics (23431)
- Biophysics (11778)
- Cancer Biology (9189)
- Cell Biology (13304)
- Clinical Trials (138)
- Developmental Biology (7426)
- Ecology (11397)
- Epidemiology (2066)
- Evolutionary Biology (15138)
- Genetics (10427)
- Genomics (14032)
- Immunology (9161)
- Microbiology (22139)
- Molecular Biology (8802)
- Neuroscience (47510)
- Paleontology (350)
- Pathology (1427)
- Pharmacology and Toxicology (2488)
- Physiology (3726)
- Plant Biology (8075)
- Synthetic Biology (2220)
- Systems Biology (6029)
- Zoology (1252)