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Abstract 

It is important to maintain cognitive function in old age, yet the neural substrates that support 

successful cognitive ageing remain unclear. One factor that might be crucial, but has been overlooked 

due to limitations of previous data and methods, is the ability of brain networks to flexibly reorganise 

and coordinate over a millisecond time-scale. Magnetoencephalography (MEG) provides such 

temporal resolution, and can be combined with Hidden Markov Models (HMMs) to characterise 

transient neural states. We applied HMMs to resting-state MEG data from a large cohort (N=594) of 

population-based adults (aged 18-88), who also completed a range of cognitive tasks. Using 

multivariate analysis of neural and cognitive profiles, we found that decreased occurrence of “lower-

order” brain networks, coupled with increased occurrence of “higher-order” networks, was associated 

with both increasing age and impaired fluid intelligence. These results favour theories of age-related 

reductions in neural efficiency over current theories of age-related functional compensation. 
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Main 

With the increasing proportion of older adults in the worldwide population1, there is a 

pressing need to understand the neurobiology of cognitive ageing. Normal ageing generally results in 

cognitive decline2, though not all cognitive functions follow the same trajectory. In particular, whereas 

age produces a marked impairment in fluid intelligence (the ability to solve new problems), crystallised 

intelligence (the ability to rely on acquired knowledge) shows more modest age-related changes3–7. 

Moreover, functional neuroimaging has revealed that ageing is associated with changes in 

connectivity between brain regions, both within and between large-scale networks8. One factor that 

might play a crucial role in the ability to maintain cognition in old age, but which has been largely 

overlooked, is the ability of brain networks to flexibly reorganize and coordinate on a sub-second time-

scale. Indeed, the relationship between cognition and such transient brain connectivity, and how this 

relationship differs with age, remains unknown.    

In recent decades, functional connectivity within the human brain has been measured mainly 

with functional magnetic resonance imaging (fMRI). In particular, differences in the brain’s 

connectivity during the resting-state (rsfMRI) have proved effective in distinguishing various patient 

groups from controls (e.g., Alzheimer disease, major depression, schizophrenia; see for example9). 

Substantial work has also used rsfMRI to examine age-related changes in functional connectivity10–15. 

However interpreting such connectivity changes measured with fMRI is difficult owing to 

methodological challenges, such as confounding factors like vascular reactivity and head motion, 

which also change with age16–19. While some of these confounds, like neurovascular coupling, can be 

addressed by more sophisticated modelling20, the fact remains that fMRI has a fundamentally limited 

temporal resolution (owing to the sluggish vascular response and relatively slow image acquisition 

times), which precludes it from disclosing the potentially richer dynamics in brain connectivity above 

approximately 0.1 Hz.  
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An alternative, non-invasive way of measuring functional connectivity is offered by 

magnetoencephalography (MEG), which can sample neural activity at 1kHz and higher (at the cost of 

worse spatial resolution). Indeed, recent advances in analytical approaches offer the ability to 

measure dynamic functional connectivity, i.e., “microstates” of stable connectivity patterns that last 

a few hundred milliseconds21, well beyond the temporal resolution of fMRI. Importantly, MEG is less 

sensitive than fMRI to age-related changes in vascular factors and head motion. In the current study, 

we utilized these advantages of MEG to relate transient resting-state dynamics to cognitive ageing. 

More specifically, we exploited a large resting-state MEG (rsMEG) dataset obtained from 594, 

population-based individuals sampled uniformly across the adult-lifespan (18 to 88 years of age) as 

part of the Cam-CAN project (www.cam-can.org). In addition to the rsMEG scan, these individuals also 

completed a wide range of cognitive tasks. We characterised transient network dynamics using the 

recent application of Hidden Markov Models (HMMs) in order to explore the temporal dynamics of 

rsMEG networks21–26. An HMM is a data-driven method that identifies a sequence of “states”, where 

each state corresponds to a unique pattern of brain covariance that reoccurs at different points in 

time. By quantifying the time-series of MEG data as a sequence of transient states, the HMM provides 

information about the periods of time at which each state is active, enabling the characterisation of 

its temporal dynamics. While this technique has identified network dynamics in small resting-state or 

task MEG datasets21,23,24, these dynamics have not yet been linked to age and cognition. In particular, 

the size of the Cam-CAN cohort allowed us to take a multivariate approach, namely to use canonical 

correlation analysis (CCA) to relate the temporal properties of the data-driven HMM states to profiles 

of cognitive performance, and to test whether these relations differ with age.   
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Results 

Results were obtained following the data pre-processing and analyses procedures 

summarised in Figure 1 below. The raw data can be obtained by applying for access through the Cam-

CAN data portal (https://camcan.mrc-cbu.cam.ac.uk/). All code used in the paper will be available via 

an online repository. 

Figure 2 shows the spatial maps of the 8 networks (states) derived from combing the MEG 

data across all participants. The states include three distributed frontotemporoparietal networks 

(FTP1, FTP2, FTP3), a higher-order visual network (HOV), two early visual networks (EV1, EV2) and two 

sensorimotor networks (SM1, SM2). They are similar to those obtained from young adults in previous 

studies21–23.  

 

 

Figure 1. Overview of processing and analysis pipeline used in the study. 
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HMM States 
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Figure 2. The 8 inferred HMM states. Each map shows the partial correlation between the state time course and the parcel-

wise amplitude envelopes. Yellow colours represent amplitude envelope increases when the brain visits that state and blue 

colours represent envelope decreases. The partial correlation values have been thresholded to show correlation values 

above 50% of the maximum correlation across all states. To refer to the states, we use the same naming scheme applied by 

Hawkins et al.23. 

 

We next characterized the temporal properties of each state in terms of 4 metrics: fractional 

occupancy (FO), mean life time (MLT), number of occurrences (NO) and mean interval length (MIL). 

Group averages for each measure in each state are shown in Figure 3. Overall, primary (visuo-motor) 

states had higher number of occurrences than higher-order states. The most commonly-occurring 
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networks were sensorimotor network SM2 and early visual network EV1, which had the highest mean 

FO and NO. The network with the most prolonged visits (highest MLT) was the high-order visual 

network HOV. Conversely, the least common network, with lowest FO and NO and with greatest MIL, 

was frontotemporoparietal network FTP3. These findings largely agree with Hawkins et al.23 and (to a 

lesser extent) with other previous studies21,22, though now based on a much larger sample with a much 

larger age range.     

 

 

Temporal Characteristics of HMM States 
 

 
 

Figure 3. Violin plots27 of the four temporal characteristics of the HMM states: % fractional occupancy (FO; top-left), mean 
life time (MLT; top right), number of occurrences (NO; bottom-left) mean interval length (MIL; bottom-right). The first three 
measures are positive measures (i.e., indicate more frequent/longer duration of state’s occurrence), whereas the fourth 
measure (MIL) is a negative measure. Mean and median are indicated by black and red lines, respectively (N=595).  

 

 Our next step was to apply CCA to relate the 32 temporal characteristics of the HMM states 

(4 metrics for each of the 8 states) to age (such a multivariate analysis is important in the presence of 

multicollinearity, given the co-dependence between the 4 metrics of HMM state dynamics). One 
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participant who had no visits to one of the states (HOV) was excluded from these analyses. Only a 

single CCA mode was possible (given the unidimensional age variable), which explained 28.6% of the 

combined variance (Rc = .53, p < .001). Table 1 shows the structure coefficients (rs) for each metric of 

each state. As apparent in the table, the three frontotemporoparietal states (FTP1, FTP2, FTP3) and 

the higher-order visual state (HOV) showed positive correlations with age for FO, MLT and NO 

measures, and tended to show negative correlation for the MIL measure, whereas the two early visual 

states (EV1 and EV2) and one sensorimotor state (SM1) tended to show negative correlations with age 

for FO, MLT, NO and positive correlation for MIL. In other words, older people had more and longer 

occurrences of states involving frontotemporoparietal and higher-order visual states, and fewer, 

shorter occurrences of early visual and motor states (with the exception of sensorimotor state SM2, 

which did not show a significant relationship with age).     

 

Table 1. Structure coefficients for the CCA relating HMM measures with age (N=594) 

State FO MLT NO MIL Age 

FTP1 .27** .13* .28** -.12* (1) 
FTP2 .23** .15** .24** -.21**  
FTP3 .2** .44** .12* -.07  
HOV .23** .15** .34** -.07  
EV1 -.35** -.5** -.00 -.01  
EV2 -.45** -.38** -.33** .18**  
SM1 .18** .04 .22** -.13*  
SM2 -.03 -.09* .00 .02  

*p<.05, **p<.005. Note: Each cell depicts structure coefficients (rs). Coefficients are shown for each of the 4 HMM measures 
(FO, MLT, NO, MIL), for each state. rs for Age is 1, because this set contains only one variable.       

 

Once we established age effects on the pattern of occurrence of brain states, we asked how 

the pattern of the states’ occurrence relates to cognition. To this end, we related the temporal 

characteristics of the states to the 13 cognitive measures (see Methods). 12 CCA modes showed a 

significant correlation coefficient (Bonferroni corrected p-value across 13 modes < .05). Nevertheless, 

given the relatively low squared canonical correlation (R²c) of most modes (see Supplementary Figure 

1), only the first mode which accounted for a substantial portion of the combined variance (24%) was 

explored further (see Sherry & Henson28 for a similar approach). Figure 4 presents the structure 
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coefficients (rs) of the first CCA mode. For the cognitive data, the coefficients resembled the pattern 

associated with poor (low) fluid intelligence reported before3. Specifically, rs was negative for all the 

fluid intelligence tests except the multitasking (MltTs) and motor speed (MRSp) tests, where higher 

values of these response-time measures represent worse performance, and the proverbs (ProV) and 

Spot-the-Word (STW) tests, which measure crystallised intelligence instead. Importantly, the four 

“higher-order” states (FTPs and HOV) were positively related to this cognitive profile, i.e., greater 

occurrence of these states (as indicated by increased FO, MLT, NO and decreased MIL) was associated 

with lower fluid intelligence. Furthermore, this cognitive profile was associated with decreased 

activation of the two early visual states (EVs). The two sensorimotor states did not show strong 

relations to this cognitive profile.  

 Finally, we asked whether the relationship between the brain profile of HMM measures and 

the cognitive profile differed with age. For this moderation analysis, we constructed a multiple linear 

regression model that included participants’ scores for the HMM profile, their age and their 

interaction (HMM profile × age) as predictors, and participants’ scores for the cognitive profile as the 

dependent variable. The HMM scores were significantly associated with cognitive scores after 

accounting for the main effect of age (β = .13, t(590) = 4.51,  p < .001), demonstrating that the above 

brain-cognitive relationship was not driven solely by age effects. Moreover, the interaction between 

age and HMM profile was also significant (β = .11, t(590) = 4.33,  p < .001), demonstrating that the 

brain-cognition relationship was moderated by age in a positive sense, i.e., becoming more positive 

with age. To visualise this moderation effect, the brain-cognition relation was repeated for six equally-

sized age groups (n=99 for each group; 18–34 years old; 34-45 years old; 45-55 years old; 55-66 years 

old; 66-76 years old; 76-88 years old). As shown in Figure 4, the brain-cognition relationship was 

stronger in the older groups.  
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Figure 4. Outcomes of main CCA and moderation analyses (N=594). (A) Structure coefficients (rs) for the CCA relating HMM 
measures with cognitive measures. Solid outlines represent statistically significant rs, whereas dashed outlines represent rs 
that are not statistically significant. rs for brain HMM measures are shown in blue/white, with different shades of blue 
representing different types of networks (FTP, HOV etc). Corresponding HMM state maps are inset. For clarity, rs for each 
network are shown separately, though in practice all were included in a single CCA analysis. rs for the cognitive measures are 
shown in brown, with different shades indicating the distinction between cognitive abilities obtained via confirmatory factor 
analysis in Borgeest et al.3: fluid intelligence (dark brown), crystallised intelligence (light brown) and mixed (intermediate 
brown; for SntRec). For the response-time measures of MltTs and MPSp, lower scores indicate better performance (hence 
the opposite sign). (B) Scatter plot of bivariate correlations for six age groups. Dark shades of green represent younger adults, 
whereas light shades represent older adults. The relationship between HMM and cognitive profiles is higher for older adults 
(formally confirmed by a continuous moderation analysis; see text).  

  

Discussion 

Our results show that transient neural dynamics, particularly those of high-order and early-

visual states, differ across the healthy adult lifespan, with an increasing importance for cognitive 

function in older than younger adults. Importantly, by using a novel data-driven method to infer brain 

states from MEG data, we were able to overcome some of the limitations of the more common use of 

fMRI to examine ageing and cognition, such as confounding effects of vascular health, head motion 

and the ability to examine only very slow dynamics owing to low-frequency fluctuations of the fMRI 

response. More specifically, our finding that age and impaired fluid intelligence are associated with 

increased occurrence of brain states involving “higher-order” networks (such as those straddling 
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frontal, temporal and parietal cortex) are less consistent with theories of functional compensation in 

ageing, and more consistent with theories of reduced neural efficiency in ageing, as we expand below. 

We used multivariate analysis (CCA) to relate the pattern of brain dynamics (HMM profile) to 

age and to cognition, and to examine whether the brain-cognition relationship was moderated by age. 

This first analysis relating brain dynamics to age showed that the occurrence (e.g., frequency and 

duration) of states involving frontotemporoparietal and higher-order visual regions increase with age, 

whereas the occurrence of states involving early-visual regions decrease with age. The second analysis 

relating brain dynamics to cognitive performance revealed that a similar profile of increased 

occurrence of higher-order states and reduced occurrence of early-visual states is associated with a 

pattern of poorer performance on tests of fluid intelligence, but not tests of crystallised intelligence. 

Importantly, our final moderation analysis showed that this relationship between brain and cognitive 

profiles is not simply a result of shared influences of age (since age was included as a covariate). 

Moreover, this moderation analysis showed that the brain-cognitive relationship gets stronger with 

increased age, such that reduced cognitive performance in older participants is more strongly 

associated with the shift from early visual to higher-order networks than in younger participants.  

To our knowledge, this is the first study to report a resting state shift from lower to higher-

order networks that is linked to both age and cognition. This finding nevertheless shares some 

similarity with previous fMRI findings. For example, Davis et al.29 summarised a pattern across a 

number of fMRI experiments (first observed by Grady et al.30) in which older adults show increased 

activity in anterior (e.g., frontal) brain regions, and decreased activity in posterior (e.g., visual) brain 

regions, and called this the “Posterior-to-Anterior Shift with Ageing” (PASA). Furthermore, it has been 

hypothesised that one reason for this shift is “functional compensation”, whereby older people 

activate frontal regions to compensate for age-related impairments in posterior brain regions, that is, 

in order to maintain levels of cognitive performance29,31,32. However, this pattern and interpretation 

are based on activations during task-based fMRI, i.e., while participants are performing a cognitive 
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task, rather than the current resting state. Moreover, more recent fMRI studies have questioned 

whether PASA reflects functional compensation, and suggest instead that the increased frontal 

activation reflects reduced neural efficiency or specificity33–38. The difference between these two 

interpretations of the PASA finding is that, whereas the functional compensation hypothesis predicts 

that anterior increases correlate with better cognitive performance, the inefficiency hypothesis 

predicts the opposite pattern of anterior increases correlating with worse cognitive performance. Our 

findings support the latter account, i.e., that increased occurrence of higher-order states is associated 

with worse cognitive performance, specifically in measures of fluid intelligence and particularly in 

older adults. Importantly, unlike previous reports of the PASA pattern, the current shift was observed 

during rest, suggesting that it might reflect a stable property of the ageing brain. 

The results of our moderation analysis resemble those obtained in a previous study39, which 

also showed that the relationship between brain connectivity and cognition increased with age, but 

using rsfMRI instead. In that case, the authors showed that the cognitive function of older adults 

becomes increasingly dependent on the balance of excitatory connectivity between networks, and the 

stability of intrinsic neural representations within networks. Importantly, they used biophysical 

modelling to account for the confounding effects of vascular health on the fMRI response. However, 

their results were still limited to static connectivity driven by the low-frequency fluctuations that are 

visible to fMRI, and to a small subset of three brain networks (owing to the complexity of the 

biophysical modelling). The current study overcomes these issues by utilising rsMEG to measure i) 

neural activity directly, rather than indirectly via a vascular response, ii) dynamic connectivity with 

much higher temporal resolution and iii) whole-brain networks (within the limits of MEG resolution). 

One caveat of the current study is that we used cross-sectional data, which precludes direct 

inferences about ageing (as distinct from cohort effects, owing to year of birth). However, we are not 

aware of any longitudinal MEG data on such a large, representative population, and until such time, 

our results can be used to justify and inform hypotheses for future rsMEG studies of ageing. 
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Furthermore, the HMM approach comes with some assumptions. For example, it relies on group 

concatenation that here assumes anatomical correspondence across the lifespan (though our use of 

relatively large ROIs minimizes this issue), it requires a priori specification of the number of states, and 

it uses a Gaussian observation model which may be an oversimplification of the underlying network 

dynamics21. Nevertheless, despite these limitations, our study offers novel insights on the relationship 

between the cognitive sequelae of ageing and the underlying patterns of functional brain dynamics, 

which may be used in the future for mechanistic justification and assessment of interventions to 

reduce the personal and societal burden of cognitive impairments in old age.    

 

Online Methods 

Participants 

A population-based sample of 708 healthy human adults (359 women and 349 men) was 

recruited as part of Stage 2 of the Cambridge Centre Aging and Neuroscience (Cam-CAN; www.cam-

can.org40). Ethical approval for the study was obtained from the Cambridgeshire 2 (now East of 

England-Cambridge Central Research Ethics Committee), and participants gave full informed consent. 

Exclusion criteria included poor vision (below 20/50 on Snellen test41) and poor hearing (threshold 35 

dB at 1000 Hz in both ears), ongoing or serious past drug abuse as assessed by the Drug Abuse 

Screening Test (DAST-2042), significant psychiatric disorder (e.g., schizophrenia, bipolar disorder, 

personality disorder), neurological disease (e.g., known stroke, epilepsy, traumatic brain injury), low 

score in the Mini Mental State Exam (MMSE; 24 or lower43), or poor English knowledge (non-native or 

non-bilingual English speakers); a detailed description of exclusion criteria can be found in Shafto et 

al40, Table 1. Of these, only participants with full neuroimaging data (resting state MEG data and 

structural MRI data) were considered for the current study (n = 610). Fifteen additional participants 
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were excluded from analyses due to poor MEG-MRI co-registration (details below). Thus, the final 

sample included 595 participants (299 women and 296 men, age range 18-88).  

 

Cognitive Tasks 

13 cognitive tasks, performed outside the scanner, were used to assess five broad cognitive 

domains, including executive functions, memory, language functions, processing speed, and 

emotional processing. The tasks are summarized in Table 2, and are fully detailed in Shafto et al40. Task 

data were obtained from Borgeest et al.3, in which missing data (<12% in all tasks) were interpolated 

using the Full Information Maximum Likelihood (FIML) method44 in the Lavaan R package45 to allow 

unbiased estimates, applied to the full Stage 2 sample (n = 708).  

 

Table 2. Description of cognitive behavioural tasks (table adapted from Borgeest et al.3) 
 

Cognitive 
Domain 

Cognitive Task Task Description Descriptive 
Statistics for n=595 
(Mean, SD, Range) 

References 

Executive 
Function 

Fluid 
Intelligence 
(FldIn) 

Cattell Culture Fair Test, incl. 
nonverbal puzzles involving series 
completion, classification, matrices, 
and conditions. 

M = 31.74 
SD = 6.83 
Range = 11-44 

Cattell & Cattell, 
1960 

 Multitasking 
(Hotel Task; 
MltTs) 

Perform tasks in role of hotel 
manager: write customer bills, sort 
money, proofread advert, sort playing 
cards, alphabetise list of names. Total 
time must be allocated equally 
between tasks; there is not enough 
time to complete any one task. 

M = 301.3 
SD = 171.7 
Range = 20.19-960  

Shallice & 
Burgess, 1991 

Language 
Functions 

Spot the Word 
(StW) 

Involves presenting an individual with 
pairs of items comprising one word 
and one non-word, for example, 
‘flonty – xylophone’, the individual is 
required to point to the real word in 
the pair. 

M = 53.72 
SD = 5.28 
Range = 24-60     

Baddeley, Emslie 
& Nimmo-Smith, 
1993 

 Sentence 
Comprehension 
(SntRec) 

Listen to and judge grammatical 
acceptability of partial sentences, 
beginning with an (ambiguous, 
unambiguous) sentence stem (e.g., 
“Tom noticed that landing planes…”) 
followed by a disambiguating 
continuation word (e.g., “are”) in a 
different voice. Ambiguity is either 
semantic or syntactic, with 
empirically determined dominant and 
subordinate interpretations 

M = 0.89 
SD = 0.07 
Range = 0.46-1             

Rodd, Longe, 
Randall, & Tyler, 
2010 
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 Picture-Picture 
Priming 
(PicNam) 

Name the pictured object presented 
alone (baseline), then when preceded 
by a prime object that is 
phonologically related (one, two 
initial phonemes), semantically 
related (low, high relatedness), or 
unrelated 

M = 0.78 
SD = 0.09 
Range = 0.5-0.94     

Clarke, Taylor, 
Devereux, 
Randall, & Tyler, 
2013 

 Verbal Fluency 
(VrbFl) 

Mean of letter (phonemic) fluency 
and animal (semantic) fluency task. 
For phonemic fluency task, 
participants have 1 min to generate 
as many words as possible beginning 
with the letter ‘p’. For semantic 
fluency task, participants have 1 min 
to generate as many words as 
possible in the category ‘animals’. 

M = 20.72 
SD = 5.4 
Range = 6-37.5 

Lezak, Muriel, & 
Deutsch, 1995 

 Proverb 
Comprehension 
(ProV)  

Read and interpret three English 
proverbs. 

M = 4.54 
SD = 1.62 
Range = 0-6     

Hodges, 1994 

Emotional 
Processing 

Face 
Recognition 
(FaceRec) 

Given a target image of a face, 
identify same individual in an array of 
6 face images (with possible changes 
in head orientation and lighting 
between target and same face in the 
test array) 

M = 22.93 
SD = 2.32 
Range = 14-27  

Benton, 1994 

 Emotion 
Expression 
Recognition 
(EmoRec) 

View face and label emotion 
expressed (happy, sad, anger, fear, 
disgust, surprise) where faces are 
morphs along axes between 
emotional expressions. 

M = 86.6 
SD = 10.74 
Range = 47.5-100 

Ekman & Friesen, 
1976 

Memory Visual Short-
Term Memory 
(VSTM) 

View (1–4) coloured discs briefly 
presented on a computer screen, 
then after a delay, attempt to 
remember the colour of the disc that 
was at a cued location. 

M = 2.43 
SD = 0.58 
Range = 0-3.5      

Zhang & Luck, 
2008 

 Story Recall 
(StrRec) 

Listen to a short story, recall freely 
immediately after, then again after a 
delay, and finally answer recognition 
memory questions. Delayed recall 
measure used here. 

M = 12.98 
SD = 4.23 
Range = 0-24 

Wechsler, 1999 

Processing 
Speed 

Choice Motor 
Speed (MRSp) 

Time-pressured movement of a 
cursor to a target by moving an 
(occluded) stylus under veridical, 
perturbed (30°), and reset (veridical 
again) mappings between visual and 
real space. 

M = 0.19 
SD = 0.06 
Range = 0.05-0.85 

 

 Choice Motor 
Coefficient of 
Variation 
(MRCv) 

Standard deviation divided by mean 
of reaction time of choice motor 
speed. Reflects the relative measure 
of variability. 

M = 1.84 
SD = 0.38 
Range = 0.91-2.98   

 

 

 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.19.103531doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.19.103531
http://creativecommons.org/licenses/by/4.0/


NETWORK DYNAMICS IN COGNITIVE AGEING   16 
 

MEG data acquisition and pre-processing 

Data were collected using a 306-channel VectorView MEG system (Elekta Neuromag, 

Helsinki), consisting of 102 magnetometers and 204 orthogonal planar gradiometers, located in a 

magnetically shielded room. MEG resting state data (sampled at 1 kHz with a highpass filter of 0.03 

Hz) were recorded for 8 min and 40 s, while participants remained still in a seated position with their 

eyes closed. Head position within the MEG helmet was estimated continuously using four Head-

Position Indicator (HPI) coils to allow offline correction of head motion. Two pairs of bipolar electrodes 

recorded vertical and horizontal electrooculogram (VEOG, HEOG) signals to monitor blinks and eye-

movements, and one pair of bipolar electrodes recorded the electrocardiogram (ECG) signal to 

monitor pulse-related artefacts.  

The MaxFilter 2.2.12 software (Elekta Neuromag Oy, Helsinki, Finland) was used to apply 

temporal signal space separation (tSSS, Taulu et al., 2005) to the continuous MEG data to remove 

noise from external sources (correlation threshold 0.98, 10-sec sliding window), to continuously 

correct for head-motion (in 200-ms time windows), to remove mains-frequency noise (50-Hz notch 

filter), and to detect and reconstruct noisy channels. Following these de-noising steps, data were 

imported into Matlab (The MathWorks, Inc.) and preprocessed using a mixture of SPM12 

(http://www.fil.ion.ucl.ac.uk/spm) and the OHBA Software Library (OSL; https://ohba-

analysis.github.io/osl-docs/). Bad segments were detected and rejected by identifying outliers in the 

standard deviation of the signal using the Generalized ESD test46 at a significance level of a 0.1 (mean 

% time points rejected = 1.44, SD = 1.35). Data were then down-sampled to 200Hz, and a band pass 

filter applied from 1–45 Hz to remove slow trends and high frequency noise. 
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MEG source reconstruction, parcellation, and envelope calculation  

The MEG data were co-registered to each participant’s structural T1-weighted MRI, using 

three anatomical fiducial points (nasion, and left and right pre-auricular points) that were digitized for 

the MEG data and identified manually on the MRIs. The median distance between each scalp 

headshape point and its nearest vertex was calculated for each participant, and those with a median 

distance greater than 6 mm (n=15; see Participants section above) were excluded from subsequent 

analyses.  

Source space activity was then estimated for each participant at every point of an 8 mm 

whole‐brain grid using a single-shell lead-field model and a linearly constrained minimum variance 

(LCMV) scalar beamformer47,48, combining data from both magnetometers and gradiometers. Source-

reconstructed time-series (in each epoch) for each grid point were then parcelled into 38 regions of 

interest (ROIs; defined by selecting a subset of 19 of the ROIs in the Harvard–Oxford cortical brain 

atlas, available in FSL, and splitting each into two lateral halves to create 38 binary ROIs49) in order to 

reduce the dimensionality of the oscillatory activity submitted to the HMM (see below). Each parcel 

was represented by the first principal component across grid points within an ROI, and magnetic field 

spread between parcels was reduced by symmetric, multivariate orthogonalization49,50. Next, the 

amplitude envelope of each parcel’s time-course was calculated using a Hilbert transform, 

subsequently down-sampled to 20 Hz for computational efficiency.  

 

Group level exploratory analysis of networks (Hidden Markov Model)  

The HMM procedure assumes that the same set of microstates underpin the HMM‐derived 

states across participants. Therefore, demeaned and normalized envelope data for each participant 

were concatenated temporally across all participants to produce a single dataset, using the group-

level exploratory analysis of networks (GLEAN) toolbox (https://github.com/OHBA-analysis/GLEAN25). 
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We set the analysis a-priori to derive 8 states from the data, based on previous work suggesting that 

this number represents a reasonable trade-off between a sufficiently rich but not overly complex 

representation21. HMMs describe the dynamics of brain activity as a sequence of transient events, 

each of which corresponds to a visit to a particular brain state. Each state describes the data as coming 

from a unique 38-dimensional multivariate normal distribution, defined by a covariance matrix and a 

mean vector. Therefore, each state corresponds to a unique pattern of amplitude envelope variance 

and covariance that reoccurs at different time points. The HMM state time‐courses then define the 

points in time at which each state was “active” or “visited”. We obtained these estimated state time‐

courses, represented by a binary sequence showing the points in time when that state was most 

probable, using the Viterbi algorithm51. We then partially correlated the time‐courses onto whole‐

brain parcel‐wise amplitude envelopes concatenated across subjects in order to produce spatial maps 

of the changes in amplitude envelope activity associated with each state. The resulting state maps 

show the brain areas whose amplitude envelopes increase or decrease together (covary) when that 

state is active, compared to what happens on average over time. 

Using the state time-courses, we quantified the temporal characteristics of each state 

according to four measures of interest: (1) Fractional Occupancy (FO): the proportion of time the state 

was active; (2) Mean Life Time (MLT): the average time spent in the state before transitioning to 

another state; (3) Number of Occurrences (NO): the number of times the state was active; and (4) 

Mean Interval Length (MIL): the average duration between recurring visits to that state.  

 

Relating HMM states to age and cognition (Canonical Correlation Analyses) 

To identify how the temporal characteristics of the HMM states relate to age and cognition, 

we used Canonical Correlation Analyses (CCA52–54; [see Figure 1 in Wang et al54 for schematic 

illustration of CCA]). CCA is a multivariate technique that can identify and measure linear relations 
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between two sets of variables. Linear combinations within each of the sets are defined such that the 

correlations of these combinations between sets (e.g., between HMM profile, and cognitive profile) 

are maximized, resulting in CCA components, or “modes”. This multivariate approach is useful when 

the observed variables within each set are correlated (as is the case for the above HMM temporal 

characteristics, and for the cognitive scores).  

CCA was employed via canoncorr in Matlab. The number of modes produced by this analysis 

is always equal to the number of variables in the small dataset (though not all modes necessarily 

explain a substantial portion of the variance, see Results section above). In canoncorr’s terminology 

(see also studies mentioned above52–54), each CCA mode is associated with canonical “coefficients” 

across the variables in each set and “scores” across the observations (participants). This correlation 

between the participant scores of each set (for a given mode) is termed the “canonical correlation” 

(denoted by Rc), and its squared value (R²c) represents the proportion of variance shared between the 

variable sets. The correlation between the participant scores and each original variable (for a given 

set and given mode) is called the “structure coefficient” (denoted by rs), and the set of structure 

coefficients represents the “profile” of the CCA mode across those variables. Structure coefficients are 

often used to guide interpretation of multivariate analyses, and are particularly useful in the presence 

of multicollinearity28.    

All variables were z-scored before subjected to CCA, in order to make the various parameters 

more comparable across variables. First, we used CCA to relate the 4 HMM measures across all 8 states 

(Set 1, 32 variables) to age. Note that in this case, the CCA analysis is equivalent to multiple linear 

regression (MLR) because the second set contains a single variable (age). Nevertheless, for consistency 

with subsequent analysis, we used CCA rather than MLR. We then conducted another CCA analysis to 

relate the 32 HMM measures (Set 1) to the 13 cognitive measures (Set 2). Having used CCA to establish 

relationships between the HMM brain measures and the cognitive measures across all ages, we then 

asked whether the relationship between HMM profile and cognitive profile (i.e., the relations between 
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canonical scores obtained by the final CCA) varied with age, using a moderation analysis (see previous 

studies39,55 for a similar approach with different measures). Specifically, we constructed a multiple 

linear model where HMM scores (for a given mode), age and their interaction term (HMM profile × 

age) were used as independent variables and cognitive scores (for that mode) as the dependent 

variable (all statistical tests were two-sided). In order to visualise the results of this continuous 

moderation analysis, we created scatter plots of HMM profile versus cognitive profile for six equally-

sized age groups (n = 99 in each group).  

 

Additional control analyses 

 We performed several additional analyses in order to ensure that the results are robust and 

interpretable. First, some of the temporal measures of the HMM states (and MIL in particular) 

included a relatively large number of outliers (see Figure 3). Therefore, in order to ascertain that the 

results are not biased by these outliers, we repeated the main CCA and moderation analyses after 

excluding 98 participants depicting outliers (SD>3, n=496) in one or more measures. Following this 

removal, the first CCA mode remained highly significant (Rc = .512, R²c = 26%, p < .001), and the pattern 

of structure correlations remained remarkably similar to that observed with the full sample (see 

Supplementary Figure 2). The results of the moderation analysis were also similar, with a significant 

association between HMM and cognitive profiles after accounting for the main effect of age (β = .16, 

t(492) = 5.18,  p < .001), together with a significant interaction between age and HMM profile (β = .13, 

t(492) = 4.84,  p < .001).      

 Moreover, in order to confirm the significance of Rc of the first CCA mode as determined by 

parametric assumptions, we also estimated Rc against a distribution of 10,000 correlation coefficients 

based on permuting across participants their canonical scores for the cognitive data. The canonical 

coefficient for the true data (Rc = .49) was greater than for any of the random permutations (equivalent 
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to p < .0001, see Supplementary Figure 3). We also carried out a separate cross-validation analysis in 

which the CCA was only run on a subset of the data, and the outputs tested against the rest. In each 

of 10,000 iterations, we randomly chose 80% of the subjects for the “training” subset, leaving the 

other 20% for the “testing” subset. The canonical correlations across training sets for the first mode 

was similar to the original result (ranging between .45 and .56). For each iteration, we took the CCA 

HMM and cognition weight vectors for the first mode from the training subset, and multiplied them 

by the testing subset, in order to estimate participant scores for HMM and cognition. We then 

computed the correlation between these scores to estimate the canonical coefficient for the testing 

subset. Mean Rc was .32 (mean p = .007, see Supplementary Figure 3 for the full distribution). 

Importantly, the canonical coefficient was significant at p < .05 for 96.7% of the testing subsets and at 

p < .001 for 63.7% of the testing subsets. Taken together, the results of these analyses confirm that 

the first CCA mode was highly significant.  

 Finally, we repeated the HMM-age CCA analysis with an additional quadratic term, in order to 

account for potential non-linear (quadratic) age-effects. We computed a quadratic age term, 

orthogonal to the linear age term, and ran a CCA analysis that relates the 4 HMM measures across all 

8 states (Set 1, 32 variables) to both age terms (Set 2, 2 variables). Both possible CCA modes were 

significant (p < .001) and explained 28.6% and 12.3% of the shared variance, respectively. The 

structure coefficients (rs) are shown in Table 3 below. As apparent from the table, the first CCA mode 

captured the linear relations between the HMM measures and age, whereas the second CCA mode 

captured the quadratic relations. Importantly, we have observed an age-related shift from lower to 

higher-order states (captured by the first CCA mode), which was nearly identical to that observed in 

our initial analysis (which did not include the quadratic age term). This suggests that this neural profile 

remains stable even when accounting for non-linear age effects.  
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Table 3. Structure coefficients for the CCA relating HMM measures with linear and 
quadratic age (N=594) 

CCA Mode I  

State FO MLT NO MIL linAge quadAge 

FTP1 .27** .14** .28** -.12** .99** .02 
FTP2 .23** .15** .24** -.21**   
FTP3 .19** .44** .11* -.07   
HOV .24** .16** .35** -.08*   
EV1 -.35** -.51** -.00 -.01   
EV2 -.45** -.38** -.33** .18**   
SM1 .18** .04 .22** -.13**   
SM2 -.03 -.08* .00 .02   

CCA Mode II  

State FO MLT NO MIL linAge quadAge 

FTP1 -.04 -.35** .05 .01 -.02 .99** 
FTP2 .04 -.15** .1* -.05   
FTP3 .52** .25** .46** -.46**   
HOV -.42** -.5** -.31** .25**   
EV1 .21** .07 .17** -.27**   
EV2 .08 -.11* .19** -.19**   
SM1 .1* -.32** .21** -.3**   
SM2 -.04 -.27** .06 -.11*   

*p<.05, **p<.005. Note: Structure coefficients (rs) for two CCA modes are presented. Coefficients are shown for each of the 
4 HMM measures (FO, MLT, NO, MIL), for each state.       
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Supplementary Information 

 

Supplementary Figure 1. Squared canonical correlation (R²c) for each CCA mode, which represents the proportion of 
variance shared by the two synthetic variates. Only the first CCA mode, which accounted for a substantial portion of the 
shared variance (R²c = 24%), was interpreted.    

 

 

 

 

Supplementary Figure 2. Outcomes of CCA and moderation analyses with n=496, following the removal of outliers (SD > 3 

in one or more HMM measures).  
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Supplementary Figure 3. Outcomes of control analyses. Top: histogram of canonical coefficients (Rc) of the first CCA mode 

for permutated data across 10,000 iterations. Red line indicates Rc at 95% of the distribution of permutation data (equivalent 

to p = .05). Blue line indicates Rc obtained with the actual data. Bottom: Histogram of Rc (left) and p-values (right) of the first 

CCA mode in the test set after applying weight vectors from the train set, across 10,000 iterations.   
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