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ABSTRACT 25 

Model-based approaches to species delimitation are constrained by computational capacities as 26 

well as frequently violated algorithmic assumptions applied to biologically complex systems. An 27 

alternate approach employs machine learning to derive species limits without explicitly defining 28 

an underlying species model. Herein, we demonstrate the capacity of these approaches to identify 29 

phylogenomically relevant groups in North American box turtles (Terrapene spp.). We invoked 30 

several machine learning-based species delimitation algorithms and a multispecies coalescent 31 

approach to parse a large ddRAD sequencing SNP dataset. We highlight two major findings: 1) 32 

Machine learning delimitations were variable among replicates, but heterogeneity only occurred 33 

within major species tree clades; 2) in this sense unsupported splits echoed patterns of 34 

phylogenetic discordance among several species-tree methods. Discordance, as corroborated by 35 

previously observed patterns of differential introgression, may reflect biogeographic history, gene 36 

flow, incomplete lineage sorting, or their combinations. Our study underscores machine learning 37 

as a species delimitation method, and provides insight into how commonly observed patterns of 38 

phylogenetic discordance may similarly affect machine learning classification. 39 

 40 

Keywords: discordance, species tree, VAE, t-SNE, phylogenomics, ddRAD  41 
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1. INTRODUCTION 42 

Delineating species is undeniably crucial for systematics, ecology, and the evolutionary 43 

process. Species are the currency of biodiversity, as are inconsistencies in the application of what 44 

constitutes a species (‘multiplicity’ of species definitions; Zachos 2018). This creates 45 

downstream issues for conservation (Mace 2004), where spurious ‘splitting’ or ‘lumping’ of taxa 46 

are impediments to equitable allocation of limited resources. For example, over-splitting may 47 

redundantly allow threatened/endangered taxa to proliferate (Zachos et al. 2013; Sullivan et al. 48 

2014), or conflate recovery goals more appropriately managed at separate scales along the 49 

species-population continuum (Coates et al. 2018). 50 

On the other hand, inappropriate lumping can mask potential extinctions and the 51 

recognition of adaptive differentiation (Stanton et al. 2019). This can bias ‘true’ diversity, as 52 

reflected by regional or clade-specific differences in taxonomic ‘culture’ (e.g. biases in trait-53 

delimitation or species-concepts), or ‘inertia’ (i.e. persistent knowledge gaps; Gippoliti et al. 54 

2018). Both disproportionately promote ‘species at peril’ and subsequently drive inefficient 55 

resource allocation (Morrison et al. 2009; Garnett & Christidis 2017), viewed divisively as 56 

‘taxonomic inflation’ (Agapow et al. 2004; Isaac et al. 2004). Nevertheless, species 57 

definitions/delineations are a critical dimension in conservation's ‘agony of choice’ regarding 58 

resource allocation (Vane-Wright et al. 1991; Stanton et al. 2019). Delimiting species impacts 59 

not only finite resource allocation across programs but also efforts to recover and protect 60 

biodiversity.  61 

Earlier work on species delimitation relied on few genes (or markers), resulting in limited 62 

scope. Although genomic approaches have shown promise (Allendorf et al. 2010), conflicting 63 
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genome-wide signals from incomplete lineage sorting (ILS) and gene flow (Funk & Omland 64 

2003) are still apparent. Contemporary species delimitation relies upon a probabilistic approach 65 

to model gene tree conflicts (i.e. multispecies coalescent; MSC) (Yang & Rannala 2010). 66 

However, some models assume all such conflicts stem from ILS, and thus ignore other sources 67 

such as introgressive hybridization. 68 

Two popular packages, BPP and BFD*/SNAPP (Yang & Rannala 2010; Leaché et al. 69 

2014a), are not only intractable with large datasets, but also seemingly over-split in the presence 70 

of high population structure (Sukumaran & Knowles 2017) or when broad, continuous 71 

geographic distributions are involved (Chambers & Hillis 2019). Therein lies the difficulty when 72 

species delimitation explicitly assumes an underlying process of speciation (i.e. not effectively 73 

modeled as an aspect of high-dimensionality data; Chafin et al. 2019). Here, we advocate 74 

recently developed machine learning algorithms as an alternative that does not rely upon a priori 75 

assumptions regarding the speciation process, but instead evaluates the process in a relatively 76 

unrestricted manner. 77 

Machine learning is broadly divided into two components: supervised (SML) and 78 

unsupervised (UML). The former requires a classification model be ‘trained’ with a priori 79 

designations, from which a classification model is derived and optimized for assignment of 80 

‘unknown’ data. A popular SML approach invokes support vector machines (SVM) that 81 

partitions groups using linear or non-linear vectors in multi-dimensional space. However, the 82 

requirement of an a priori classification scheme from which to train the model limits its 83 

applicability, particularly when the purpose is to define groups, as in species delimitation. 84 

Additionally, SVM is often computationally demanding, and hence slow with respect to 85 
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alternatives (Suryachandra & Reddy 2016). UML, on the other hand, requires no a priori 86 

classification, and relies instead upon inherent patterns in the data. 87 

Several popular UML classifiers lend themselves to the species delimitation problem, 88 

including: Random Forest (RF; Breiman 2001), t-distributed stochastic neighbor embedding (t-89 

SNE; Maaten & Hinton 2008), and variational autoencoders (VAE; Derkarabetian et al. 2019), 90 

each with inherent strengths and weaknesses. For example, RF uses randomly replicated data 91 

subsets (in the form of pairwise distances) as a mechanism to develop binary ‘decision trees’ for 92 

a classification model. All randomly seeded decision trees are aggregated (=‘forest’), with 93 

classification decisions parsed as a majority vote amongst all trees. The random sub-setting 94 

approach is relatively robust to correlations among features (=summary statistics or principle 95 

components used for prediction) and model overfitting (=over-training the model where it does 96 

not generalize well with new data). One stipulation is that features must be of low occupancy and 97 

without undue noise (Rodriguez-Galiano et al. 2012). By contrast, the goal of t-SNE is to create 98 

diagnosable clusters in reduced-dimension space, typically a 2D plane extracted from a 99 

distillation of multi-dimensional data. Thus, it conceptually resembles methods such as principle 100 

components analysis [(PCA) (Maaten & Hinton 2008)].  101 

Alternatively, VAE uses neural networks in an attempt to ‘learn’ or reconstruct 102 

multidimensional data patterns from a compressed, low-dimensionality (=‘encoded’) 103 

representation. Again, the approach conceptually resembles the dimensionality-reduction 104 

employed by various ordination techniques, but without linear and orthogonal constraint being 105 

imposed upon the informative components. This approach may also be more statistically 106 

interpretable (Derkarabetian et al. 2019), and thus more appropriate for the capture of variability 107 
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within highly complex data. Yet, careful consideration must be paid to the derivation of 108 

parameters (e.g. neural network ‘depth’) that controls the encoding process (Livingstone et al. 109 

1997).  110 

UML methods do not require a priori designations from which to train a classification 111 

model yet may still be sensitive to priors and parameter settings. Thus, guidelines for appropriate 112 

application must be clearly defined, particularly regarding complex, empirical datasets. Two 113 

metrics that can influence the support of a given species delimitation hypothesis is concordance 114 

among algorithms (Carstens et al. 2013), and the susceptibility of the underlying algorithms to 115 

common sources of phylogenetic discordance. Some machine learning algorithms are robust to 116 

processes such as gene flow (Derkarabetian et al. 2019; Newton et al. 2020; Smith & Carstens 117 

2020), but more empirical tests in complex systems are warranted. For example, performance can 118 

vary among datasets, with potential influences including data quality (e.g. missing data 119 

proportions) and size (Newton et al. 2020), historical demography, evolutionary history, and 120 

coalescent processes such as incomplete lineage sorting (Austerlitz et al. 2009). Thus, we 121 

empirically apply some recently developed software packages (CLADES: Pei et al. 2018; RF, t-122 

SNE, VAE: Derkarabetian et al. 2019) and discuss their capacity for evaluating a group of 123 

species historically recalcitrant to taxonomic resolution. 124 

 125 

1.1. The convoluted evolutionary history of Terrapene 126 

North American box turtles (Emydidae: Terrapene) are primarily terrestrial, with a 127 

common name based on an anterior ventral hinge that allows the plastron (bottom part of shell) to 128 
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dorsally close against the carapace (Dodd 2001). There are five currently recognized species 129 

(Minx 1996; Iverson et al. 2017): Eastern (Terrapene carolina), Ornate (T. ornata), Florida (T. 130 

bauri), Coahuilan (T. coahuila), and Spotted (T. nelsoni), with a sixth (T. mexicana) proposed 131 

(Martin et al. 2013, 2014). Terrapene carolina includes two subspecies (Woodland: T. c. 132 

carolina; Gulf Coast: T. c. major) that inhabit the eastern U.S. from the Mississippi River to the 133 

Atlantic Ocean, and south through the Gulf Coastal Plain (Fig. 1). The putative T. mexicana 134 

contains three subspecies (Three-toed: T. m. triunguis; Mexican: T. m. mexicana; Yucatan: T. m. 135 

yucatana) ranging across the southeastern and midwestern United States, the Mexican state of 136 

Tamaulipas, and the Yucatan Peninsula. The Ornate (T. ornata ornata) and Desert (T. o. luteola) 137 

box turtles inhabit the Midwest and Southwest U.S. plus the Northwest corner of México, while 138 

the Southern and Northern Spotted box turtles (T. nelsoni nelsoni and T. n. klauberi) occupy the 139 

Sonoran Desert in western México. Terrapene coahuila is semi-aquatic and restricted to Cuatro 140 

Ciénegas (Coahuila, México), and the Florida box turtles occur in Peninsular Florida. 141 

Morphological analyses delineate T. carolina/mexicana as a single species, sister to T. 142 

coahuila (Minx 1992, 1996), with anecdotal support from a subset of genetic studies (Feldman & 143 

Parham 2002; Stephens & Wiens 2003). Alternatively, Martin et al. (2013) proposed the 144 

elevation of T. mexicana as a separate species, with T. coahuila as a subgroup within T. carolina. 145 

In this latter study, T. c. carolina was sister to T. c. major/T. coahuila, although potential gene 146 

flow was suspected between T. c. carolina and T. c. major due to mito-nuclear discordance. 147 

Accordingly, T. c. major was recently demoted to an intergrade population and its subspecific 148 

status removed (Butler et al. 2011; Iverson et al. 2017), but Martin et al. (2013) disagreed and a 149 

more recent study identified two potentially pure T. c. major populations in the Florida and 150 
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Mississippi panhandles (Martin et al. 2020). Likewise, T. bauri (formerly T. carolina bauri) was 151 

recently elevated to a distinct species (Butler et al. 2011; Iverson et al. 2017). a possibility that 152 

Martin et al. (2013) acknowledged, albeit cautiously as weak statistical support and inconsistent 153 

phylogenetic placement were evident. For the sake of clarity, we herein follow the 154 

recommendations of Martin et al. (2013, 2014), considering T. c. major a distinct entity and bauri 155 

as a subspecies within T. carolina. The monophyly of T. o. ornata/luteola has also been 156 

questioned; Herrmann and Rosen (2009) suggested distinct lineages using microsatellite analyses, 157 

whereas Martin et al. (2013) suggested polyphyly and a lack of phylogenetic structure using 158 

mitochondrial (mt)DNA and nuclear (n)DNA sequences. 159 

One likely reason for the historically enigmatic classification of T. carolina and T. 160 

mexicana includes contemporary hybridization and introgression occurring within a hybrid zone 161 

in the southeastern U.S., with four taxa potentially involved (Auffenberg 1958, 1959; Milstead & 162 

Tinkle 1967; Milstead 1969). Some researchers (Fritz & Havaš 2013, 2014) interpret 163 

reproductive semi-permeability as evidence for lumping the southeastern taxa as a single species. 164 

However, divergent selection reinforcing species boundaries in some southeastern Terrapene has 165 

been suggested as a reason for re-examining their classificatory status, despite ongoing gene flow 166 

(Martin et al. 2014, 2020). Alternatively, the close phylogenetic relationship between T. c. major 167 

and T. coahuila is less well understood. This may result from ‘ghost’ admixture of T. coahuila 168 

and/or T. c. major with the extinct T. c. putnami (Martin et al. 2013). 169 

Herein, we evaluate the classification of Terrapene within the context of both UML and 170 

coalescent model-based species delimitation approaches. In doing so, we empirically validate the 171 

use of machine learning approaches with complex genetic datasets that, upon analysis, support a 172 
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well-characterized phylogenetic hypothesis. Of note, observed species delimitation classifications 173 

are consistent with patterns of phylogenetic discordance, demonstrating an empirical application 174 

where the sources for such discordance may similarly affect machine learning. 175 

 176 

2. MATERIALS AND METHODS 177 

2.1. Sample collection, storage, and DNA extraction 178 

Tissue samples were obtained from various museums, organizations, agencies, and 179 

volunteers (Table S1), then stored in 70%-95% ethanol or DMSO (di-methyl sulfoxide) buffer. 180 

Non-invasive samples were also acquired from live specimens, with those more invasive (e.g. 181 

toes, muscle) taken from road-kills. Upon receipt, samples were stored at -20°C. Genomic DNA 182 

was extracted via the following spin-column kits: DNeasy Blood and Tissue Kits (QIAGEN), 183 

QIAamp Fast DNA Tissue Kit (QIAGEN), and E.Z.N.A. Tissue DNA Kits (Omega Bio-tek). 184 

Extracted DNA was quantified using Qubit (Thermo Fisher Scientific) broad-range dsDNA 185 

fluorometry and tested for high-molecular weight DNA using gel electrophoresis. 186 

 187 

2.2. DNA library preparation 188 

We first estimated the expected number of loci recovered via ddRAD sequencing 189 

(ddRADseq) through in silico digestion (Chafin et al. 2018) of the painted turtle (Chrysemys 190 

picta) genome (Shaffer et al. 2013). This was done to optimize choice of base-cutters, size-191 

selection bounds, and multiplex-size, thus maximizing loci coverage while promoting high 192 

sequencing depth. We also used the in silico digest to identify a candidate size-selection that 193 
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avoids restriction sites lying within repetitive genomic elements (Chafin et al. 2018). The 194 

expected number of ddRADseq loci and depth of coverage were empirically verified by 195 

performing a restriction enzyme digest on 1,000ng of DNA for a representative panel of 24 196 

samples, followed by fragment analysis (Agilent 4200 TapeStation). 197 

Samples with sufficient DNA quantity (≥50 ng/uL) were processed via ddRADseq 198 

protocol (Peterson et al. 2012). Between 500-1,000ng of genomic DNA per sample was digested 199 

using two restriction enzymes, PstI (5’-CTGCA|G-3’) and MspI (5’-C|CGG-3’). Following a 200 

digestion at 37°C for 24 hours, 5ul of each sample was visualized on a 2% agarose gel via 201 

electrophoresis to verify DNA fragmentation. Samples were purified using an AMPure XP 202 

(Beckman Coulter) solution at a concentration of 1.5X (relative to DNA volume), then 203 

standardized at 100ng of DNA per sample. Unique barcoded adapters were ligated to each 204 

individual before pooling 48 samples into a library. Taxa were spread across multiple libraries to 205 

mitigate potential batch effects, and libraries were size-selected on a Pippin Prep (Sage Science) 206 

using the in silico optimized range [378-433 base pairs (bp), excluding adapters]. Lastly, a 207 

twelve-cycle polymerase chain reaction (PCR) was run with Phusion DNA Polymerase (New 208 

England BioLabs), followed by 1x100 single-end sequencing on the Illumina Hi-Seq 4000, 209 

pooling two indexed libraries (=96 individuals) per lane. Sequencing and additional quality 210 

control (fragment visualization and qPCR) were performed at the Genomics and Cell 211 

Characterization Core Facility, University of Oregon/Eugene. 212 

 213 

 214 
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2.3. Sequence quality control and assembly 215 

FASTQC v. 0.11.5 was used to assess sequence quality (Andrews 2010), with IPYRAD 216 

v0.7.28 employed to demultiplex the raw sequences and align reads (Eaton & Overcast 2020). 217 

Demultiplexed reads were allowed a strict maximum of one barcode mismatch, given that 218 

barcodes were designed with a minimum two-base distance. Reads with low PHRED quality 219 

scores (<33) were excluded, with additional filtering to remove adapter sequences. We then 220 

performed reference-guided assembly using the Terrapene m. mexicana reference genome 221 

(GenBank Accession #: GCA_002925995.2) with a minimum identity threshold of 0.85. 222 

Unmapped reads were removed, and retained loci exhibited ≥20X coverage depth to reduce 223 

sequencing error bias (Nielsen et al. 2011) and maximize phylogenetically informative sites in 224 

the alignment (Eaton et al. 2017). Loci were further excluded if they displayed <50% individual 225 

occupancy, excessive heterozygosity (≥75% of individual SNPs), or more than two alleles per 226 

sample (the latter two instances indicating over-merged paralogs).  227 

 228 

2.4. Phylogenomic inference 229 

To assess differences in phylogenetic inference, we generated species trees using three 230 

contemporary algorithms. Admixture across Terrapene hybrid zones has been well-characterized 231 

(Butler et al. 2011; Martin et al. 2013, 2020). Thus, to mitigate the impact of contemporary gene 232 

flow on phylogenetic inference, we only utilized individuals confirmed to be parental types 233 

(characterized in Martin et al. 2019), as modelled using NEWHYBRIDS (Anderson & Thompson 234 
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2002). In so doing, we partitioned T. c. major into two subsets comprising two putative parental 235 

populations.  236 

Maximum likelihood phylogenies have been commonly produced for decades, yet the 237 

increased use of large-scale SNP datasets often inflates bootstrap support for concatenated 238 

phylogenomic datasets (Salichos & Rokas 2013; Simmons & Goloboff 2014). Coalescent-based 239 

approaches that account for independent gene tree histories are more applicable for SNP analysis, 240 

and thus we employed SVDQUARTETS [(Chifman & Kubatko 2014), implemented in PAUP* 241 

v4.0a164 (Swofford 2003)] to produce a species tree with individuals grouped into populations. 242 

Unrooted four-taxon gene trees were generated to assess legitimate splits, then assembled to form 243 

the full species tree. SVDQUARTETS performs better for concatenated SNP datasets than do 244 

species tree methods utilizing summary statistics (Chou et al. 2015), and importantly works well 245 

with the large amount of missing data typically produced by ddRADseq (Leaché et al. 2015). 246 

To reduce linkage bias and because independent gene tree histories are assumed for each 247 

site, only one SNP from each ddRADseq locus was included in the SVDQUARTETS alignment. To 248 

assess sampling variance, we ran 100 bootstrap replicates and considered nodes resampled at 249 

>70% as strongly supported. Taxon partitions were grouped at the lowest level of field 250 

identification (i.e. subspecific designations, when available), and by U.S. and Mexican state 251 

locality. Blanding’s (Emydoidea blandingii) and spotted (Clemmys guttata) turtles were included 252 

as outgroups. An exhaustive search of all possible quartets was performed, with the consensus 253 

tree visualized in FIGTREE v1.4.2 (Rambaut 2014). 254 

We also employed a polymorphism aware model (POMO: Schrempf et al. 2016), as 255 

implemented in IQ-TREE v1.6.9 (Nguyen et al. 2015), to generate a second species tree. We did 256 
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so because POMO allows within-population polymorphism to account for ILS. The full IPYRAD 257 

alignment, including invariant sites, was input into POMO and executed with 1,000 ultrafast 258 

bootstrap (UFB) replicates (Hoang et al. 2017) and a maximum virtual population size of 19. The 259 

discrete gamma rate model was applied (N=4), and clades with bootstrap support ≥95% were 260 

considered strongly supported. 261 

Finally, we generated a lineage-tree phylogeny (IQ-TREE v1.7.12; Nguyen et al. 2015) to 262 

contrast with our species-trees. An edge-linked partition model with 1,000 UFB replicates was 263 

run using MODELFINDER (Kalyaanamoorthy et al. 2017) to determine the optimal substitution 264 

model for each separate ddRADseq locus. Given computational constraints, model selection was 265 

restricted only the general time reversible (GTR) model. Following tree reconstruction, IQ-TREE 266 

was used to calculate site-wise concordance factors (sCF; Minh et al. 2018) for each branch 267 

because they are less susceptible than traditional bootstrapping to over-inflation (Philippe et al. 268 

2011). The sCF were calculated from 100 quartets randomly sampled from internal branches of 269 

the tree, as recommended by IQ-TREE for stable sCF values. UFB≥95% and sCF≥50% were 270 

considered as strong support (per IQ-TREE documentation). 271 

For statistical topology tests, we generated lineage trees with IQ-TREE under the 272 

topological constraints supported by four species-tree hypotheses derived from: (a) 273 

SVDQUARTETS and (b) POMO topologies, as generated herein; (c) Sanger sequencing with 274 

mtDNA and nuclear introns (Martin et al. 2013); and (d) Morphological data (Minx 1996). 275 

MODELFINDER was again employed to optimize substitution models for each locus, as partitioned 276 

in a concatenated supermatrix, using a hierarchical clustering algorithm to minimize 277 

computational burden in IQ-TREE (-rcluster). We also toggled the -bnni and -opt-gamma-inv 278 
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options to reduce the impact of severe model violation and more thoroughly explore gamma and 279 

invariant site parameters. Nodal confidence of individual trees was assessed using 1,000 UFB. 280 

We then compared support for the concatenated supermatrix among constraint trees using seven 281 

topological tests and 10,000 re-samplings: (a) Raw log-likelihoods; (b) bootstrap proportion test 282 

using the RELL approximation (Kishino et al. 1990); (c) Kishino-Hasegawa test (Kishino & 283 

Hasegawa 1989); (d) Shimodaira-Hasegawa test (SH; Shimodaira & Hasegawa 1999); (e) 284 

Approximately Unbiased test (Shimodaira 2002); and (f) Expected Likelihood Weights 285 

(Strimmer & Rambaut 2002). To visualize support for each topology across the genome, site-286 

likelihood probabilities and pairwise site-likelihood score differences (ΔSLS) were calculated 287 

between the best-supported versus remaining trees. 288 

 289 

2.5. Species delimitation 290 

We employed the multispecies coalescent Bayes Factor Delimitation approach [BFD*; 291 

(Leaché et al. 2014a)] as a baseline to compare the machine learning-based methods. Because 292 

BFD* is computationally intensive, taxa were subset to a maximum of five individuals that 293 

contained the least amount of missing data (N=37, plus outgroups), with sampling locations 294 

varied (excepting T. c. bauri and the extremely rare T. m. mexicana and T. coahuila, which occur 295 

exclusively in Peninsular Florida and the Mexican states of Tamaulipas and Cuatro Ciénegas). 296 

For consistency, the same subset of individuals was used across all approaches. Details for BFD* 297 

prior selection and additional data filtering steps can be found in Supplemental Appendix 1.  298 
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For each BFD* model, SNAPP employed 48 path-sampling steps, 200,000 burn-in, plus 299 

400,000 MCMC iterations, with sampling every 1,000 generations. The path-sampling steps were 300 

conducted with 200,000 burn-in, 300,000 MCMC generations, α=0.3, 10 cross-validation 301 

replicates, and 100 repeats. Trace plots were visualized (TRACER v1.7.1) to confirm parameter 302 

convergence and compute effective sample sizes (ESS; Rambaut et al. 2018). Bayes factors (BF) 303 

were calculated as [2 X (MLE1 - MLE2)] from the normalized marginal likelihood estimates 304 

(MLE). We considered the following scheme for BF model support: 0<BF<2=no model 305 

differentiation; 2<BF<6=positive; 6<BF<10=strong; and BF>10=decisive support (Kass & 306 

Raftery 1995). 307 

The RF and t-SNE algorithms (Breiman 2001; Maaten & Hinton 2008) were run and 308 

visualized using an R script developed by Derkarabetian et al. (2019). The data were represented 309 

as scaled principle components (N=37 axes) generated in ADEGENET v2.1.1 (Jombart & Ahmed 310 

2011) in R v3.5.1 (R Development Core Team 2018). We averaged 100,000 majority-vote 311 

decision trees over 10,000 bootstrap replicates to generate RF predictions. Clustered RF output 312 

was visualized using both classic and isotonic multidimensional scaling procedures (CMDS and 313 

ISOMDS; Shepard et al. 1972; Kruskal & Wish 1978). We ran t-SNE for 10,000 iterations within 314 

which equilibria of the clusters was visually confirmed. Perplexity, which limits the effective 315 

number of t-SNE neighbors, was tested at values of five and ten. 316 

 317 

 318 

 319 
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2.6. Determining optimal K for random forests and t-SNE 320 

Two common clustering algorithms, as implemented in the aforementioned R scripts 321 

(Derkarabetian et al. 2019), were used to derive optimal K for both the RF and t-SNE analyses. 322 

The first [Partitioning Around Medoids (PAM); Kaufman and Rousseeuw 1987] attempts to 323 

minimize the distance between the center point versus all other points of K clusters. The program 324 

requires K to be defined a priori, and thus K=1-10 were tested, with the gap statistic and highest 325 

mean silhouette widths [(MSW) (Rousseeuw 1987; Tibshirani et al. 2001)] determining optimal 326 

K. The second [Hierarchical Agglomerative Clustering (HAC); Fraley and Raftery 1998] merges 327 

points with minimal dissimilarity metrics (based on pairwise distances) until all are clustered. 328 

 329 

2.7. Variational autoencoders 330 

The VAE UML approach (Derkarabetian et al. 2019) employs neural networks and deep learning 331 

to infer the marginal likelihood distribution of sample means (μ) and standard deviations [(σ) (i.e. 332 

‘latent variables’)]. Clusters with non-overlapping σ are interpreted as distinct clusters, or 333 

‘species.’ Data were input as 80% training/20% validation, with model loss (~error) visualized to 334 

determine the optimal number of ‘epochs’ (=cycles through the training dataset). VAE should 335 

ideally be terminated when model loss converges on a minimum value between training and 336 

validation datasets [(i.e. the ‘Goldilocks zone’; Fig. S1) (Al’Aref et al. 2019)]. An escalating 337 

model loss in the validation dataset indicates overfitting, whereas a failure to acquire a minimum 338 

value points to underfitting (i.e. inability to generalize across both training and unseen data).  339 

 340 
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2.8. Support vector machines 341 

The CLADES software (Pei et al. 2018) derives six summary statistics for SVM: 1) 342 

Proportion of private alleles; 2) a folded site-frequency spectrum (SFS); 3) pairwise FST values 343 

within populations; 4) pairwise FST values among populations; 5) the pairwise difference ratio 344 

(dbetween/dwithin); and 6) the longest shared tract (longest string shared by two sequences). More 345 

extensive methodological descriptions of the UML and SML components of machine learning are 346 

found in Supplemental Appendix 1. 347 

 348 

3. RESULTS 349 

3.1. Sampling and data processing 350 

We sequenced 214 geographically widespread Terrapene (Fig. 1; Table S1) including all 351 

recognized species and subspecies, save the exceptionally rare T. nelsoni klauberi. When 352 

possible, we included a minimum of 10 individuals per taxon, though fewer were used per rare 353 

clade (T. m. yucatana, T. m. mexicana, T. coahuila, T. n. nelsoni, T. o. luteola, and T. c. bauri). 354 

The IPYRAD pipeline recovered 134,607 variable sites across 13,353 loci that mapped to the T. m. 355 

mexicana genome, with 90,777 being parsimoniously informative. The mean per-individual 356 

coverage depth was 56.3X (Fig. S2). 357 

 358 

 359 

 360 
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3.2. Species tree inferences 361 

The sCF tree contained N=214 tips (Fig. 2), whereas SVDQUARTETS and POMO (Fig. 3) 362 

grouped individuals into N=26 populations, again based on locality and subspecies (when 363 

provided). The SVDQUARTETS alignment contained 10,299 unlinked SNPs, with 87,395,061 364 

quartets employed to assemble the species tree (Fig. 3a). Concatenated ddRADseq loci were 365 

included in the POMO tree (Fig. 3b), to include both invariable and variable sites 366 

(Nsites=1,163,463). All trees clearly delineated eastern versus western clades, with T. mexicana, T. 367 

carolina, and T. coahuila composing the eastern clade and the west represented by the 368 

monophyletic T. ornata and T. nelsoni. However, some differences among methodologies were 369 

apparent within these clades. 370 

All phylogenies clearly delineated the western T. ornata and T. nelsoni. However, 371 

SVDQUARTETS paraphyletically nested T. o. luteola within T. o. ornata, whereas IQ-TREE and 372 

POMO represented them as distinct monophyletic clades. In the eastern clade, SVDQUARTETS 373 

displayed two subdivisions: Terrapene mexicana (all subspecies) and T. carolina (all subspecies) 374 

+ T. coahuila. POMO did likewise, but also placed T. m. triunguis as paraphyletic in T. mexicana. 375 

Furthermore, SVDQUARTETS, POMO, and IQ-TREE each differed regarding the placement of T. 376 

c. bauri, T. coahuila, and two previously recognized clades within T. c. major (Martin et al. 377 

2013, 2020). Specifically, SVDQUARTETS depicted T. c. bauri as ancestral in the 378 

bauri/major/coahuila/carolina clade, whereas POMO placed T. c. major from MS/coahuila as 379 

ancestor to T. c. major (FL)/bauri/carolina. However, IQ-TREE placed 1) T. c. bauri sister to all 380 

of T. carolina/T. mexicana, and 2) T. coahuila/T. c. major (MS) sister to T. c. carolina/T. c. 381 
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major (FL). IQ-TREE also placed one T. c. major individual within the T. m. triunguis clade, and 382 

one T. c. carolina as ancestral to the Floridian T. c. major and remaining T. c. carolina.  383 

 384 

3.3. Species tree reconciliation 385 

Trees representing Sanger data and SVDQUARTETS were in agreement when we contrasted 386 

our topology tests, whereas morphology-based and POMO trees were both significantly rejected 387 

(Table 1). Although the SVDQUARTETS tree was ranked the highest, site-likelihood scores 388 

indicated that each topology was determined by a small number of loci (Fig. S3), whereas the 389 

remaining majority was relatively uninformative.  390 

 391 

3.4. Species delimitation methods compared 392 

 BFD* supported two top models (Table 2): All taxa delimited (K=9), and all as distinct 393 

save T. o. ornata/T. o. luteola (K=8; Fig. 4). BF did not distinguish between the top models (<2), 394 

although both were decisively better than all others (BF>10). Convergence was confirmed for the 395 

likelihood traces, and the mean per-model ESS were >300 (Table S2). 396 

 The majority of the RF and t-SNE runs (Fig. 4) also grouped T. o. ornata and T. o. 397 

luteola. However, the remaining clusters were split conservatively relative to BFD*. All runs 398 

clearly delineated T. ornata, T. carolina and T. mexicana ssp., with some also delimiting as 399 

distinct entities T. c. carolina, two T. c. bauri clusters, and T. m. mexicana. Of note, the runs and 400 

clustering algorithms exhibited high within- but not among-clade variability for T. carolina and 401 

T. mexicana, excepting MSW using ISOMDS. 402 
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 Each clustering algorithm and ordination technique displayed its own inherent 403 

characteristics. Essentially, CMDS and the gap statistic were inclined to split subclades of T. 404 

carolina and T. mexicana, ISOMDS and MSW were the most conservative, and t-SNE and HAC 405 

were intermediate, though HAC oscillated in agreement with MSW and the gap statistic (Fig. 4). 406 

RF, but not t-SNE, varied among the 100 replicates, which was most pronounced for CMDS. 407 

Heightened CMDS run variation highlights its inherent sensitivity to low among-group variability 408 

(Olteanu et al. 2013). Finally, t-SNE optimal K increased with perplexity. 409 

 VAE initially agreed with BFD* in recognizing K=8, clumping T. o. ornata/T. o. luteola 410 

and splitting all other taxa (Fig. 5a). However, assessments of model-loss indicated overfitting in 411 

the sense that given enough epochs, the predictive model can perfectly ‘learn’ the training 412 

dataset, with predictive capacity rapidly decreasing for unseen test data. To mitigate, we 413 

identified in the model loss plot the transition point, or ‘elbow’ (Fig. 5b), where predictive 414 

accuracy falls off for the test data, such that test versus training sets diverge in accuracy. This 415 

occurred at a much lower number of sampled epochs (N=2,000) and was subsequently re-416 

initiated at a new termination point. Once overfitting was eliminated, an optimal K=3 was derived 417 

(Figs. 4, 5c, 5d), in agreement with other UML methods. The model was also tested with 418 

N=1,000 epochs (not shown), for which K=3 clusters again persisted. 419 

 420 

3.5. Supervised machine learning 421 

 CLADES yielded optimal K=2 (P=1.44e-4; Fig. 4; Table S3), but with highly discordant 422 

clusters compared with prior results and phylogenomic findings: Terrapene c. carolina/T. c. 423 
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bauri emerged as one species, and the remaining seven taxa (T. ornata, T. mexicana, and the 424 

remaining T. carolina) as a consistently paraphyletic second species (Figs. 2-3). The possibility 425 

of outliers misleading the delimitations was also explored by removing two T. c. bauri and North 426 

Carolina T. c. carolina that, in a subset of UML runs either formed a potential second cluster or 427 

clustered instead with T. c. bauri. However, CLADES provided similar output without 428 

phylogenetic cohesiveness (K=2; P=6.88e-6) with T. c. bauri/T. c. major (MS population) as one 429 

species, and the remainder forming the second. In both cases, the estimated probability for 430 

optimal K was quite low. 431 

 432 

3.6. Relative performance among approaches 433 

 All UML species delimitation methods converged on K=3 if considering RF and t-SNE 434 

classifications that did not inter-mix. Three Terrapene species (plus T. nelsoni) were corroborated 435 

(Martin et al. 2013, 2020), whereas the clumping of T. mexicana and T. carolina (Minx 1996) 436 

was rejected. Machine learning approaches were also markedly faster than BFD*. For example, 437 

RF, t-SNE, and VAE required ~10-30 min run time on a Desktop PC utilizing one Intel i5-3570 438 

CPU core and 16 GB RAM. Comparatively, the twenty BFD* runs required ~4,000 total wall-439 

time hours (~200 hours/model), parallelized across 24-48 threads and utilizing 200 GB 440 

RAM/model.  441 

 442 
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4. DISCUSSION 443 

 We observed substantial heterogeneity among machine learning species delimitation 444 

approaches in resolving the southeastern Terrapene taxa, echoing previous morphological and 445 

single-gene results (Milstead 1967, 1969; Milstead & Tinkle 1967; Butler et al. 2011; Martin et 446 

al. 2013). However, groups exhibiting such heterogeneity may indicate the involved taxa are one 447 

species, whereas deficit groups may support distinctiveness. Additionally—as argued below—448 

these were interpreted as a more appropriate reflection of taxon-specific biological patterns. Our 449 

results represent an empirical test for the de novo application of these software packages to other 450 

taxonomically-complex systems. 451 

 452 

4.1. Species Delimitation Approaches Reconciled in Terrapene 453 

Species trees provide a necessary phylogenetic context for species delimitation by 454 

outlining hypothetical species compositions and identities. In our case, they underscored classic 455 

discordance (Figs. 2-3), previously hypothesized via single-gene sequencing (Martin et al. 2013). 456 

Differences were apparent in the ancestral progression of taxa, and in transitions between 457 

monophyly versus paraphyly. Persistent uncertainties include: 1) Placement of T. c. bauri; 2) 458 

monophyly of T. mexicana and 3) T. o. luteola subspecies status. Additionally, two individuals 459 

were placed in unexpected clades, which was a far smaller proportion than previously seen in 460 

single-gene datasets. We suggest the latter are examples of admixture, as both were collected 461 

near a southeastern US hybrid zone (Martin et al. 2020), and suspect the other idiosyncrasies 462 

represent either violations of the model or methodological artifacts.  463 
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 Impacts of interspecific gene flow on species tree inference are well-characterized, yet 464 

surprisingly, seldom modeled explicitly (Leaché et al. 2014b; Leaché & Oaks 2017). POMO, for 465 

example, constrains all nodes to the same Ne, a potentially poor assumption given contemporary 466 

and possibly historical admixture (Martin et al. 2013, 2020). An examination of the species trees 467 

alone reiterates previous single-gene taxonomic assessments. However, powerful species 468 

delimitation assessments were utilized that provide a far more robust phylogenetic classification. 469 

 UML species delimitation inferences were consistent with the most recent phylogenetic 470 

hypotheses (Martin et al. 2013; this study). Terrapene o. ornata/luteola, T. c. 471 

carolina/bauri/major/coahuila, and T. m. mexicana/triunguis represent what we would consider 472 

as species-level variants, within which each encompasses group assignment heterogeneity. 473 

Terrapene m. yucatana falls within T. mexicana, and T. nelsoni as sister to T. ornata, although 474 

their extreme rarity and concomitantly limited sampling (N=1) precluded them from species 475 

delimitation analysis. Importantly, the variability in RF and t-SNE results primarily echoed 476 

uncertainty found in the species tree analyses, including the distinctiveness of T. o. luteola 477 

subspecific relationships within T. carolina. This variation also corresponded with the proclivities 478 

of each algorithm. RF, for example, invokes a randomized process, with stochasticity perhaps 479 

exacerbated by the phylogenetic discordance within T. carolina. t-SNE was influenced by its 480 

perplexity parameter, with a second T. c. major group from Mississippi being a minor addition 481 

for perplexity=5. This could underscore population structure among Mississippi and Florida T. c. 482 

major. Finally, delimitations for both were strongly impacted by clustering algorithm, which 483 

closely paralleled their own algorithmic tendencies. For example, the gap statistic often over-484 

estimates K (Dudoit & Fridlyand 2002; Yan & Ye 2007), MSW under-splits (Şenbabao�lu et al. 485 
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2014), and outliers and noise particularly impact HAC (Kim et al. 2009; Şenbabao�lu et al. 486 

2014). This, in turn, may explain the varying extent of agreement between HAC and either MSW 487 

or the gap statistic. 488 

 We suggest the variability observed among RF and t-SNE runs was due to a lack of 489 

divergence within the more variable groups. Mixed classification was not observed among the T. 490 

mexicana, T. ornata, and T. carolina groups, excepting RF ISOMDS based on MSW that only 491 

differentiated T. ornata versus T. carolina (Fig. 4). The more conservative nature of ISOMDS was 492 

reflected in several original empirical tests, which suggested a restriction to two clustering 493 

dimensions may be more sensitive to higher genetic divergences (Derkarabetian et al. 2019), as 494 

seems to be the case here. Otherwise, variability among taxa was constrained within respective 495 

subspecific units. 496 

 VAE initially recovered results identical to BFD* (K=8), delimiting all taxa except T. o. 497 

ornata/T. o. luteola. To ensure model training occurred appropriately, we more closely inspected 498 

model loss and observed overfitting (Fig. 5b). The VAE script includes dropout regularization 499 

methods, which randomly thin neural network nodes during model training to reduce overfitting 500 

(Srivastava et al. 2014). However, regularization parameters can be sensitive to dataset properties 501 

(e.g. large versus small/noisy versus tidy), and may not perform well for every dataset (Gal & 502 

Ghahramani 2016; Derkarabetian et al. 2019). In model loss exploration, overfitting was 503 

mitigated by early termination of model training when loss was at its minimum, though this could 504 

also be accomplished by tuning dropout parameters. After correcting for overfitting, VAE also 505 

delimited K=3 (i.e. Terrapene mexicana, T. carolina, and T. ornata ssp.), much like RF and t-506 

SNE if considering classification heterogeneity to indicate intra-specific relationships. 507 
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 508 

4.2. Phylogenetic and biological support of species delimitations 509 

 We suggest that identifying machine learning groups that consistently lack classification 510 

overlap is one criterion to delimit species. In our case, these were corroborated as major species 511 

tree clades, highlighting their complementary nature. In contrast, inconsistent species delimitation 512 

assignments reflect many of the phylogenetic discordances observed in this and previous studies 513 

(Butler et al. 2011; Martin et al. 2013). Potential underlying biological processes include 514 

incomplete lineage sorting, ongoing primary divergence, hybridization, and/or complex 515 

phylogeographic history [(e.g. isolation followed by secondary contact) (Mayr 1963; Barton & 516 

Hewitt 1985; Rieseberg et al. 1999, 2007; Coyne & Orr 2004; Sousa & Hey 2013)]. Divergent 517 

selection can counteract such processes and reinforce species boundaries (Feder et al. 2013). Our 518 

species delimitation results are consistent with previously observed divergent selection at 519 

candidate loci across T. carolina and T. mexicana, whereas it was absent for T. c. carolina and T. 520 

c. major (Martin et al. 2020). Thus, T. carolina and T. mexicana may exhibit signatures of 521 

secondary contact, whereas T. c. major and T. c. carolina may be earlier in the divergence 522 

process. Alternatively, T. c. major could be an intergrade population between T. c. carolina and 523 

T. m. triunguis (Butler et al. 2011), though the species trees disagree and two putative parental 524 

populations persist (Martin et al. 2020). In this sense, T. c. major displays fairly disparate habitat 525 

preferences, favoring salt marshes on the Gulf Coastal Plain, whereas T. c. carolina and T. m. 526 

triunguis occupy mesic woodlands. The low differentiation between T. c. major and T. c. 527 

carolina may result from T. c. major being restricted to the southeast. Here, T. c. carolina 528 

possibly blocked northward expansion of T. c. major, with gene flow persisting across much of T. 529 
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c. major’s smaller range. Alternatively, it may have diverged more recently and now reflects 530 

ongoing primary divergence.  531 

 532 

4.3. Comparisons to other empirical studies 533 

 The capability of machine learning species delimitation algorithms to discount population 534 

structure while isolating higher-level differentiation is corroborated by other recent studies 535 

(Derkarabetian et al. 2019; Hedin et al. 2020). However, and Derkarabetian et al. (2019) and 536 

Newton et al. (2020) emphasized the importance of integrative approaches, as they were able to 537 

identify cryptic species by considering both VAE species delimitation and ecological niche 538 

modeling. Given the increasing availability of geological resources, such integrative taxonomic 539 

considerations may prove to be invaluable.  540 

 Excepting CLADES, the machine learning software used herein also seem robust to 541 

hierarchical levels of genetic variation, having differentiated T. carolina versus T. ornata and the 542 

less divergent T. m. triunguis. However, this hierarchical robustness may have limits, as one 543 

recent geometric morphometric image-based deep learning study favored inter-generic over inter-544 

specific delimitations (Boer & Vos 2018). On the contrary, another recent study was more 545 

accurate in recovering species-level delimitations rather than across genera, which they suggested 546 

stemmed from less informed model training in low-diversity families with many unique species. 547 

Recent and future work may also illuminate the impact of gene flow and population demography 548 

on observed delimitations, processes that MSC approaches do not consider. For example, 549 

DELIMITR incorporates models of secondary contact and divergence with gene flow into RF 550 
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classifiers for species delimitation (Smith & Carstens 2020). However, empirical tests of 551 

DELIMITR tended to agree with the species delimited by BFD* and BP&P, whereas for Terrapene 552 

RF, t-SNE, and VAE were more conservative than the MSC approaches. It may be that 553 

Terrapene exhibits stronger population structure than the species included in the DELIMITR 554 

applications, which can influence BFD* (Sukumaran & Knowles 2017). Finally, machine 555 

learning frameworks may illuminate other potential sources of species tree discordance, with 556 

recent applications predicting discordant species trees (Roettger et al. 2009), assessing historical 557 

introgression despite ongoing gene flow (Burbrink & Gehara 2018), and identifying ILS 558 

(Burbrink et al. 2020). Nevertheless, RF, t-SNE, and VAE are reported to at least be robust to 559 

gene flow, with recent applications showing that they place admixed individuals between parental 560 

clusters (Derkarabetian et al. 2019; Hedin et al. 2020; Newton et al. 2020). However, in our case 561 

we avoided hybrids (as characterized by NewHybrids; Martin et al. 2020) due to frequent 562 

introgression in the southeastern Terrapene hybrid zone. 563 

 564 

4.4. Conclusions 565 

 UML approaches attempt to identify groups based on inherent structure in the data, and 566 

accordingly are a natural extension to the species delimitation problem. In our case, a consensus 567 

among UML approaches corroborated other axes of differentiation, whereas MSC-based 568 

delimitations over-partitioned the data. Specifically, groups that were not supported by RF, t-569 

SNE, and VAE echoed classic patterns of phylogenetic uncertainty seen among our species trees, 570 

which may be affected by previously observed genome-wide differential introgression. 571 

Furthermore, in our case it seems likely that the phylogenetic signals affecting discordance are 572 
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similarly affecting the machine learning algorithms, which may include a combination of 573 

historical biogeographic processes, gene flow, and incomplete lineage sorting. What is clear is 574 

that delimiting almost every Terrapene taxon, as supported by BFD*, is probably not biologically 575 

appropriate. Though MSC methods are undoubtedly still extremely useful, machine learning 576 

provides a promising alternative for resolving long-standing biological problems. This may 577 

particularly be the case for species that violate MSC model assumptions, as demonstrated by our 578 

study system. 579 
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Table 1: Topology tests for four hypothesized North American box turtle (Terrapene) 874 

phylogenies. The morphology and Sanger sequencing trees are based on previously published 875 

data (Minx 1996; Martin et al. 2013), whereas trees representing SVDQUARTETS and POMO 876 

(Polymorphism-Aware Model) were generated from ddRADseq data (Fig. 3, this study). Bolded 877 

P-values with an asterisk (*) indicate supported trees (P>0.05 or highly weighted). 878 

Guide Tree Log-likelihood ΔLL bp-RELL p-KH p-SH c-ELW p-AU 

Morphology -2639307.9 601.5 0.00 0.01 0.02 0.00 0.01 
PoMo -2639200.2 493.8 0.01 0.03 0.06* 0.01 0.03 
Sanger -2638898.4 192.0 0.23* 0.24* 0.41* 0.23* 0.26* 
SVDquartets -2638706.4 0.0 0.75* 0.76* 1.00* 0.75* 0.81* 
ΔLL=change in log-likelihood 879 

bp-RELL=Bootstrap proportions using RELL method (weights sum to 1) 880 

p-KH=Kishino-Hasegawa test 881 

p-SH=Shimodaira-Hasegawa test 882 

c-ELW=Expected likelihood weight (sum to 1) 883 

p-AU=Approximately unbiased test 884 
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Table 2: Species delimitation results from BFD* (Bayes Factor Delimitation, *with genomic 887 

data) in 37 North American box turtle (Terrapene spp.) individuals. BFD* was run with 179 888 

unlinked, bi-allelic single nucleotide polymorphisms (SNPs) generated using ddRADseq. Bayes 889 

factors (BF) were used to identify support among models and were calculated as 2 X (MLE1 - 890 

MLE2). An * indicates the best supported models; “+” shows taxa that were grouped together; “/” 891 

delineates multiple groupings. DS=Desert (T. o. luteola), ON=Ornate (T. o. ornata), 892 

EA=Woodland (T. c. carolina), GUFL=Gulf Coast (T. c. major) from Florida, GUMS=Gulf 893 

Coast (T. c. major) from Mississippi, CH=Coahuilan (T. coahuila), FL=Florida (T. c. bauri), 894 

TT=Three-toed (T. m. triunguis), and MX=Mexican (T. m. mexicana) box turtles. East=all T. 895 

carolina and T. mexicana, West=all T. ornata. The outgroup (not shown) included the spotted 896 

turtles (Clemmys guttata). 897 

BFD* Model MLE† K‡ Rank§ BF¶ 

All Separate* -2403.39 10 1 - 

DS+ON* -2404.34 9 2 1.90 

EA+GUFL -2417.84 9 3 28.91 

GUMS+GUFL -2427.58 9 4 48.39 

GUMS+CH -2448.61 9 5 90.44 

GUMS+CH/GUFL+EA -2461.28 8 6 115.79 

GUMS+GUFL+CH -2489.62 8 7 172.45 

EA+FL -2511.83 9 8 216.89 

GUMS+GUFL+CH+EA -2514.86 7 9 222.94 

EA+FL+GUFL -2552.22 8 10 297.66 

EA+FL/CH+GUMS -2555.16 8 11 303.53 

EA+FL+GUFL/CH+GUMS -2594.91 7 12 383.04 

EA+CH+GUMS+GUFL+TT -2607.72 6 13 408.66 

EA+CH+GUMS+GUFL+MX -2657.48 6 14 508.19 

EA+FL+CH+GUMS+GUFL -2693.37 6 15 579.96 

EA+CH+GUMS+GUFL+TT+MX -2719.02 5 16 631.27 

ON+DS/EA+TT+MX+CH+GUMS+GUFL/FL -2720.23 4 17 633.69 

EA+FL+CH+GUMS+GUFL+TT -2800.56 5 18 794.35 

EA+FL+CH+GUMS+GUFL+TT+MX -2926.20 4 19 1045.62 

East/West -2926.56 3 20 1046.35 

†MLE=Marginal likelihood estimates 898 

‡K=# tips 899 

§Rank=model ranking based on MLE (lower=better) 900 

¶BF=Bayes factors 
901 
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 904 

905 

Figure 1: Range map for North American box turtles, Terrapene, depicting sample localities. 906 

Cross-hatched areas indicate known hybrid zones. Circles represent samples used for the species 907 

trees, whereas squares were also used only in species delimitation analyses. Headings and 908 

subheadings correspond to species and subspecies, respectively, following (Martin et al. 2013), 909 

and include the Ornate (T. ornata ornata), Desert (T. o. luteola), Spotted (T. nelsoni), Three-toed 910 

(T. mexicana triunguis), Mexican (T. m. mexicana), Yucatan (T. m. yucatana), Woodland (T. 911 

carolina carolina), Florida (T. c. bauri), Gulf Coast from distinct Florida and Mississippi 912 

populations (T. c. major), and Coahuilan (T. coahuila) box turtles. Localities with black circles 913 

indicate T. carolina samples lacking subspecific field identifications. 914 
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 916 
Figure 2: Maximum likelihood phylogeny (IQ-TREE) reflecting relationships among 214 917 

Terrapene samples. The tree was generated from 11,962 unlinked ddRADseq loci with 1,000 918 

ultrafast bootstrap (UFB) replicates. Site concordance-factors (SCF) were calculated from 100 919 

quartets randomly sampled from internal branches. Branch support values represent UFB 920 

replicates and SCF on the left and right of each vertical line, respectively. UFBs≥95% and 921 

SCF≥50% were considered strong support. UFBs<90 and SCF<40 were omitted for visual clarity, 922 

with the latter rounded to the nearest integer. Asterisks (*) indicate 100% support. Legend 923 

headers and subheadings depict species and subspecies from Martin et al. (2013): Ornate 924 

(Terrapene ornata ornata), Desert (T. o. luteola), Spotted (T. nelsoni), Three-toed (T. mexicana 925 

triunguis), Mexican (T. m. mexicana), Yucatan (T. m. yucatana), Florida (T. carolina bauri), Gulf926 

Coast (T. c. major; two populations from Florida and Mississippi), Woodland (T. c. carolina), 927 

and Coahuilan (T. coahuila) box turtles. The Spotted (Clemmys guttata) and Blanding’s 928 

(Emydoidea blandingii) turtles were used as outgroups. 929 
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Figure 3: Species trees based on 10,299 unlinked ddRADseq loci depicting phylogenetic relationships of 214 North American box 
turtle (Terrapene spp.) samples. Species trees were generated using a) SVDQUARTETS and b) POMO (Polymorphism Aware Model). 
Each tree contained 26 populations grouped by specific or subspecific designations (if available), and U.S. or Mexican State locality. 
Spotted (Clemmys guttata) and Blanding’s (Emydoidea blandingii) turtles were used as outgroups to root the trees. * and + above 
branches represent nodes with 100% and ≥95% bootstrap support.
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Figure 4: Species delimitations among 37 Terrapene samples using 7,395 unlinked ddRADseq 
single nucleotide polymorphisms (SNPs). Species delimitation groups were derived using 
unsupervised (UML) and supervised (SML) machine learning algorithms, plus a multispecies 
coalescent (MSC) approach. UML algorithms include RF=random forest, visualized using CMDS 
and ISOMDS (classic and isotonic multidimensional scaling) ordination, t-SNE=t-distributed 
stochastic neighbor embedding, and VAE=variational autoencoders. Each CMDS, ISOMDS, and 
t-SNE column represents a summarization of 100 independent runs, with colors indicating 
percent group assignments per method. Mixed colors show clustering variation among runs. t-
SNE was run with perplexity settings of five and ten (P5 and P10). RF and t-SNE optimal K’s 
were assessed using hierarchical agglomerative clustering (HAC), partition around medoids using 
mean silhouette widths (MSW) and the gap statistic (GS), whereas standard deviation (σ) overlap 
was used for VAE. Optimal K’s for CLA=CLADES (SML) and BFD=Bayes Factor Delimitation 
were determined using probabilities (P) and Bayes Factors (BF).
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Figure 5: Results from variational autoencoder (VAE) machine learning species delimitation 
among 37 Terrapene samples and 7,395 unlinked ddRADseq single nucleotide polymorphisms 
(SNPs). Each circle represents the mean (μ) of one individual in the reconstructed parameter 
space, and the surrounding amorphous area are the standard deviations (σ) across a) 10,000 and 
c) 2,000 epochs. The model accuracy and loss traces depict the fit of the model to test (green) and
training (blue) data across b) 10,000 and d) 2,000 epochs. The colors depict eight subspecies 
across T. mexicana, T. carolina, and T. ornata, plus monotypic T. coahuila. 
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