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Abstract 48 

Maintenance of functional β-cell mass is critical to preventing diabetes, but the physiological mechanisms that cause 49 

β-cell populations to thrive or fail in the context of obesity are unknown. High fat-fed SM/J mice spontaneously 50 

transition from hyperglycemic-obese to normoglycemic-obese with age, providing a unique opportunity to study β-51 

cell adaptation. Here, we characterize insulin homeostasis, islet morphology, and β-cell function during SM/J’s 52 

diabetic remission. As they resolve hyperglycemia, obese SM/J mice dramatically increase circulating and 53 

pancreatic insulin levels while improving insulin sensitivity. Immunostaining of pancreatic sections reveals that 54 

obese SM/J mice selectively increase β-cell mass but not α-cell mass. Obese SM/J mice do not show elevated β-55 

cell mitotic index, but rather elevated α-cell mitotic index. Functional assessment of isolated islets reveals that obese 56 

SM/J mice increase glucose stimulated insulin secretion, decrease basal insulin secretion, and increase islet insulin 57 

content. These results establish that β-cell mass expansion and improved β-cell function underlie the resolution of 58 

hyperglycemia, indicating that obese SM/J mice are a valuable tool for exploring how functional β-cell mass can 59 

be recovered in the context of obesity. 60 
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Introduction  73 

Obesity and diabetes are a deadly combination, compounding risk for cardiovascular disease, cancer, and 74 

stroke(30, 65, 95). Obesity raises the risk of developing type 2 diabetes 27-76 fold, while approximately 60% of 75 

individuals with diabetes are obese(1, 12, 15, 19). Chronic obesity exerts glycemic stress on pancreatic β-cells, 76 

causing dysregulation and dysfunction, ultimately resulting in hyperglycemia(49, 67, 77, 86). Despite the stress 77 

obesity places on β-cells, 10-30% of obese individuals maintain glycemic control and are at low risk for developing 78 

diabetes(61). These low-risk obese individuals have elevated β-cell mass and improved insulin secretion compared 79 

to BMI-matched diabetic-obese individuals(2, 9, 75, 90). Understanding the differences in β-cell physiology 80 

between these populations may reveal therapeutic strategies for maintaining and improving glycemic control in 81 

obese individuals. 82 

Recent work suggests β-cells do not respond uniformly to glycemic stress, rather they experience variable fates 83 

including dedifferentiation, replication, and apoptosis(10, 18, 34). Understanding how these changes mediate 84 

diabetic risk is complicated by β-cells heterogeneity. β-cell populations include subtypes that specialize in basal 85 

insulin secretion, β-cell replication, coordinating “hub” cells, and β-cells derived from transdifferentiated α-cells, 86 

each of which differ in glycemic stress response(31, 42, 81, 88). Thus, determining what differentiates nondiabetic-87 

obese and diabetic-obese populations requires connecting β-cell subtypes to their fate in prolonged glycemic stress. 88 

Like in humans, diabetic risk in obese mice depends on genetic background(44, 48, 80). Variation in β-cell 89 

heterogeneity likely underlies variability in islet stress response, and thus needs to be accounted for when comparing 90 

nondiabetic-obese and diabetic-obese populations. Loss of function mutations in leptin (ob/ob) and leptin receptor 91 

(db/db) provide insight into β-cell physiology in nondiabetic-obese and diabetic-obese states within individual 92 

mouse strains(8, 40, 46, 53), however leptin and its receptor play a critical role in β-cell function independent of 93 

obesity, limiting interpretations of these studies(22). No current mouse model is well-suited to examine 94 

physiological differences in β-cell health between nondiabetic-obese and diabetic-obese states. 95 

The SM/J inbred mouse strain has traditionally been used to study interactions between diet and metabolism, 96 

and more recently has uncovered genetic architecture underlying diet-induced obesity and glucose homeostasis(17, 97 

49–52, 63). After 20 weeks on a high fat diet, SM/J mice display characteristics of diabetic-obese mice, including 98 
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elevated adiposity, hyperglycemia, and glucose intolerance(27). We have previously shown that by 30 weeks of 99 

age, high fat-fed SM/J mice enter diabetic remission, characterized by normalized fasting blood glucose, and greatly 100 

improved glucose tolerance and insulin sensitivity(11). Importantly, these changes occur in the context of sustained 101 

obesity. Given the central role of β-cell health in susceptibility to diabetic-obesity, we hypothesize that obese SM/J 102 

mice undergo restoration of functional β-cell mass during the resolution of hyperglycemia. This study focuses on 103 

how insulin homeostasis, β-cell morphology, and β-cell function change during this remarkable transition and 104 

establishes SM/J mice as a useful model for teasing apart diabetic-obese and nondiabetic-obese states. 105 

 106 

Methods 107 

Animal husbandry and tissue collection. SM/J mice were obtained from The Jackson Laboratory (Bar Harbor, ME). 108 

Experimental animals were generated at the Washington University School of Medicine and all experiments were 109 

approved by the Institutional Animal Care and Use Committee in accordance with the National Institutes of Health 110 

guidelines for the care and use of laboratory animals. Mice were weaned onto a high fat diet (42% kcal from fat; 111 

Envigo Teklad TD88137) or an isocaloric low fat diet (15% kcal from fat; Research Diets D12284), as previously 112 

described(11). At 20 or 30 weeks of age, mice were fasted for 4 hours, and blood glucose was measured via 113 

glucometer (GLUCOCARD). Mice were then injected with an overdose of sodium pentobarbital, followed by a toe 114 

pinch to ensure unconsciousness. Blood was collected via cardiac puncture and pancreas was detached from the 115 

spleen and duodenum. 116 

Serum and pancreatic insulin measurements. Blood obtained via cardiac puncture was spun at 6000 rpm at 4°C for 117 

20 minutes to separate plasma, which was collected and stored at -80 °C. Whole pancreas was homogenized in acid 118 

ethanol and incubated at 4°C for 48 hours, shaking. Homogenate was centrifuged at 2500 rpm for 30 min at 4°C. 119 

Supernatant was collected and stored at -20°C. Protein content was measured using Pierce BCA Protein Assay kit 120 

(Thermo Scientific) according to manufacturer’s instructions and read at 562 nm on the Synergy H1 Microplate 121 

Reader (Biotek). Insulin ELISA (ALPCO 80-INSMR-CH01) was used to measure plasma and pancreatic insulin 122 

levels following manufacturer’s instructions. 123 
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Insulin Tolerance Test. At 19 or 29 weeks of age, mice were fasted for 4 hours prior to procedure. Insulin (humulin) 124 

was prepared by mixing 10 ul insulin with 10 ml sterile saline. Mice were injected with 3.75 ul insulin mixture/g 125 

bodyweight. Blood glucose levels were assessed from a tail nick at times = 0, 15, 30, 60, and 120 minutes via 126 

glucometer (GLUCOCARD). 127 

Islet Histology and Analyses. At the time of tissue collection, whole pancreas was placed in 3 mL of neutral buffered 128 

formalin. These samples were incubated at 4°C while gently shaking for 24 hours. Immediately afterwards, samples 129 

were placed into plastic cages and acclimated to 50% EtOH for 1 hour. Samples were then processed into paraffin 130 

blocks using a Leica tissue processor with the following protocol: 70% EtOH for 1 hour x 2, 85% EtOH for 1 hour, 131 

95% EtOH for 1 hour x 2, 100% EtOH for 1 hour x 2, Xylenes for 1 hour x 2, paraffin wax. Pancreas blocks were 132 

sectioned into 4 µm thick sections. Four samples per individual were randomly selected, at least 100 µm apart. 133 

Slides were incubated at 60°C for 1 hour, then placed in xylenes to remove remaining paraffin wax. Slides were 134 

then rehydrated using successive decreasing EtOH concentrations (xylenes x 2, 50% EtOH in xylenes, 100% EtOH 135 

x 2, 95% EtOH, 70% EtOH, 50% EtOH, H2O). Slides were incubated in sodium citrate (pH 6) at 85°C for 30 136 

minutes, then submerged in running water for 5 minutes. Slides were washed with 0.025% Triton X-100 in TBS 137 

and blocked in 10% normal donkey serum for 1 hour (Abcam ab7475), followed by incubation with primary 138 

antibody overnight at 4°C. [Primary antibodies: rat anti-insulin (1:100, R&D MAB1417), mouse anti-glucagon 139 

(1:100, Abcam ab10988), and rabbit anti-phospho-histone H3 (1:100, Sigma SAB4504429)]. After an additional 140 

wash, secondary antibody was applied for 1 hour at room temperature. [Secondary antibodies: donkey anti-rabbit 141 

488 (1:1000, Abcam ab150061), donkey anti-mouse 647 (1:1000, Abcam ab150107), and donkey anti-rat 555 142 

(1:1000, Abcam ab 150154)]. Fluoroshield Mounting Medium with DAPI (Abcam) was applied to seal the coverslip 143 

and slides were stored at 4°C. Imaging was performed using the Zeiss AxioScan .Z1 at 20X magnification and 144 

94.79% laser intensity. 145 

Background was subtracted from DAPI, insulin, glucagon, and phospho-histone H3 images using ImageJ. DAPI 146 

channel was used to identify total nuclei in CellProfiler. Insulin and glucagon channels were combined and overlaid 147 

on the DAPI image to identify islet nuclei. Insulin (INS+) staining overlaid with DAPI identified β-cell cells, 148 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.05.19.104588doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.19.104588
http://creativecommons.org/licenses/by-nc-nd/4.0/


glucagon (GCG+) staining overlaid with DAPI identified α-cells. Phosphohistone H3 (PHH3+) staining identified 149 

mitotic nuclei. Total nuclei, islet cells, β-cells, α-cells, and mitotic nuclei were summed across 4 slides for each 150 

individual. Islet, β-cell, and α-cell mass is reported as fraction of total nuclei. Mitotic islet index is reported as 151 

proportion of β-cells and α-cells positive for phosphohistone H3. Islets with diameter < 50 µm were discarded. 152 

Islet isolation. Pancreas was removed and placed in 8mL HBSS buffer on ice. Pancreas was then thoroughly minced. 153 

Collagenase P (Roche) was added to a final concentration of 0.75 mg/ml. Mixture was then shaken in a 37°C water 154 

bath for 10-14 minutes. Mixture was spun at 1500 rpm for 2 minutes. The pellet was washed twice with HBSS. The 155 

pellet was re-suspended in HBSS and transferred a petri dish. Hand-selected islets were placed in sterile-filtered 156 

RPMI with L-glutamine (Gibco) containing 11mM glucose, supplemented with 5% pen/strep and 10% Fetal Bovine 157 

Serum (Gibco). Islets were rested overnight in a cell culture incubator set to 37°C with 5% CO2. 158 

Glucose Stimulated Insulin Secretion and Islet Insulin Content. Islets of roughly equal size were equilibrated in 159 

KRBH buffer containing 2.8 mM glucose for 30 minutes at 37°C. 5 islets were hand selected and placed in 150 µl 160 

KRBH containing either 2.8 or 11 mM glucose. Tubes were placed in a 37°C water bath for 45 min. Islets were 161 

then spun at 2000 x g, hand-picked with a pipette, and transferred from the secretion tube and placed in the content 162 

tube with acid ethanol. The content and secretion tubes were stored at -20°C overnight. Each condition was 163 

performed in duplicate for each individual. Mouse insulin ELISA (ALPCO 80-INSMU-E01) was performed 164 

according to manufacturer’s instructions, with the secretion tubes diluted 1:5, and content tubes diluted 1:100. 165 

Normalized insulin secretion was calculated by dividing the secreted value by the content value. Glucose stimulated 166 

insulin secretion was calculated by dividing the normalized insulin secretion at 11mM glucose by the normalized 167 

insulin secretion at 2.8 mM glucose. Each sample was measured in duplicate. Total islet protein within each content 168 

tube was measured using Pierce BCA Protein Assay kit (Thermo Scientific) according to manufacturer’s 169 

instructions and read at 562 nm on the Synergy H1 Microplate Reader (Biotek). Islet insulin content was calculated 170 

by dividing the insulin level in the content tubes by the total protein value. 171 

Statistical analyses. Phenotypes were assessed for normality by a Shapiro-Wilk test, and outliers removed. A 172 

student’s t-test was used to assess significance between two cohorts, while a one-way ANOVA with Tukey’s Post 173 
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Hoc test was used to assess significance among multiple cohorts. Pearson’s correlation was used to determine 174 

strength of correlation among variables. P-values < 0.05 were considered significant.  175 

Results 176 

Obese SM/J mice increase insulin levels and improve insulin sensitivity. The resiliency of β-cells distinguishes 177 

nondiabetic-obese and diabetic-obese individuals(8, 46, 47, 63, 66, 72, 74, 81). While both groups develop 178 

hyperinsulinemia, diabetic-obese individuals become insulin resistant, leading to β-cell dysfunction, 179 

hypoinsulinemia, and hyperglycemia. Our previous work shows that obese SM/J mice spontaneously transition 180 

from hyperglycemic to normoglycemic with age(11). Principle to this is a 40 mg/dl decrease in fasting glucose 181 

levels in high fat-fed SM/J mice between 20 and 30-weeks (Fig. 1A). We first sought to characterize how insulin 182 

homeostasis changes during this transition. Interestingly, 20-week high fat-fed SM/J mice have comparable levels 183 

of plasma and pancreatic insulin levels compared to age-matched low fat-fed mice (Fig. 1B-C). By 30 weeks, high 184 

fat-fed SM/J mice increase circulating insulin levels 5.3-fold and pancreatic insulin levels 1.9-fold, in line with 185 

other models of hyperinsulinimic nondiabetic-obesity(33, 36, 55). We sought to test for peripheral insulin resistance 186 

via an insulin tolerance test (ITT), as insulin resistance is a known mechanism for increasing circulating and 187 

pancreatic insulin levels. Surprisingly, 20-week high fat-fed SM/J mice display insulin resistance compared to low 188 

fat-fed mice, however, insulin sensitivity is restored by 30 weeks (Fig. 1D-E). The simultaneous increase in insulin 189 

production and improved insulin sensitivity is unprecedented and suggests a novel mechanism beyond insulin 190 

resistance for enhancing β-cell insulin secretion.  191 
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 192 

Figure 1. Insulin homeostasis during the resolution of hyperglycemia in obese SM/J mice. Blood glucose levels 193 
measured after 4-hour fast from high and low fat-fed, 20- and 30-week SM/J mice (A). Plasma insulin (B) and 194 
pancreatic insulin levels (C) assessed via insulin ELISA, collected after 4-hour fast. Insulin tolerance test performed 195 
via intraperitoneal insulin injection following 4-hour fast (D), summarized in the area under the curve (E). N = 38-196 
50 for panel A, C, D. N = 10-24 for panel B-C, equal numbers of males and females. Bar represents group means, 197 
error bars represent SEM. *p<0.05, **p<0.01, ***p<0.001, N.S. Not Significant. 198 
 199 

Obese SM/J mice increase islet mass during resolution of hyperglycemia. In humans and mice, obesity initially 200 

increases islet mass, and maintenance of that mass in part differentiates nondiabetic-obese individuals from diabetic-201 

obese individuals(2, 9, 25, 59, 76, 85). To understand the source of increased insulin production in obese SM/J 202 

mice, we examined islet morphology during the resolution of hyperglycemia. To quantify islet mass and number, 203 

β-cell mass, α-cell mass, and mitotic index, we randomly selected 4 sections per fixed pancreas and stained with 204 

antibodies against insulin, glucagon, and phospho-histone H3. Representative images of immuno-stained pancreatic 205 

sections for 30-week high fat-fed mice and 30-week low fat-fed mice are shown in Figure 2A-B. Consistent with 206 

other mouse models of obesity, 20-week high fat-fed SM/J mice have a 2.75-fold increase in total islet mass 207 

compared to low fat-fed mice (Fig. 2C). This increased mass is driven by an increase in both median islet area and 208 

number of islets (Fig. 2D-E). Islet mass is further elevated 2-fold between 20- and 30-weeks in high fat-fed mice, 209 
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while the islet population remains unchanged in low fat-fed mice. A full summary of the islet quantification is 210 

presented in Supplemental Table 1. Distribution of islet size is shown in Supplemental Figure 1, along with 211 

corresponding density plot for each cohort. Islet mass correlates with BMI in obese humans(26), a similar 212 

correlation is seen between islet mass and body weight in high fat-fed SM/J mice (Fig. 2F). 213 
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 215 
Figure 2. Changes in islet mass during the resolution of hyperglycemia. Representative pancreatic cross sections 216 
from 30-week high fat-fed mice (A) and 30-week low fat-fed mice (B) stained for insulin (green), glucagon (white), 217 
and phosphohistone H3 (red). Dashed white box identifies location of image in inset. Solid yellow arrows within 218 
inset identify INS+:PHH3+ cells, dashed yellow arrow identifies GCG+:PHH3+ cell. Islet mass reported as ratio of 219 
islet cells over total cells, summed across 4 pancreatic sections (C). Median islet area calculated for each individual 220 
across 4 sections (D). Total number of islets quantified per individual, normalized by total DAPI area (E). 221 
Correlation between body weight and β-cell mass in high fat-fed mice (F), open circles – 20-week high fat-fed, 222 
filled circles – 30-week high fat-fed. N = 12-16 per cohort, equal number of males and females. *p<0.05, **p<0.01, 223 
***p<0.001, N.S. Not Significant. 224 
 225 

Obese SM/J mice increase β-cell mass and α-cell replication. To identify the source of the increased islet mass in 226 

high fat-fed SM/J mice, we quantified β-cell and α-cell mass within each cohort. Increased islet mass in 20-week 227 

high fat-fed mice is driven by a 3.3-fold increase in β-cell mass and a 2.5-fold increase in α-cell mass compared to 228 

low fat mice, while growth between 20- and 30-week high fat-fed mice is driven by a further 2.2-fold increase in 229 

β-cell mass (Fig. 3A-B). In obesity, islet mass expands primarily through β-cell replication (34, 68, 85, 92). We 230 

quantified mitotic index of β- and α-cells in our model using phosphohistone H3 and assessed how mitotic index 231 

relates to β-cell mass during the resolution of hyperglycemia in obese SM/J mice. Surprisingly, calculation of β-232 

cell mitotic index reveals similar rates of β-cell replication across cohorts (Fig. 3C), while α-cell mitotic index is 233 

elevated 6-fold in high fat-fed mice compared to low fat-fed controls (Fig. 3D). Examining the relationship between 234 

β-cell mitotic index and β-cell mass in high fat-fed mice reveals β-cell replication correlates with β-cell mass in 20-235 

week mice, but not 30-week mice (Fig. 3E-F). 236 

 237 

 238 

 239 
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 240 
Figure 3. Islet cell mass and mitotic index in obese SM/J mice. β-cell mass reported as ratio of INS+ cells divided 241 
by total cells summed across 4 slides per individual (A). α-cell mass reported as GCG+ cells divided by total cells 242 
summed across 4 slides per individual (B). β-cell mitotic index calculated by dividing INS+:PHH3+ cells divided by 243 
total INS+ cells summed across 4 slides per individual (C). α-cell mitotic index calculated by dividing GCG+:PHH3+ 244 
cells by total GCG+ cells summed across 4 slides (D). Correlation between β-cell mitotic index and β-cell mass in 245 
20 week high fat-fed mice (E) and 30-week high fat-fed mice (F). Open circles – 20-week high fat-fed, filled circles 246 
– 30-week high fat-fed. N = 12-16 per cohort, equal males and females. *p<0.05, **p<0.01, ***p<0.001, N.S. Not 247 
Significant. 248 
 249 
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Obese SM/J mice increase islet insulin secretion and insulin content. In conjunction with changing β-cell 250 

morphology, diabetic-obesity is associated with altered β-cell function, including diminished first phase insulin 251 

secretion, increased basal insulin secretion, and decreased β-cell insulin production (16, 23, 57, 66). We sought to 252 

examine if changes in β-cell insulin secretion and content corresponded with the resolution of hyperglycemia and 253 

expanded β-cell mass we observe. To test this, we isolated islets from high and low fat-fed 20- and 30-week SM/J 254 

mice. After allowing islets to rest overnight, we performed a glucose-stimulated insulin secretion assay by 255 

subjecting islets to low (2.8 mM) or high (11 mM) glucose conditions. We find that high fat-fed SM/J mice 256 

dramatically improve glucose-stimulated insulin secretion between 20 and 30 weeks of age. This includes 257 

transitioning from blunted insulin secretion under high glucose conditions to appropriately elevated secretion (Fig. 258 

4A), and improvement in the ratio of insulin secreted in response to high vs low glucose conditions (Fig. 4B). 20-259 

week high fat-fed mice have elevated insulin secretion in response to low glucose (Fig. 4C), consistent with other 260 

studies of islets in type 2 diabetic humans and mice. Correspondingly, 20-week high fat-fed SM/J mice have 261 

decreased islet insulin content (Fig. 4D), which increases 3-fold by 30 weeks. Consistent with current understanding 262 

of the β-cell maturation process(76), there is a positive correlation between obese SM/J islet insulin content and 263 

glucose-stimulated insulin secretion (Fig. 4E). This suggests that obese SM/J mice experience β-cell maturation 264 

between 20 and 30 weeks, characterized by increased insulin content and improved insulin secretion in response to 265 

high glucose. This spontaneous improvement in β-cell health and function in the context of obesity has not been 266 

reported in other mouse strains, suggesting a genetic basis unique to SM/J. 267 
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 268 

Figure 4. Islet insulin secretion and insulin content. Islet insulin secretion in response to low (2.8 mM) and high 269 
(11mM) glucose conditions, normalized by islet insulin content (A), reported as a ratio of high glucose to low 270 
glucose insulin secretion (B). Comparison of islet insulin secretion under low glucose conditions in 20- and 30-271 
week, high and low fat-fed mice (C). Islet insulin content normalized by total protein measured via protein BCA 272 
(D). Correlation between insulin secretion ratio and islet insulin content (E). Open circles – 20-week high fat-fed, 273 
closed circles – 30-week high fat-fed. *p<0.05, **p<0.01, ***p<0.001, N.S. Not Significant. 274 
 275 
 276 

Discussion 277 

The ability to maintain appropriate insulin production and secretion, termed functional β-cell mass, 278 

is a central determinant of diabetic risk. In this study, we describe insulin homeostasis, islet morphology, 279 

and β-cell function in obese SM/J mice as they transition from hyperglycemic to normoglycemic. We 280 

determine that increased insulin production and insulin sensitivity accompany improved glycemic control, 281 

driven by expanded β-cell mass and improved glucose-stimulated insulin secretion. Our results show 282 

obese SM/J mice undergo restoration of functional β-cell mass, providing an opportunity to explore how 283 

compensatory insulin production can be achieved in the context of obesity. 284 
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Susceptibility to high fat diet-induced diabetes in mice depends on genetic background. Several 285 

strains and sub-strains develop diabetic-obesity, including hyperglycemia, glucose intolerance, and insulin 286 

resistance, consistent with the diabetic phenotypes observed in obese SM/J mice at 20 weeks (3, 44, 83). 287 

Remarkably, by 30 weeks, obese SM/J mice have characteristics of diabetic-resistant obese strains, 288 

retaining glycemic control by dramatically increasing insulin production and improving insulin sensitivity 289 

(3, 79, 83). To our knowledge, this is the first report of transient hyperglycemia in an inbred strain, 290 

although similar phenomena have been reported in mice with the leptin receptor (db/db) mutation. 291 

C57bl/6J (db/db) and 129/J (db/db) mice are obese and initially develop mild hyperglycemia at 8-10 weeks of 292 

age, but this resolves by 20-30 weeks, concurrent with increased insulin production and β-cell mass(40, 293 

54). Unfortunately, leptin and its receptor play an important role in β-cell growth and function independent 294 

of obesity, which confounds understanding of how genetic background mediates diabetic risk in 295 

obesity(22).  296 

 High fat diet-induced obesity in mice can result in increased islet mass, no change, or decreased 297 

mass (3, 39, 66, 79). Across these studies, inability to expand islet mass is associated with hyperglycemia. 298 

In humans, islet mass correlates with BMI in nondiabetic obese-individuals, while diabetic-obese 299 

individuals have low islet mass compared to nondiabetic individuals (26, 47, 54). High fat-fed SM/J mice 300 

are unique because they have expanded islet mass at 20 weeks, yet normal insulin levels and insulin 301 

resistance. By 30-weeks, islet mass continues to expand, driven by increased islet area and increased islet 302 

number, corresponding with increased insulin production and improved insulin sensitivity. Islet 303 

neogenesis may contribute to the increased islet number, and fission of large islets has been reported 304 

during development, suggesting islets have mechanisms to maintain an appropriate size(41, 80).  305 

β-cell expansion is the primary driver of islet expansion in mouse models of obesity(8, 46). Some 306 

nondiabetic obese mice experience increased β-cell mass, but do not show evidence for elevated β-cell 307 
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replication in immunostaining of pancreatic sections(38, 83). This has been attributed to islets in the tail 308 

of the pancreas being substantially more proliferative in response to high fat diet than the body and head 309 

regions(28), thus technical artifacts in sampling could result in inflated variances which mask biological 310 

differences. This is could be the case here, given that high fat-fed SM/J’s β-cell mass is far above low fat-311 

fed controls, that their β-cell mass expands 2-fold during the resolution of hyperglycemia, yet we find no 312 

evidence for increased β-cell replication. However, α-cell mass also expands in obesity (29, 37, 61). While 313 

α-cell mass is elevated in high fat-fed SM/J mice compared to low fat-fed controls, we find it does not 314 

change between 20 and 30 weeks, despite substantial elevation of α-cell mitotic index.  315 

Retention of β-cell function separates diabetic-obesity and nondiabetic obesity (5, 35, 45). 20-316 

week high fat-fed SM/J mice have an insulin secretion profile similar to diabetic-obese mice and humans, 317 

including blunted glucose-stimulate insulin release, elevated basal insulin secretion, and low islet insulin 318 

content, which resolves by 30 weeks. Underscoring this transition is the positive correlation between 319 

glucose-stimulated insulin release and islet insulin content. Care was taken to select normal sized islets 320 

across all cohorts for functional assessment (~100µm in diameter) indicating this robust improvement in 321 

β-cell functional mass is due to changes to β-cell physiology. 322 

Three current, non-mutually exclusive components of β-cell stress response may shed light on the 323 

perplexing improvement in glycemic control seen in SM/J mice: β-cell dedifferentiation, nascent β-cell 324 

maturation, and changes in β-cell subtype proportions. While early studies concluded overworked β-cells 325 

undergo apoptosis (10, 56, 67, 73), recent studies have suggested β-cells dedifferentiate into a 326 

dysfunctional, progenitor-like state, potentially as a defense mechanisms against prolonged glycemic 327 

stress (18, 43, 58, 84). These dedifferentiated β-cells have low insulin content and poor glucose-stimulated 328 

insulin secretion. Further, the dedifferentiated state is reversible in cultured conditions, revealing potential 329 

for therapeutic intervention(24). It is feasible that obese SM/J mice have β-cells in the dedifferentiated 330 
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state at 20-weeks, which would explain the low insulin content and poor functionality despite the elevated 331 

β-cell mass. Improvement in insulin sensitivity could ease glycemic stress, allowing dedifferentiated β-332 

cells to redifferentiate by 30 weeks, reestablishing insulin production and secretion.  333 

Work from several groups suggests β-cells can be divided into two broad categories: functionally 334 

immature and functionally mature cells. Immature β-cells have greater proliferative potential and are 335 

resistant to stress, at the expense of functional maturity (4, 7, 69, 89). These immature β-cells have low 336 

insulin content, high basal insulin secretion, and a lack of glucose stimulated insulin secretion. The large 337 

β-cell expansion seen in obese SM/J mice, suggests nascent β-cells must undergo maturation at some 338 

point. We have no evidence of enhanced β-cell replication at 20-weeks, but it is possible these β-cell are 339 

still functionally immature and reach maturity by 30-weeks. This could explain why islets from these mice 340 

lack glucose stimulated insulin release, show elevated basal insulin secretion, and have low insulin 341 

content, despite elevated mass.  342 

Recent advances in single cell technology has allowed for identification of β-cell subtypes, based 343 

on functional characteristics and gene expression. These include β-cells that specializes in basal insulin 344 

secretion, characterized by low mature insulin content, and enriched in db/db diabetic islets(32). While 345 

these cells are not equipped to respond to elevated glucose, they are enriched for maturity markers 346 

including Ucn3 and Glut2, distinguishing them from immature β-cells. Pancreatic multipotent progenitors 347 

(PMPs) are rare insulin positive cells capable of generating endocrine cells in vivo including functionally 348 

mature β-cells(73, 85). These cells resemble immature β-cells, with low insulin content and Glut2 349 

expression, whose proliferation is stimulated by glycemic stress in STZ-treated and NOD mouse models. 350 

Lastly, β-cell hub cells coordinate calcium signaling and insulin release of surrounding β-cells(42). These 351 

cells have markers for both mature and immature β-cells, including expression of Gck and Pdx1, but low 352 

insulin content, and are especially sensitive to glycemic and inflammatory stress. Ablation of these cells 353 
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results in loss of coordinated insulin release, suggesting they are necessary for mature islet function. Given 354 

the elevated β-cell mass, poor insulin secretion, and low insulin content in 20-week high fat-fed SM/J 355 

mice, it is possible islets are enriched for basal insulin secretors and PMP’s, while devoid of hub cells. At 356 

30 weeks, as glycemic stress diminishes, basal insulin secretors and PMP populations decline, while hub 357 

cells rise, reestablishing β-cell functionality.  358 

Clearly, the interplay between β-cell dedifferentiation, nascent β-cell maturation, and β-cell 359 

subtype identity in diabetic-obesity needs to be clarified. SM/J mice are a useful model because they allow 360 

for appropriate comparisons across diabetic-obese, nondiabetic-obese, and nondiabetic-lean populations. 361 

Future studies interrogating these differences will provide insight into the physiological mechanisms that 362 

allow β-cell functionality to be maintained and improved in the context of obesity. 363 
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