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Abstract	12	

Most	 clinical	 drugs	 are	 based	 on	 microbial	 natural	 products,	 with	 compound	 classes	 including	13	
polyketides	 (PKS),	non-ribosomal	peptides	 (NRPS),	 fluoroquinones	and	 ribosomally	 synthesized	and	14	
post-translationally	modified	peptides	(RiPPs).	While	variants	of	biosynthetic	gene	clusters	(BGCs)	for	15	
known	 classes	 of	 natural	 products	 are	 easy	 to	 identify	 in	 genome	 sequences,	 BGCs	 for	 new	16	
compound	classes	escape	attention.	In	particular,	evidence	is	accumulating	that	for	RiPPs,	subclasses	17	
known	thus	far	may	only	represent	the	tip	of	an	iceberg.	Here,	we	present	decRiPPter	(Data-driven	18	
Exploratory	 Class-independent	 RiPP	 TrackER),	 a	 RiPP	 genome	 mining	 algorithm	 aimed	 at	 the	19	
discovery	of	novel	RiPP	classes.	DecRiPPter	combines	a	Support	Vector	Machine	(SVM)	that	identifies	20	
candidate	RiPP	precursors	with	pan-genomic	analyses	to	identify	which	of	these	are	encoded	within	21	
operon-like	structures	that	are	part	of	the	accessory	genome	of	a	genus.	Subsequently,	it	prioritizes	22	
such	regions	based	on	the	presence	of	new	enzymology	and	based	on	patterns	of	gene	cluster	and	23	
precursor	 peptide	 conservation	 across	 species.	 We	 then	 applied	 decRiPPter	 to	 mine	 1,295	24	
Streptomyces	genomes,	which	led	to	the	identification	of	42	new	candidate	RiPP	families	that	could	25	
not	 be	 found	 by	 existing	 programs.	 One	 of	 these	 was	 studied	 further	 and	 elucidated	 as	 a	 novel	26	
subfamily	of	lanthipeptides,	designated	Class	V.	Two	previously	unidentified	modifying	enzymes	are	27	
proposed	to	create	the	hallmark	lanthionine	bridges.	Taken	together,	our	work	highlights	how	novel	28	
natural	product	families	can	be	discovered	by	methods	going	beyond	sequence	similarity	searches	to	29	
integrate	multiple	pathway	discovery	criteria.	30	

	31	

Code	and	data	availability	32	

The	source	code	of	DecRiPPter	is	freely	available	online	at	https://github.com/Alexamk/decRiPPter.	33	
Results	of	the	data	analysis	are	available	online	at	34	
http://www.bioinformatics.nl/~medem005/decRiPPter_strict/index.html	and		35	
http://www.bioinformatics.nl/~medem005/decRiPPter_mild/index.html	(for	the	strict	and	mild	36	
filters,	respectively).	All	training	data	and	code	used	to	generate	these,	as	well	as	outputs	of	the	data	37	
analyses,	are	available	on	Zenodo	at	doi:10.5281/zenodo.3834818.	38	

	 	39	
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Introduction	40	

The	introduction	of	antibiotics	in	the	20th	century	contributed	hugely	to	extend	the	human	life	span.	41	
However,	the	increase	in	antibiotic	resistance	and	the	concomitant	steep	decline	in	the	number	of	42	
new	compounds	discovered	via	high-throughput	screening1,2,	means	that	we	again	face	huge	43	
challenges	to	treat	infections	by	multi-drug	resistant	bacteria3.	The	low	return	of	investment	of	high	44	
throughput	screening	is	due	to	dereplication,	in	other	words,	the	rediscovery	of	bioactive	45	
compounds	that	have	been	identified	before4,5.	A	revolution	in	our	understanding	was	brought	about	46	
by	the	development	of	next-generation	sequencing	technologies.	Actinobacteria	are	the	most	prolific	47	
producers	of	bioactive	compounds,	including	some	two-thirds	of	the	clinical	antibiotics6,7.	Mining	of	48	
the	genome	sequences	of	these	bacteria	revealed	a	huge	repository	of	previously	unseen	49	
biosynthetic	gene	clusters	(BGCs),	highlighting	that	their	potential	as	producers	of	bioactive	50	
molecules	had	been	grossly	underestimated6,8,9.	However,	these	BGCs	are	often	not	expressed	under	51	
laboratory	conditions,	most	likely	because	the	environmental	cues	that	activate	their	expression	in	52	
their	original	habitat	are	missing10,11.	To	circumvent	these	issues,	a	common	strategy	is	to	select	a	53	
candidate	BGC	and	force	its	expression	by	expression	of	the	pathway-specific	activator	or	via	54	
expression	of	the	BGC	in	a	heterologous	host12.	However,	these	methods	are	time-consuming,	while	55	
it	is	hard	to	predict	the	novelty	and	utility	of	the	compounds	they	produce.	56	

To	improve	the	success	of	genome	mining-based	drug	discovery,	many	bioinformatic	tools	have	been	57	
developed	for	identification	and	prioritization	of	BGCs.	These	tools	often	rely	on	conserved	genetic	58	
markers	present	in	BGCs	of	certain	natural	products,	such	as	polyketides	(PKS),	non-ribosomal	59	
peptide	synthetases	(NRPS)	and	terpenes13–15.	While	these	methods	have	unearthed	vast	amounts	of	60	
uncharacterized	BGCs,	they	further	expand	on	previously	characterized	classes	of	natural	products.	61	
This	raises	the	question	of	whether	entirely	novel	classes	of	natural	products	could	still	be	62	
discovered.	A	few	genome	mining	methods,	such	as	ClusterFinder16	and	EvoMining17,18,	have	tried	to	63	
tackle	this	problem.	These	methods	either	use	criteria	true	of	all	BGCs	or	build	around	the	64	
evolutionary	properties	of	gene	families	found	in	BGCs,	rather	than	using	specific	BGC-class-specific	65	
genetic	markers.	While	the	lack	of	clear	genetic	markers	may	result	in	a	higher	number	of	false	66	
positives,	these	methods	have	indeed	charted	previously	uncovered	biochemical	space	and	led	to	the	67	
discovery	of	new	natural	products.		68	

One	class	of	natural	products	whose	expansion	has	been	fueled	by	the	increased	amount	of	genomic	69	
sequences	available	is	that	of	the	ribosomally	synthesized	and	post-translationally	modified	peptides	70	
(RiPPs)19.	RiPPs	are	characterized	by	a	unifying	biosynthetic	theme:	a	small	gene	encodes	a	short	71	
precursor	peptide,	which	is	extensively	modified	by	a	series	of	enzymes	that	typically	recognize	the	72	
N-terminal	part	of	the	precursor	called	the	leader	peptide,	and	finally	cleaved	to	yield	the	mature	73	
product20.	Despite	this	common	biosynthetic	logic,	RiPP	modifications	are	highly	diverse.	The	latest	74	
comprehensive	review	categorizes	RiPPs	into	roughly	20	different	classes19,	such	as	lanthipeptides,	75	
lasso	peptides	and	thiopeptides.	Each	of	these	classes	is	characterized	by	one	or	more	specific	76	
modifications,	such	as	the	thioether	bridge	in	lanthipeptides	or	the	knot-like	structure	of	lasso	77	
peptides.	Despite	the	extensive	list	of	known	classes	and	modifications,	new	RiPP	classes	are	still	78	
being	found.	Newly	identified	RiPP	classes	often	carry	unusual	modifications,	such	as	D-amino	acids21,	79	
addition	of	unnatural	amino	acids22,23,	β-amino	acids24,	or	new	variants	of	thioether	crosslinks25,26.	80	
These	discoveries	strongly	indicate	that	the	RiPP	genomic	landscape	remains	far	from	completely	81	
charted,	and	that	novel	types	of	RiPPs	with	new	and	unique	biological	activities	may	yet	be	82	
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uncovered.	However,	RiPPs	pose	a	unique	and	major	challenge	to	genome-based	pathway	83	
identification	attempts:	unlike	in	the	case	of	NRPSs	and	PKSs,	there	are	no	universally	conserved	84	
enzyme	families	or	enzymatic	domains	that	are	found	across	all	RiPP	pathways.	Rather,	each	class	of	85	
RiPPs	comprises	its	own	unique	set	of	enzyme	families	to	post-translationally	modify	the	precursor	86	
peptides	belonging	to	that	class.	Hence,	while	biosynthetic	gene	clusters	(BGCs)	for	known	RiPP	87	
classes	can	be	identified	using	conventional	genome	mining	algorithms,	a	much	more	elaborate	88	
strategy	is	required	to	automate	the	identification	of	novel	RiPP	classes.	89	

Several	methods	have	made	progress	in	tackling	this	challenge.	‘Bait-based’	approaches	such	as	90	
RODEO27,28	and	RiPPer29	identify	RiPP	BGCs	by	looking	for	homologues	of	RiPP	tailoring	enzymes	91	
(RTEs)	of	interest,	and	facilitate	identifying	these	RTEs	in	novel	contexts	to	find	many	new	RiPP	BGCs.	92	
However,	these	methods	still	require	a	known	query	RTE	from	a	known	RiPP	subclass.	Another	tool	93	
recently	described,	NeuRiPP,	is	capable	of	predicting	precursors	independent	of	RiPP	subclass,	but	is	94	
limited	to	precursor	analysis30.	Yet	another	tool,	DeepRiPP,	can	detect	novel	RiPP	BGCs	that	are	95	
chemically	far	removed	from	known	examples,	but	is	mainly	designed	to	identify	new	members	of	96	
known	classes31.	In	the	end,	an	algorithm	for	the	discovery	of	BGCs	encoding	novel	RiPP	classes	will	97	
need	to	integrate	various	sources	of	information	to	reliably	identify	genomic	regions	that	are	likely	to	98	
encode	RiPP	precursors	along	with	previously	undiscovered	RTEs.	99	

Here,	we	present	decRiPPter	(Data-driven	Exploratory	Class-independent	RiPP	TrackER),	an	100	
integrative	algorithm	for	the	discovery	of	novel	classes	of	RiPPs,	without	requiring	prior	knowledge	of	101	
their	specific	modifications	or	core	enzymatic	machinery.	DecRiPPter	employs	a	Support	Vector	102	
Machine	(SVM)	classifier	that	predicts	RiPP	precursors	regardless	of	RiPP	subclass,	and	combines	this	103	
with	pan-genomic	analysis	to	identify	which	putative	precursor	genes	are	located	within	specialized	104	
genomic	regions	that	encode	multiple	enzymes	and	are	part	of	the	accessory	genome	of	a	genus.	105	
Sequence	similarity	networking	of	the	resulting	precursors	and	gene	clusters	then	facilitates	further	106	
prioritization.	Applying	this	method	to	the	gifted	natural	product	producer	genus	Streptomyces,	we	107	
identified	42	new	RiPP	family	candidates.	Experimental	characterization	of	a	widely	distributed	108	
candidate	RiPP	BGC	led	to	the	discovery	of	a	novel	lanthipeptide	that	was	produced	by	a	previously	109	
unknown	enzymatic	machinery.	 	110	
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Results	111	

RiPP	BGC	discovery	by	detection	of	genomic	islands	with	characteristics	typical	of	RiPP	BGCs	112	

Given	the	promise	of	RiPPs	as	a	source	for	novel	natural	products,	we	set	out	to	construct	a	platform	113	
to	facilitate	identification	of	novel	RiPP	classes.	Since	no	criteria	could	be	used	that	are	specific	for	114	
individual	RiPP	classes,	we	used	three	criteria	that	generally	apply	to	RiPP	BGCs:	1)	they	contain	one	115	
or	more	ORFs	for	a	precursor	peptide;	2)	they	contain	genes	encoding	modifying	machinery	in	an	116	
operon-like	gene	cluster	together	with	precursor	gene(s);	3)	they	have	a	sparse	distribution	within	117	
the	wider	taxonomic	group	in	which	they	are	found.	To	focus	on	novel	RiPP	classes,	we	added	a	118	
fourth	criterion:	4)	they	have	no	direct	similarity	to	BGCs	of	known	classes	(Figure	1).		119	

For	the	first	criterion,	we	trained	an	SVM	classifier	to	distinguish	between	RiPP	precursors	and	other	120	
peptides.	A	collection	of	175	known	RiPP	precursors,	gathered	from	RiPP	clusters	from	the	MIBiG	121	
repository32	was	used	as	a	positive	training	set.	For	the	negative	training	set,	we	generated	a	set	of	122	
20,000	short	non-precursor	sequences,	consisting	of	10,000	randomly	selected	short	proteins	(<175	123	
amino	acids	long)	from	Uniprot	without	measurable	similarity	to	RiPP	precursors	(representative	of	124	
gene	encoding	proteins	but	not	RiPP	precursors),	and	10,000	translated	intergenic	sequences	125	
between	a	stop	codon	and	the	next	start	codon	of	sizes	30-300	nt	taken	from	10	genomes	across	the	126	
bacterial	tree	of	life	(representative	of	spurious	ORFs	that	do	not	encode	proteins).	From	both	127	
positive	and	negative	training	set	sequences,	36	different	features	were	extracted	describing	the	128	
amino	acid	composition	and	physicochemical	properties	of	the	protein/peptide	sequences,	as	well	as	129	
localized	enrichment	of	amino	acids	prone	to	modification	by	RTEs.	Based	on	these,	a	support	vector	130	
machine	was	trained	(see	details	in	Methods	section).	To	make	sure	that	this	classifier	could	predict	131	
precursors	independent	of	RiPP	subclass,	we	trained	it	on	all	possible	subsets	of	the	positive	training	132	
set	in	which	one	of	the	RiPP	subclasses	was	entirely	left	out	(a	strategy	we	termed	leave-one-class-133	
out	cross-validation).	Typically,	the	classifier	was	still	capable	of	predicting	the	class	that	was	left	out,	134	
with	an	area-under-receiver	operating	characteristics	curve	of	0.955.	135	

For	the	second	criterion,	we	made	use	of	the	fact	that	the	majority	of	RiPP	BGCs	appear	to	contain	136	
the	genes	encoding	the	precursor	and	the	core	biosynthetic	enzymes	in	the	same	strand	orientation	137	
within	close	intergenic	distance	(81.6%	of	MIBiG	RiPPs).	Therefore,	candidate	gene	clusters	are	138	
formed	from	the	genes	that	appear	to	reside	in	an	operon	with	predicted	precursor	genes,	based	on	139	
intergenic	distance	and	the	COG	scores	calculated	(see	description	of	third	criterion	below,	the	140	
Methods	section	and	Figure	S1).	These	gene	clusters	are	then	analyzed	for	protein	domains	that	141	
could	constitute	the	modifying	machinery	(Figure	1b).	Rather	than	restricting	ourselves	to	specific	142	
protein	domains,	we	constructed	a	broad	dataset	of	Pfam	and	TIGRFAM	domains	that	are	linked	to	143	
an	E.C.	number	using	InterPro	mappings33.	This	dataset	was	extended	with	a	previously	curated	set	of	144	
Pfam	domains	found	to	be	prevalent	in	the	positive	training	set	of	the	ClusterFinder	algorithm34,	and	145	
manually	curated,	resulting	in	a	set	of	4,131	protein	domains.	We	also	constructed	Pfam35	and	146	
TIGRFAM36	domain	datasets	of	transporters,	regulators	and	peptidases,	as	well	as	a	dataset	147	
consisting	of	known	RiPP	modifying	domains	to	provide	more	detailed	annotation	and	allow	specific	148	
filtering	of	RiPP	BGCs	based	on	the	presence	of	each	of	these	types	of	Pfam	domains	(Supplemental	149	
Document	2).	150	

For	the	third	criterion,	we	sought	to	distinguish	specialized	genomic	regions	from	conserved	genomic	151	
regions.	Indeed,	most	BGCs	are	sparingly	distributed	among	genomes,	with	even	closely	related	152	
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strains	showing	differences	in	their	BGC	repertoires37–39.	We	therefore	developed	an	algorithm	that	153	
separates	the	‘core’	genome	from	the	‘accessory’	genome,	by	comparing	all	genes	in	a	group	of	154	
query	genomes	from	the	same	taxon	(typically	a	genus),	and	identifying	the	frequency	of	occurrence	155	
of	each	gene	within	that	group	of	genomes	(Figures	1c	and	S2).	For	the	purpose	of	comparing	genes	156	
between	genomes,	we	reasoned	that	it	was	more	straightforward	to	identify	groups	of	functionally	157	
closely	related	genes	that	also	include	recent	paralogues,	due	to	the	complexities	of	dealing	with	158	
orthology	relationships	across	large	numbers	of	genomes	(especially	for	biosynthetic	genes	that	are	159	
known	to	have	a	discontinuous	taxonomic	distribution	and	may	undergo	frequent	duplications40).	160	
Therefore,	decRiPPter	first	identifies	the	distribution	of	sequence	identity	values	of	protein-coding	161	
genes	that	can	confidently	be	assigned	to	be	orthologues,	and	uses	this	distribution	to	find	groups	of	162	
genes	across	genomes	with	orthologue-like	mutual	similarity.	To	identify	a	set	of	high-confidence	163	
orthologues,	decRiPPter	looks	for	genomic	loci	between	which	at	least	three	contiguous	genes	are	164	
each	other’s	bidirectional	best	hits	(BBHs,	using	DIAMOND41)	between	all	possible	genome	pairs	of	165	
the	group	of	genomes	analyzed,	and	assigned	the	center	genes	of	these	loci	orthologue	status,	166	
termed	a	true	conserved	orthologous	gene	(trueCOG)42.	Since	many	orthologues	are	missed	by	only	167	
considering	orthologues	based	on	BBHs43,	and	to	also	include	recent	paralogues,	we	then	further	168	
expanded	the	list	of	homologues	with	orthologue-like	similarity	by	dynamically	determining	a	cutoff	169	
between	each	genome	pair	based	on	the	similarity	of	the	trueCOGs	shared	between	those	genomes.	170	
This	cutoff	is	used	to	find	all	highly	similar	gene	pairs,	which	are	then	clustered	with	the	Markov	171	
Clustering	Algorithm	(MCL44)	into	‘clusters	of	orthologous	genes’	(COGs).	The	number	of	COG	172	
members	found	for	each	gene	is	divided	by	the	number	of	genomes	in	the	query	to	get	a	COG	score	173	
ranging	from	0	to	1,	reflecting	how	widespread	the	gene	is	across	the	set	of	query	genomes.	To	174	
validate	our	calculations,	we	analyzed	the	COG-scores	of	the	highly	conserved	single-copy	BUSCO	175	
gene	set	from	OrthoDB45,46,	as	well	as	the	COG-scores	of	the	genes	in	the	gene	clusters	predicted	by	176	
antiSMASH.	In	line	with	our	expectations,	homologs	of	the	BUSCO	gene	set	averaged	COG-scores	of	177	
0.95	(Figure	S5),	while	the	COG-scores	of	the	antiSMASH	gene	clusters	were	much	lower,	averaging	178	
0.311	+-	0.249	for	all	BGCs,	and	0.234	+-	0.166	for	RiPP	BGCs	(Figure	S6).	While	the	COG-scoring	179	
method	requires	a	group	of	genomes	to	be	analyzed	rather	than	a	single	genome,	we	believe	that	180	
the	extra	calculation	significantly	contributes	in	filtering	false	positives	(see	Table	1	and	Figure	S4).	In	181	
addition,	the	COG	scores	aid	in	the	gene	cluster	identification	based	on	the	assumption	that	gene	182	
clusters	are	generally	sets	of	genes	with	similar	absence/presence	patterns	across	species	(see	183	
Methods	section).		184	

For	the	final	criterion,	the	algorithm	dereplicates	the	identified	clusters	by	comparing	them	to	known	185	
RiPP	BGCs.	All	putative	BGCs	are	clustered	based	on	domain	content	and	precursor	similarity	using	186	
sequence	similarity	networking47,	and	compared	to	known	RiPP	BGCs	from	MIBiG48.	In	addition,	the	187	
overlap	between	predicted	RiPP	BGCs	and	gene	clusters	found	by	antiSMASH49	is	determined	(Figure	188	
1).		189	

decRiPPter	identifies	42	candidate	novel	RiPP	classes	in	Streptomyces	190	

While	RiPPs	are	found	in	many	different	microorganisms,	their	presence	in	streptomycetes	reflects	191	
perhaps	the	most	diverse	array	of	RiPP	classes	within	a	single	genus.	Streptomycetes	produce	a	192	
broad	spectrum	of	RiPPs,	namely	lanthipeptides50,	lasso	peptides27,	linear	azol(in)e-containing	193	
peptides	(LAPs)51,	thiopeptides52,	thioamide-containing	peptides29	and	bottromycins53.	Their	194	
potential	as	RiPP	producers	is	further	highlighted	by	a	recent	study	showcasing	the	diversity	of	195	

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.19.104752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.19.104752
http://creativecommons.org/licenses/by/4.0/


6	
	

lanthipeptide	BGCs	in	Streptomyces	and	other	actinobacteria54.	Given	the	large	variety	of	different	196	
families	of	natural	products	produced	by	this	genus,	we	hypothesized	it	to	be	a	likely	source	of	novel	197	
RiPP	classes,	and	sought	to	exhaustively	mine	it.	198	

We	started	by	running	the	pipeline	described	above	on	all	publicly	available	Streptomyces	genomes	199	
(1,295	genomes)	from	NCBI	(Supplemental	Document	3).	Due	to	computational	limits,	the	genomes	200	
were	split	into	ten	randomly	selected	groups	to	calculate	the	frequency	of	distribution	of	each	gene	201	
(COG-scores).	In	general,	the	number	of	genomes	that	could	be	grouped	together	and	the	resulting	202	
cutoffs	were	found	to	vary	with	the	amount	of	minimum	trueCOGs	required	(Figure	S3A).	To	make	203	
sure	that	as	many	genomes	as	possible	could	be	compared	at	once,	we	set	the	cutoff	for	minimum	204	
number	of	trueCOGs	at	10.	Despite	the	low	cutoff,	the	distribution	of	similarity	scores	between	205	
genome	pairs	still	resembled	a	Gaussian	distribution	(Figure	S3B).	The	bimodal	distribution	of	the	206	
resulting	COG-scores	showed	that	the	majority	of	the	genes	were	either	conserved	in	only	a	small	207	
portion	of	the	genomes,	or	present	in	almost	all	genomes	(Figure	S4).		208	

We	then	scanned	all	predicted	products	of	genes	as	well	as	predicted	ORFs	in	intergenic	regions	209	
shorter	than	100	amino	acids	(total	7.19	*	107)	with	the	SVM	classifier.	While	by	far	most	of	the	210	
queries	scored	below	0.5,	a	peak	of	queries	scoring	from	0.9	to	1.0	was	observed	(Figure	S7).	Seeking	211	
to	be	inclusive	at	this	stage,	we	set	the	cutoff	at	0.9,	resulting	in	1.32*106	candidate	precursors	212	
passing	this	initial	filter,	thus	filtering	out	98.2	%	of	all	candidates.	Eliminating	candidate	precursors	213	
whose	genes	were	completely	overlapping	reduced	the	number	to	8.17*105	precursors	(1.1	%).	214	
While,	most	probably,	the	vast	majority	of	these	are	not	RiPP	precursors,	it	provides	a	suitably	sized	215	
set	of	candidates	to	then	enter	the	next	stages	of	the	decRiPPter	workflow.	216	

In	our	analyses,	we	found	that	the	majority	of	RiPP	BGCs	contain	the	majority	of	biosynthetic	genes	217	
on	the	same	strand	orientation	as	the	precursor	(MIBiG:	81.6%;	antiSMASH	RiPP	BGCs:	73.1%).	We	218	
therefore	formed	gene	clusters	using	only	the	genes	on	the	same	strand	as	the	predicted	precursor.	219	
To	create	a	training	set,	we	divided	all	known	RiPP	BGCs	and	all	antiSMASH	RiPP	BGCs	found	in	the	220	
analyzed	genome	sequences	into	sections	where	each	section	contained	only	genes	on	the	same	221	
strand.	The	core	section	was	defined	as	the	section	that	contained	the	most	biosynthetic	genes	as	222	
detected	by	antiSMASH	or	as	annotated	in	the	MIBiG	database.	These	sections	were	used	as	training	223	
sets	to	finetune	distance	and	COG	cutoffs	for	our	gene	cluster	methods.		224	

In	a	simple	gene	cluster	method,	genes	were	joined	only	using	the	intergenic	distances	as	a	cutoff.	225	
Using	this	method,	we	found	that	at	a	distance	of	750	nucleotides,	all	MIBiG	core	sections	were	226	
covered,	and	91%	of	all	antiSMASH	core	sections	(Figure	S8AB).	However,	using	only	distance	may	227	
cause	the	gene	cluster	formation	to	overshoot	into	regions	not	associated	with	the	BGC	(e.g.	Figure	228	
S2).	We	therefore	created	an	alternative	method,	called	the	‘island	method’.	In	this	method,	each	229	
gene	is	first	joined	with	immediately	adjacent	genes	that	lie	in	the	same	strand	orientation	and	have	230	
very	small	intergenic	regions	(<=50	nucleotides),	to	form	islands.	These	islands	may	subsequently	be	231	
combined	if	they	have	similar	average	COG-scores	(see	materials	and	methods).	We	found	that	with	232	
this	method,	we	could	confidently	cover	our	validation	set,	while	slightly	reducing	the	average	size	of	233	
the	gene	clusters	(3.73	±	3.75	vs	3.44	±	3.53;	Figure	S8CDE).	In	addition	the	variation	of	the	COG	234	
scores	within	the	gene	clusters	decreased,	suggesting	that	fewer	housekeeping	genes	would	be	235	
added	to	detected	biosynthetic	gene	clusters	(Figure	S8F).	236	
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Overlapping	gene	clusters	were	fused,	resulting	in	7.18	*105	gene	clusters.	To	organize	the	results,	all	237	
clusters	were	paired	if	their	protein	domain	content	was	similar	(Jaccard	index	of	protein	domains;	238	
cutoff:	0.5)	and	at	least	one	of	their	predicted	precursors	showed	sequence	similarity	(NCBI	blastp;	239	
bitscore	cutoff:	30).	These	cutoffs	were	used	to	distinguish	between	different	RiPP	subclasses	(Figure	240	
S9).		Clustering	these	pairs	with	MCL	created	45,727	‘families’	of	gene	clusters,	containing	312,163	241	
gene	clusters,	while	the	remaining	406,105	gene	clusters	were	left	ungrouped.	242	

Analysis	of	overlap	between	decRiPPter	clusters	and	BGCs	predicted	by	antiSMASH	revealed	that	243	
5,908	clusters	overlapped,	constituting	78%	of	antiSMASH	hits,	but	only	0.8%	of	decRiPPter	clusters	244	
(Table	1,	row	2).	To	further	narrow	down	our	results,	we	applied	several	filters	to	increase	the	245	
saturation	of	RiPP	BGCs	in	our	dataset.	A	mild	filter,	limiting	the	average	COG	score	to	0.25	and	246	
requiring	two	biosynthetic	genes	and	a	gene	encoding	a	transporter,	increased	the	fraction	of	247	
overlapping	RiPP	BGCs	to	7.8%	(Table	1,	row	3).	When	only	clusters	associated	with	genes	for	a	248	
predicted	peptidase	and	a	predicted	regulator	were	considered,	and	the	average	COG	score	was	249	
limited	to	0.1,	the	fraction	increased	further	to	14.4%	(Table	1,	row	4).	While	many	antiSMASH	RiPP	250	
BGCs	were	filtered	out	in	the	process	(and,	by	extension,	many	unknown	RiPP	BGCs	were	likely	also	251	
filtered	out	this	way),	we	felt	our	odds	of	discovering	novel	RiPP	families	were	highest	when	focusing	252	
on	the	dataset	with	the	highest	fraction	of	RiPP	BGCs,	and	therefore	applied	the	strict	filter.	The	253	
remaining	2,471	clusters	of	genes	were	clustered	as	described	above.	Since	our	efforts	were	aimed	at	254	
finding	new	gene	cluster	families,	we	discarded	groups	of	clusters	with	fewer	than	three	members,	255	
leaving	1,036	gene	clusters	in	187	families.	Families	in	which	more	than	half	of	the	gene	clusters	256	
overlapped	with	antiSMASH	non-RiPP	BGCs	were	discarded	as	well,	leaving	only	known	RiPP	families	257	
and	new	candidate	RiPP	families	(893	gene	clusters,	151	families;	Figure	2).		258	

Roughly	a	third	(272)	of	the	remaining	gene	clusters	were	members	of	known	families	of	RiPPs,	259	
including	lasso	peptides,	lanthipeptides,	thiopeptides,	bacteriocins	and	microcins.	In	addition,	many	260	
of	the	other	candidate	clusters	(55)	contained	genes	common	to	known	RiPP	BGCs,	such	as	those	261	
encoding	YcaO	cyclodehydratases	and	radical	SAM-utilizing	proteins	(Figure	2).	These	gene	clusters	262	
were	not	annotated	as	RiPP	gene	clusters	by	antiSMASH,	but	the	presence	of	these	genes	alone	or	in	263	
combination	with	a	suitable	precursor	can	be	used	as	a	lead	to	find	novel	RiPP	gene	clusters24,29.		264	

Each	remaining	family	of	gene	clusters	was	manually	investigated	to	filter	out	likely	false	positives	265	
from	the	candidates.	Common	reasons	to	discard	gene	clusters	were	functional	annotations	of	266	
candidate	precursors	as	having	a	non-precursor	function	(e.g.	homologous	to	ferredoxin	or	LysW55),	267	
annotations	of	the	genes	within	a	gene	cluster	related	to	primary	metabolism	(e.g.	genes	for	cell-wall	268	
modifying	enzymes),	or	other	abnormalities	(e.g.	large	intergenic	gaps	or	very	large	gene	cluster	of	269	
more	than	40	genes).	Several	modifying	enzymes	belonging	to	the	candidate	families	were	270	
homologous	to	gene	products	involved	in	primary	metabolism,	such	as	6-pyruvoyltetrahydropterin	271	
synthase	or	phosphoglycerate	mutase.	Given	the	low	distribution	(COG	scores)	of	the	genes	encoding	272	
these	enzymes,	it	seemed	more	likely	to	us	that	they	were	adapted	from	primary	metabolism	to	play	273	
a	role	in	secondary	metabolism17.	We	therefore	only	discarded	a	gene	cluster	family	if	multiple	clear	274	
relations	to	a	known	pathway	were	found.	The	remaining	42	candidate	families	were	further	grouped	275	
together	into	broader	classes	depending	on	whether	a	common	enzyme	was	found	(Figure	2).		276	

A	large	group	of	families	all	contained	one	or	more	genes	for	ATP-grasp	enzymes.	ATP-grasp	enzymes	277	
are	all	characterized	by	a	typical	ATP-grasp-fold,	which	binds	ATP,	which	is	hydrolyzed	to	catalyze	a	278	
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number	of	different	reactions.	As	such,	these	enzymes	have	a	wide	variety	of	functions	in	both	279	
primary	and	secondary	metabolism,	and	their	genes	are	present	in	a	many	different	genomic	280	
contexts56.	Involvement	of	ATP-grasp	enzymes	in	RiPP	biosynthesis	has	been	reported	for	both	281	
microviridin57	and	pheganomycin23,	where	they	catalyze	macrocyclization	and	peptide	ligation,	282	
respectively.	The	ATP-grasp	enzymes	involved	in	the	biosynthesis	of	these	products	did	not	show	283	
direct	similarity	to	any	of	the	ATP-grasp	ligases	of	these	candidates,	however,	suggesting	that	these	284	
belong	to	yet	to	be	uncovered	biosynthetic	pathways.		285	

Among	the	candidate	families	were	three	families	that	contained	homologs	to	mauE,	and	one	that	286	
additionally	contained	a	homolog	of	mauD.	The	proteins	encoded	by	these	genes,	along	with	other	287	
proteins	encoded	in	the	mau	gene	cluster,	are	known	to	be	involved	in	the	maturation	of	of	288	
methylamine	dehydrogenase,	which	is	required	for	methylamine	metabolism.	MauE	in	particular	has	289	
been	speculated	to	play	a	role	in	the	formation	of	disulfide	bridges	in	the	β-subunit	of	the	protein,	290	
while	the	exact	function	of	MauD	remains	unclear58.	As	no	other	orthologs	of	the	mau	cluster	were	291	
found	within	the	genomes	of	Streptomyces	sp.	2112.3,	Streptomyces	viridosporus	T7A	or	292	
Streptomyces	sp.	CS081A,	it	is	unlikely	that	these	proteins	carry	out	this	function.	Rather,	the	293	
presence	of	these	genes	in	a	putative	RiPP	BGC	suggests	that	they	play	a	role	in	modification	of	RTEs	294	
or	RiPP	precursors.	Supporting	this	hypothesis,	each	of	these	gene	clusters	contained	a	gene	295	
predicted	to	a	encode	for	a	precursor	containing	at	least	eight	cysteine	residues	(Table	S3).	296	

Similarly,	homologs	of	hypE	and	hypF	were	detected	in	a	gene	cluster	containing	another	gene	297	
encoding	an	ATP-grasp	ligase.	Genes	encoding	these	proteins	are	typically	part	of	the	hyp	operon,	298	
which	is	involved	in	the	maturation	of	hydrogenase.	Specifically,	the	two	proteins	cooperate	to	299	
synthesize	a	thiocyanate	ligand,	which	is	transferred	onto	an	iron	center	and	used	as	a	catalyst59.	No	300	
other	homologs	of	genes	in	the	hyp	operon	were	detected,	however,	suggesting	that	these	protein-301	
coding	genes	have	adopted	a	novel	function.		302	

The	remaining	18	families	could	not	be	grouped	under	a	single	denominator,	nor	could	any	single	303	
enzyme	be	found	that	clearly	distinguished	these	groups	as	RiPP	or	non-RiPP	BGCs.	A	wide	variety	of	304	
enzymes	was	found	to	be	encoded	by	these	gene	clusters,	including	p450	oxidoreductases,	305	
flavoproteins,	aminotransferases,	methyltransferases	and	phosphatases.	In	addition	(and	in	line	with	306	
features	dominant	in	the	positive	training	set),	the	predicted	precursor	peptides	were	often	rich	in	307	
cysteine,	serine	and	threonine	residues	(Table	S3),	which	contain	reactive	hydroxyl	and	sulfide	308	
moieties	and	are	present	in	precursors	of	various	known	RiPP	subclasses.		309	

All	candidate	gene	clusters	presented	here	carry	the	features	we	selected,	typical	of	RiPP	BGCs:	a	low	310	
frequency	of	occurrence	among	the	scanned	genomes,	a	suitable	precursor	peptide,	candidate	311	
modifying	enzymes,	transporters,	regulators	and	peptidases.	However,	many	known	RiPP	BGCs	were	312	
removed,	suggesting	that	there	may	be	more	uncharacterized	RiPP	families	among	the	gene	clusters	313	
we	discarded.	While	the	complete	dataset	could	not	be	covered	here,	the	command-line	application	314	
of	decRiPPter	has	been	set	up	to	allow	users	to	set	their	own	filters.	In	addition,	decRiPPter	runs	are	315	
visualized	in	an	HTML	output,	in	which	the	results	can	be	further	browsed	and	filtered	by	Pfam	316	
domains	and	other	criteria,	allowing	users	to	find	candidate	families	according	to	their	preferences.	317	
The	results	from	this	analysis	of	the	strict	and	the	mild	filter	is	available	at	318	
http://www.bioinformatics.nl/~medem005/decRiPPter_strict/index.html	and		319	
http://www.bioinformatics.nl/~medem005/decRiPPter_mild/index.html,	respectively.	320	
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Discovery	of	a	novel	family	of	lanthipeptides	321	

To	validate	the	capacity	of	decRiPPter	to	find	novel	RiPP	subclasses,	we	set	out	to	experimentally	322	
characterize	one	of	the	candidate	families	(Figure	2;	Other;	red	marker).	Gene	clusters	belonging	to	323	
this	family	shared	several	genes	encoding	flavoproteins,	methyltransferases,	oxidoreductases	and	324	
occasionally	a	phosphotransferase.	Importantly,	the	predicted	precursor	peptides	encoded	by	these	325	
putative	BGCs	showed	clear	conservation	of	the	N-terminal	region,	while	varying	more	in	the	C-326	
terminal	region	(Figure	S10).	This	distinction	is	typical	of	RiPP	precursors,	as	the	N-terminal	leader	327	
peptide	is	used	as	a	recognition	site	for	modifying	enzymes,	while	the	C-terminal	core	peptide	can	be	328	
more	variable20.		329	

One	of	the	gene	clusters	belonging	to	this	candidate	family	was	identified	in	Streptomyces	330	
pristinaespiralis	ATCC	25468	(fig	3A;	Table	2).	S.	pristinaespiralis	is	known	for	the	production	of	331	
pristinamycin,	and	was	selected	for	experimental	work	since	the	strain	is	genetically	tractable60,61.	332	
The	gene	cluster	was	named	after	its	origin	(spr:	Streptomyces	pristinaespiralis	RiPP),	and	the	genes	333	
were	named	after	their	putative	function.		334	

The	gene	cluster	contains	four	genes	encoding	putative	precursor	peptides,	although	only	three	of	335	
the	peptides	(SprA1-A3)	showed	similarity	to	each	other	and	to	the	other	peptides	in	the	same	family	336	
(Figure	S10).	The	fourth	predicted	precursor	peptide	(encoded	by	sprX)	did	not	align	with	any	of	the	337	
other	peptides	and	was	assumed	to	be	a	false	positive.	The	products	encoded	by	sprA1	and	sprA2	338	
were	highly	similar	to	one	another	compared	to	the	sprA3	gene	product.	Occurrence	of	two	distinct	339	
genes	for	precursors	within	a	single	RiPP	BGC	is	typical	for	two-component	lanthipeptides62.	340	

Most	of	the	modifying	enzymes	present	in	the	gene	cluster	had	not	previously	been	implicated	in	341	
RiPP	biosynthesis.	The	predicted	sprF2	gene	product,	however,	shows	high	similarity	to	cysteine	342	
decarboxylases	such	as	EpiD	and	CypD.	These	enzymes	decarboxylate	C-terminal	cysteine	residues,	343	
which	is	the	first	step	in	the	formation	of	C-terminal	loop	structures	called	S-[(Z)-2-aminovinyl]-D-344	
cysteine	(AviCys)	and	S-[(Z)-2-aminovinyl]-(3S)-3-methyl-D-cysteine	(AviMeCys)63.	Several	RiPP	classes	345	
have	been	reported	with	this	modification,	including	lanthipeptides,	cypemycins	and	thioviridamides,	346	
although	they	are	only	consistently	present	in	cypemycins	and	thioviridamides.	This	type	of	347	
modification	is	less	common	among	lanthipeptides,	with	only	nine	out	of	120	lanthipeptide	gene	348	
clusters	in	MIBiG	encoding	the	required	decarboxylase.	Cysteine-decarboxylating	genes	are	also	349	
present	in	non-RiPP	gene	clusters	(Table	S4)	and	are	also	associated	with	other	metabolic	350	
pathways64.	351	

A	more	detailed	comparison	with	the	gene	clusters	in	MIBiG	showed	that	two	more	genes	from	the	352	
thioviridamide	gene	cluster	were	homologous	to	two	genes	encoding	a	predicted	353	
phosphotransferase	(sprPT)	and	a	hypothetical	protein	(sprH3),	respectively.	Taken	together	with	the	354	
homologous	cysteine	decarboxylase,	it	appeared	that	our	gene	cluster	was	distantly	related	to	the	355	
thioviridamide	gene	cluster65.	Thioviridamide-like	compounds	are	primarily	known	for	thioamide	356	
residues,	for	which	a	TfuA-associated	YcaO	is	thought	to	be	responsible29,66.	However,	a	YcaO	357	
homologue	was	not	encoded	by	the	gene	cluster,	making	it	unlikely	that	this	gene	cluster	should	358	
produce	thioamide-containing	RiPPs.	359	

Two	strains	were	created	to	help	determine	the	natural	product	specified	by	the	BGC.	For	the	first	360	
strain,	the	entire	gene	cluster	was	replaced	by	an	apramycin	resistance	cassette	(aac3(IV))	by	361	
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homologous	recombination	with	the	pWHM3	vector67	(spr::apra).	In	case	the	gene	cluster	was	362	
natively	expressed,	this	strain	should	allow	for	easy	identification	of	the	natural	product	by	363	
comparative	metabolomics.	In	the	second	approach,	we	sought	to	activate	the	BGC	in	case	it	was	not	364	
natively	expressed.	To	this	end,	we	targeted	the	cluster-situated	luxR-family	transcriptional	365	
regulatory	gene	sprR.	The	sprR	gene	was	expressed	from	the	strong	and	constitutive	gapdh	promoter	366	
from	S.	coelicolor	(pgapdh)	on	the	integrative	vector	pSET15268.	The	resulting	construct	(pAK1)	was	367	
transformed	to	S.	pristinaespiralis	by	protoplast	transformation.		368	

To	assess	the	expression	of	the	gene	cluster	in	the	transformants,	we	analyzed	changes	in	the	global	369	
expression	profiles	in	2	days	and	7	days	old	samples	of	NMMP-grown	cultures	using	quantitative	370	
proteomics	(Figure	3B).	Aside	from	the	regulator	itself,	six	out	of	the	sixteen	other	proteins	were	371	
detected	in	the	strain	containing	expression	construct	pAK1,	while	only	SprPT	could	be	detected	in	372	
the	strain	carrying	the	empty	vector	pSET152.	SprPT	was	also	detected	in	the	proteome	of	spr::apra,	373	
however,	indicating	a	false	positive.	In	the	wild-type	strain,	SprT3	and	SprR	were	detected,	but	only	374	
in	a	single	replicate	and	at	a	much	lower	level.	Overall,	these	results	suggest	that	under	the	chosen	375	
growth	conditions	the	gene	cluster	was	expressed	at	very	low	amounts	in	wild-type	cells,	and	was	376	
activated	when	the	expression	of	the	likely	pathway-specific	regulatory	gene	was	enhanced.	This	377	
makes	spr	a	likely	cryptic	BGC.	378	

To	see	if	a	RiPP	was	produced,	the	same	cultures	used	for	proteomics	were	separated	into	mycelial	379	
biomass	and	supernatant.	The	biomass	was	extracted	with	methanol,	while	HP20	beads	were	added	380	
to	the	supernatants	to	absorb	secreted	natural	products.	Analysis	of	the	crude	methanol	extracts	and	381	
the	HP20	eluents	with	HPLC-MS	revealed	several	peaks	eluting	between	5.5	and	7	minutes	in	the	382	
methanol	extracts	(fig	3C),	which	were	not	found	in	extracts	from	wild-type	strain	or	the	strain	383	
containing	the	empty	vector.	Feature	detection	with	MZMine	followed	by	statistical	analysis	with	384	
MetaboAnalyst	revealed	seven	unique	peaks,	with	m/z	between	707.3534	and	918.0807	(Figure	S11).	385	
The	isotope	patterns	of	these	peaks	showed	that	the	six	of	the	corresponding	compounds	were	triply	386	
charged.	Careful	analysis	of	derivative	peaks	with	mass	increases	consistent	with	Na-	or	K-addition,	387	
led	to	the	conclusion	that	these	peaks	corresponded	to	the	[M+3H]3+	adduct,	suggesting	a	388	
monoisotopic	masses	in	the	range	of	2,604.273	and	2,754.242	Da	.	The	highest	signal	came	from	the	389	
compound	with	monoisotopic	mass	of	2,703.245.	Four	of	the	other	masses	seemed	to	be	related	to	390	
this	mass,	as	they	were	different	in	increments	of	4,	14,	or	16	Da	(Table	S5).	We	therefore	reasoned	391	
that	the	mass	of	2,703.245	Da	was	the	final	product,	while	others	were	incompletely	processed	392	
peptides.	393	

To	further	verify	that	the	identified	masses	indeed	belonged	to	the	RiPP	precursors	in	our	gene	394	
cluster,	we	first	removed	the	apramycin	resistance	cassette	from	Spr::apra	using	the	pUWLCRE	395	
vector69,	creating	strain	Δspr.	The	expression	construct	pAK1	and	an	empty	pSET152	vector	were	396	
transformed	to	the	strain	Δspr.	When	these	strains	were	grown	under	the	same	conditions,	the	397	
aforementioned	peaks	were	not	detected,	further	suggesting	that	indeed	they	belonged	to	products	398	
of	this	gene	cluster	(Figure	S12).	399	

Most	masses	were	detected	in	only	low	amounts.	In	order	to	resolve	this,	we	created	a	similar	400	
construct	as	pAK1,	but	this	time	using	the	low-copy	shuttle	vector	pHJL401	as	the	vector70.	The	401	
plasmid	pAK2	was	introduced	into	S.	pristinaespiralis	and	the	transformants	grown	in	NMMP	for	7	402	
days.	Extraction	of	the	mycelial	biomass	with	methanol	resulted	in	a	higher	abundance	of	the	masses	403	
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previously	detected	(Figure	S13).	Consistent	with	the	MS	profiles	of	pAK1	transformants,	also	pAK2	404	
transformants	produced	an	abundant	peak	corresponding	to	a	monoisotopic	mass	of	2,703.245	Da,	405	
as	well	as	a	second	peak	corresponding	to	a	monoisotopic	mass	of	2,553.260	Da.	Most	of	the	other	406	
masses	could	be	related	to	one	of	these	two	masses,	suggesting	these	are	the	final	products,	related	407	
to	two	distinct	precursors	(Tables	S5	and	S6).	408	

We	then	performed	MS-MS	analysis	of	the	extracts	of	the	pAK2	transformants	to	identify	the	409	
metabolites	and	their	expected	modifications,	such	as	Avi(Me)Cys	moieties.	The	fragmentation	410	
pattern	of	the	mass	of	2,703.245	Da	could	be	assigned	to	the	sprA3	precursor,	when	several	411	
modifications	were	applied	(Figure	3D,	Table	S7).	Similarly,	fragments	with	a	mass	of	2,553.260	could	412	
be	matched	to	the	SprA2	precursors	considering	the	same	modifications	(Figure	S14;	Table	S8).	413	

Among	the	predicted	modifications	were	N-terminal	methylation,	which	was	supported	by	the	414	
presence	of	the	methyltransferase	sprMe	in	the	gene	cluster.	Secondly,	the	C-terminal	cysteine	was	415	
predicted	to	have	undergone	oxidative	decarboxylation	(-46	Da),	as	expected	based	on	the	presence	416	
of	the	gene	sprF2	in	the	gene	cluster.	In	addition,	many	of	the	serines	and	threonines	could	only	be	417	
matched	when	their	masses	were	altered	by	-16	or	-18	Da.	These	mass	differences	are	typical	of	418	
dehydration	(-18	Da)	of	the	residues	to	dehydroalanine	and	dehydrobutyric	acid.	Reduction	of	these	419	
dehydrated	amino	acids	(+2	Da)	would	then	give	rise	to	alanine	and	butyric	acid	residues,	a	420	
modification	which	has	been	reported	for	lanthipeptides71.		421	

To	test	for	the	presence	of	dehydrated	serines	and	threonines,	we	treated	the	purified	product	with	422	
dithiothreitol	(DTT),	which	covalently	attaches	to	these	residues	via	1,4	nucleophilic	addition72.		423	
Treatment	with	DTT	resulted	in	the	addition	of	up	to	two	adducts,	showing	the	presence	of	424	
dehydrated	residues,	although	one	fewer	than	expected	(Figure	S15).	The	fact	that	two	of	the	425	
dehydrated	residues	are	adjacent	to	one	another	may	have	resulted	in	steric	hindrance,	preventing	426	
full	conversion.	427	

Surprisingly,	no	fragments	were	found	of	the	residues	S-18S-18T-18WC	in	the	center	of	SprA3,	or	for	the	428	
N-terminal	T-18,	+28T-18PVC	region.	Considering	the	other	modifications	typical	of	lanthipeptides,	we	429	
hypothesized	the	presence	of	thioether	crosslinks	between	the	dehydrobutyric	acids	and	cysteines.	430	
To	find	further	support	for	this	hypothesis,	we	treated	the	purified	product	of	SprA3	with	431	
iodoacetamide	(IAA).	Iodoacetamide	alkylates	free	cysteines,	while	cysteines	in	thioether	bridges	432	
remain	unmodified73.	In	agreement	with	our	hypothesis,	treatment	with	iodoacetamide	did	not	433	
affect	the	observed	masses,	despite	the	presence	of	three	cysteines	in	the	peptide	(Figure	S10).	In	434	
addition,	we	hydrolyzed	the	purified	peptide	with	6M	HCl	at	110°C	for	24h.	Under	these	conditions,	435	
the	amide	bond	should	be	hydrolyzed,	while	the	thioether	bond	should	be	unaffected74.	The	436	
resulting	mixture	of	amino	acids	both	contained	masses	corresponding	to	a	cysteine	linked	to	either	437	
a	dehydrated	serine,	or	to	a	twice	methylated,	dehydrated	threonine	(Table	S10).	The	C-terminal	438	
predicted	AviMeCys	was	not	detected,	although	this	may	be	explained	by	the	presence	of	the	alkene	439	
in	the	moiety,	which	are	likely	to	react	under	acidic	conditions.	440	

Many	of	the	other	masses	found	were	higher	when	compared	to	the	product	of	SprA3	by	increments	441	
of	16	Da,	suggesting	that	the	peptide	was	incompletely	processed.	The	fragmentation	patterns	of	442	
these	masses	could	not	be	unambiguously	resolved	(Figure	S16).	An	unmodified	serine	or	threonine	443	
could	occur	at	several	places	within	the	precursor,	and	each	of	the	possible	outcomes	would	likely	444	
give	rise	to	compounds	with	identical	mass	and	very	similar	hydrophobic	properties,	which	would	not	445	
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be	separated	properly.	Overall,	these	results	further	reinforce	the	idea	that	the	compound	with	446	
monoisotopic	mass	of	2,703.245	Da	belongs	to	the	fully	modified	product,	while	the	others	are	447	
derived	from	it.		448	

The	sprH3/sprPT	gene	pair	is	present	in	a	wide	variety	of	RiPP-like	contexts	449	

Taken	together,	we	have	shown	that	the	SprA3	precursor	contained	a	number	of	posttranslational	450	
modifications	that	are	typical	of	lantibiotics.	The	conversion	of	serine/threonine	to	alanine/butyric	451	
acid	via	reduction,	the	creation	of	an	AviCys	moiety	and	the	crosslinks	to	form	thioether	bridges	are	452	
all	found	in	lanthipeptides,	and	are	dependent	on	dehydration	of	serine	and	threonine	residues.	Four	453	
different	sets	of	enzymes,	called	LanBC,	LanM,	LanKC	and	LanKL	can	catalyze	these	reactions	in	the	454	
biosynthesis	of	lanthipeptides	and	are	used	to	designate	the	lanthipeptide	type.	455	

As	stated	before,	no	members	of	any	of	these	enzyme	families	were	found	to	be	encoded	by	the	456	
gene	cluster	studied.	However,	sprH3	and	sprPT	showed	homology	to	two	uncharacterized	genes	of	457	
the	thioviridamide	BGC.	Thioviridamide	contains	an	AviCys	moiety,	the	formation	of	which	requires	a	458	
dehydrated	serine	residue.	The	enzymes	responsible	for	dehydration	and	subsequent	cyclization	459	
have	not	been	identified	yet65,75.	Since	both	gene	clusters	share	a	common	modification	for	which	460	
the	enzyme	is	unknown,	we	hypothesized	that	sprH3	and	sprPT	should	be	responsible	for	461	
dehydration	and	cyclization,	and	thus	are	hallmarks	for	a	new	lanthipeptide	subtype,	which	we	462	
designate	type	V.	463	

Lanthipeptide	core	modifying	enzymes	catalyze	the	most	prominent	reaction	in	lanthipeptide	464	
maturation,	and	as	such,	are	present	in	many	different	genetic	contexts54.	To	validate	that	SprH3	and	465	
SprPT	are	the	sought-after	modifying	enzymes,	we	studied	the	distribution	of	the	SprH3/PT	gene	pair	466	
across	Streptomyces	genomes	analyzed	by	decRiPPter.	Using	CORASON76	with	the	sprPT	gene	as	a	467	
query	yielded	195	homologs	in	various	gene	clusters	(Figure	4).	The	sprPT/sprH3	gene	pair	was	468	
completely	conserved	across	all	gene	clusters	for	which	an	uninterrupted	contig	of	DNA	was	469	
available.	,	strongly	supporting	their	functional	interaction	and	joint	involvement.	Using	the	sprH3	470	
gene	as	a	query	yielded	similar	results	(data	not	shown).	A	total	of	391	orthologs	of	the	gene	pair	471	
were	found	outside	Streptomyces,	particularly	in	Actinobacteria	(219)	and	Firmicutes	(161;	Figure	472	
S17).	Distantly	similar	homologs	of	the	gene	pair	were	also	identified	in	Cyanobacteria,	473	
Plantomycetes	and	Proteobacteria.		474	

Among	the	195	identified	gene	clusters	in	Streptomyces,	the	majority	(131)	overlapped	with	a	gene	475	
cluster	detected	by	decRiPPter,	indicating	that	the	gene	pair	was	within	short	intergenetic	distance	476	
from	predicted	precursor	gene	in	the	same	strand	orientation.	A	large	fraction	(80)	also	passed	the	477	
strictest	filtering	(see	Table	I),	showing	that	among	these	gene	clusters	were	many	encoding	478	
biosynthetic	machinery,	peptidases	and	regulators.	In	contrast,	only	nine	of	the	gene	clusters	479	
overlapped	with	a	BGC	identified	by	antiSMASH.	Four	of	these	showed	the	gene	pair	in	apparent	480	
operative	linkage	with	a	bacteriocin	gene	cluster,	marked	as	such	by	the	presence	of	a	DUF692	481	
domain,	which	is	often	associated	with	small	prepeptides	such	as	methanobactins.	Another	four	gene	482	
clusters	detected	by	decRiPPter	were	only	overlapping	due	to	the	gene	pair	being	on	the	edge	of	a	483	
neighboring	gene	cluster.		484	

The	genetic	context	of	the	gene	pairs	showed	a	wide	variation	(Figure	4,	right	side).	While	some	gene	485	
clusters	were	mostly	homologous	to	the	spr	gene	cluster	(Figure	4,	group	g-h),	others	shared	only	a	486	
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few	genes	(groups	a	and	d),	and	some	only	shared	the	gene	pair	itself	(groups	b,	c	and	e).	Many	other	487	
predicted	enzyme	families	were	found	to	be	encoded	inside	these	gene	clusters,	including	YcaO-like	488	
proteins,	glycosyltransferases,	sulfotransferases	and	aminotransferases.	The	large	variation	in	489	
genetic	contexts	combined	with	the	clear	association	with	a	predicted	precursor	indicates	that	this	490	
gene	pair	likely	plays	a	role	in	many	different	RiPP-associated	genetic	contexts,	supporting	their	491	
proposed	role	as	a	core	gene	pair.		492	

Furthermore,	we	searched	for	genes	encoding	enzymes	whose	functions	are	dependent	on	a	493	
lanthipeptide	dehydration	in	their	substrate,	to	find	if	they	were	associated	with	the	sprPT/sprH3	494	
gene	pair.	Both	within	and	outside	Streptomyces,	homologs	of	sprF1	and	sprF2	were	often	found	495	
associated	with	the	gene	pair	(sprF1:	251/586;	40.1%;	sprF2:	281/586;	48.0%;	Table	S11).	Another	496	
modification	dependent	on	the	presence	of	dehydrated	serine	and	threonine	residues	is	the	497	
conversion	of	these	to	alanine	and	butyric	acid,	respectively,	catalyzed	by	LtnJ	and	CrnJ71.	Outside	498	
Streptomyces,	the	genomic	surroundings	of	the	sprPT/sprH3	gene	pair	occasionally	contained	499	
homologs	of	the	ltnJ	gene	(40/391;	10.1%),	further	implying	that	these	genes	carry	out	the	canonical	500	
dehydration	reactions.		501	

A	similar	modification	was	observed	for	SprA2	and	SprA3,	despite	that	no	homologs	of	the	genes	502	
encoding	LtnJ	or	CrnJ	were	identified	within	the	spr	gene	cluster.	However,	sprOR	encodes	a	putative	503	
oxidoreductase,	and	thus	candidates	for	this	modification.	Supporting	this,	orthologs	of	sprOR	were	504	
found	frequently	associated	with	either	canonical	lanthipeptide	BGCs	or	the	sprPT/sprH3	gene	pair	505	
(lanthipeptide:	124/462;	sprPT/sprH3:	137/462;	Table	S10).	One	of	these	lanthipeptide	BGCs	showed	506	
high	homology	to	the	lacticin	3147	BGCs	from	Lactococcus	lactis.	Lacticin	3147	contains	several	D-507	
alanine	residues	as	a	result	of	conversion	of	dehydrated	serine	residues77.	While	all	the	genes,	508	
including	the	precursors,	were	well	conserved	between	the	two	gene	clusters,	the	ltnJ	gene	had	been	509	
replaced	by	an	sprOR	homolog,	suggesting	that	their	gene	products	catalyze	similar	functions	(Figure	510	
S18).	 	511	
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Conclusion	and	final	perspectives	512	

The	continued	expansion	of	available	genomic	sequence	data	has	allowed	for	discovery	of	large	513	
reservoirs	of	natural	product	BGCs,	fueled	by	sophisticated	genome	mining	methods.	These	methods	514	
must	make	tradeoffs	between	novelty	and	accuracy12.	Tools	primarily	aimed	at	accuracy	reliably	515	
discover	large	numbers	of	known	natural	product	BGCs,	but	are	limited	by	specific	genetical	markers.	516	
On	the	other	hand,	while	tools	aimed	at	novelty	may	discovery	new	natural	products,	these	tools	517	
have	to	sacrifice	on	accuracy,	resulting	in	a	larger	amount	of	false	positives.				518	

Here,	we	take	a	new	approach	to	natural	product	genome	mining,	aimed	specifically	at	the	discovery	519	
of	novel	types	of	RiPPs.	To	this	end,	we	built	decRiPPter,	an	integrative	approach	to	RiPP	genome	520	
mining,	based	on	general	features	of	RiPP	BGCs	rather	than	selective	presence	of	specific	types	of	521	
enzymes	and	domains.	To	increase	the	accuracy	of	our	methods,	we	base	detection	of	the	RiPP	BGCs	522	
on	the	one	thing	all	RiPP	BGCs	have	in	common:	a	gene	encoding	a	precursor	peptide.	With	this	523	
method,	we	identify	42	candidate	novel	RiPP	families,	mined	from	only	1,295	Streptomyces	genomes.	524	
These	families	are	undetected	by	antiSMASH,	and	show	no	clear	markers	identifying	them	as	525	
belonging	to	previously	known	RiPP	BGC	classes.	While	the	approach	to	RiPP	genome	mining	taken	526	
here	inevitably	gives	rise	to	a	higher	number	of	false	positives,	we	feel	that	such	a	‘low-confidence	/	527	
high	novelty’	approach12	is	necessary	for	the	discovery	of	completely	novel	RiPP	families.	528	
Additionally,	users	are	able	to	set	their	own	filters	for	the	identified	gene	clusters,	allowing	them	to	529	
search	candidate	RiPP	families	containing	specific	enzymes	or	enzyme	types	within	a	much	more	530	
confined	search	space	compared	to	manual	genome	browsing.		531	

The	product	of	one	of	the	candidate	classes	was	characterized	as	the	first	member	of	a	new	class	of	532	
lanthipeptides	(termed	‘type	V’)	that	was	not	detected	by	any	other	RiPP	genome	mining	tool.	533	
Variants	of	this	gene	cluster	are	widespread	across	Streptomyces	species,	further	expanding	one	of	534	
the	most	widely	studied	RiPP	families.	In	addition,	two	proposed	core	genes	were	used	to	expand	the	535	
family	by	finding	additional	homologs	in	Actinobacteria	and	Firmicutes.	Taken	together,	this	work	536	
shows	that	known	RiPP	families	only	cover	part	of	the	complete	genomic	landscape,	and	that	many	537	
more	RiPP	families	likely	remain	to	be	discovered,	especially	when	expanding	the	search	space	to	the	538	
broader	bacterial	tree	of	life.	539	

540	
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	541	

	542	

Figure	1.	decRiPPter	pipeline	for	the	detection	of	novel	RiPP	families.		From	a	given	group	of	543	
genomes,	all	genes	smaller	than	100	amino	acids	are	analyzed	by	the	SVM	classifier,	which	finds	544	
candidate	precursors.		The	gene	clusters	formed	around	the	precursors	are	analyzed	for	specific	545	
protein	domains.	In	addition,	all	COG	scores	are	calculated	to	act	as	an	additional	filter,	and	to	aid	in	546	
gene	cluster	detection.	The	remaining	gene	clusters	are	clustered	together	and	with	MIBiG	gene	547	
clusters	to	dereplicate	and	organize	the	results.	In	addition,	overlap	with	antiSMASH	detected	BGCs	548	
is	analyzed	(4).	 	549	
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Figure	2.	decRiPPter	finds	42	candidate	RiPP	families	with	a	large	variety	of	encoded	modifying	552	
enzymes	and	precursors	.	Gene	clusters	found	in	1,295	Streptomyces	genomes	were	passed	through	553	
a	strict	filter	and	grouped	together	(see	main	text).	Arrow	colors	indicate	enzyme	family	of	the	554	
product,	and	the	description	of	gene	products	is	given	below	the	arrows.	Roughly	a	third	of	the	555	
remaining	candidates	overlapped	with	or	were	similar	to	RiPP	BGCs	predicted	by	antiSMASH.	556	
Another	third	of	the	remaining	candidates	were	discarded	as	likely	false	positives	(see	main	text).	Of	557	
the	remaining	42	candidate	RiPP	families,	15	example	gene	clusters	are	displayed.		558	

	 	559	
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	560	

Figure	3.	The	Streptomyces	pristinaespiralis	RiPP	(spr)	gene	cluster	produces	a	highly	modified	561	
RiPP.	A)	The	spr	gene	cluster	encodes	three	putative	precursors,	three	transporters,	a	peptidase	and	562	
an	assortment	of	modifying	enzymes	(see	Table	1).	B)	Protein	abundance	of	the	products	of	the	spr	563	
gene	cluster	in	S.	pristinaespiralis	ATCC	25468	and	derived	strains.	Strains	were	grown	in	NMMP	and	564	
samples	were	taken	after	2	and	7	days.	Enhanced	expression	of	the	regulator	(from	construct	pAK1)	565	
resulted	in	the	partial	activation	of	the	gene	cluster.	Genes	that	could	not	be	detected	are	not	566	
illustrated.	C)	Chromatogram	of	crude	extracts	from	strains	grown	under	the	same	conditions	as	567	
under	A),	samples	after	7	days.	Several	peaks	were	detected	in	the	extract	from	the	strain	with	568	
expression	construct	pAK1	between	7	and	8	minutes.	C)	b	and	y	ions	detected	from	one	of	the	569	
predominant	peaks	found	in	the	crude	extract	(corresponding	to	monoisotopic	mass	of	2703.235	570	
Da).	The	fragmentation	pattern	could	be	matched	to	the	sprA3	precursor.	571	
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	573	

Figure	4.	Orthologs	of	sprPT	and	sprH3	cooccur	in	a	wide	variety	of	genetic	contexts.	(Left	side)	574	
Phylogenetic	tree	of	gene	clusters	containing	homologs	of	sprPT	and	sprH3,	visualized	by	CORASON76.	575	
A	red	dot	indicates	that	the	genes	were	present	in	a	gene	cluster	found	by	decRiPPter,	a	yellow	dot	576	
that	it	passed	the	strict	filter	(see	Table	1	for	details).	A	blue	dot	indicates	overlap	with	a	BGC	577	
identified	by	antiSMASH.	(Right	side)	Several	gene	clusters	with	varying	genetic	contexts	are	578	
displayed.	Group	(g)	represents	the	query	gene	cluster.	The	genetic	context	varies,	while	the	gene	579	
pair	itself	is	conserved.	Color	indicates	predicted	enzymatic	activity	of	the	gene	products	as	described	580	
in	the	legend.			581	

	582	
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Table	1.	Increasing	the	strictness	of	the	filter	used	on	the	found	gene	clusters	results	in	a	higher	584	
saturation	of	RiPP	BGCs.	585	

Filter	 Filter	details	
	

Number	of	
detected	
gene	
clusters	

Number	of	
detected	gene	
clusters	
overlapping	with	
antiSMASH	RiPP	
BGCs	

Percentage	of	
detected	gene	
clusters	
overlapping	with	
RiPP	BGCs	

None	 -	 718268	 5908	 0.8%	
Mild	 Gene	cluster	COG	score:	<=	0.25	

In	the	gene	cluster:	
• >=	3	genes	
• >=	2	biosynthetic	genes	

In	or	around	the	gene	cluster:	
• >=	1	transporter	

21419	 1678	 7.8%	

Strict	 Gene	cluster	COG	score:	<=	0.10	
In	the	gene	cluster:	

• >=	3	genes	
• >=	2	biosynthetic	genes	

In	or	around	the	gene	cluster:	
• >=	1	transporter	
• >=	1	regulator	
• >=	1	peptidase	

2471	 357	 14.4%	
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Table	2.	Annotation	of	the	Streptomyces	pristinaespiralis	RiPP	(spr)	gene	cluster.	587	

Gene 
name 

Accession NCBI Annotation Protein domains 
found 

Proposed function 

sprR ALC22061.1 LuxR family 
transcriptional regulator 

 Cluster-specific 
regulator 

sprH1 ALC22062.1 hypothetical protein  Unknown 
sprH2 ALC22063.1 hypothetical protein  Unknown 
sprP ALC22064.1 Peptidase M16 domain-

containing protein 
PF00675  
Insulinase  
PF05193  
Peptidase M16 
inactive domain 

RiPP maturation 
protease 

sprPT1 ALC22065.1 Flavoprotein PF01636 
Phosphotransferase 

Cysteine 
decarboxylation 

sprF ALC22066.1 Flavoprotein PF02441 
Flavoprotein 

Cysteine 
decarboxylation 

sprOR ALC22067.1 5,10-methylene 
tetrahydromethanopterin 
reductase 

PF00291 
Luciferase-like 
monooxygenase 

Reduction of 
dehydroalanine and 
dehydrobutyric acid  

sprT1 ALC22068.1 ABC transporter ATP-
binding protein 

PF00005  
ABC transporter 
PF00664 
ABC transporter 
transmembrane 
region 

Transport 

sprT2 ALC22069.1 ABC transporter PF12698  
ABC-2 family 
transporter protein 

Transport 

sprT3 ALC22070.1 ABC transporter ATP-
binding protein 

PF00005  
ABC transporter 
PF13732  
Domain of unknown 
function (DUF4162) 

Transport 

sprMe ALC22071.1 carminomycin 4-O-
methyltransferase 

PF00891  
O-
methyltransferase 
domain 

N-terminal methylation 

sprA1 ALC22072.1 hypothetical protein  RiPP precursor 
sprA2 ALC22073.1 hypothetical protein  RiPP precursor 
sprA3 ALC22074.1 hypothetical protein  RiPP precursor 
sprH3 ALC22075.1 hypothetical protein PF17914  

HopA1 effector 
protein family 

Dehydration/cyclization 

sprPT2 ALC22076.1 hypothetical protein PF01636 
Phosphotransferase 

Dehydration/cyclization 

sprX ALC22077.1 hypothetical protein  Unknown 
	588	

	589	

	590	
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Table	3.	Co-occurrence	of	genes	found	in	the	spr	gene	cluster	with	homologs	of	sprPT	in	the	591	
analyzed	1,295	Streptomyces	strains.		592	

Gene	name	 Co-occurrence	with	sprPT	
(percentage)	

sprH3	 99.49	
sprMe	 20	
sprT1	 35.38	
sprT2	 12.31	
sprT3	 12.82	
sprOR	 64.62	
sprF1	 39.5	
sprF2	 68.72	
sprP	 38.5	
sprH1	 9.0	
sprH2	 2.0	
sprR	 28.5	
sprA1	 1.03	
sprA2	 1.03	
sprA3	 16.92	
	 	593	
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