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Abstract 39 

Activity-dependent local protein synthesis is critical for synapse-specific, persistent 40 

plasticity. Abnormalities in local protein synthesis have been implicated in psychiatric 41 

disorders. We have recently identified the translin/trax microRNA-degrading enzyme as 42 

a novel mediator of protein synthesis at activated synapses. Additionally, mice lacking 43 

translin/trax exhibit some of the behavioral abnormalities found in a mouse model of 44 

fragile X syndrome. Therefore, identifying signaling pathways interacting with 45 

translin/trax to support persistent synaptic plasticity is a translationally relevant goal. 46 

Here, as a first step to achieve this goal, we have assessed the requirement of 47 

translin/trax for multiple hippocampal synaptic plasticity paradigms that rely on distinct 48 

molecular mechanisms. We found that mice lacking translin/trax exhibited selective 49 

impairment in a form of persistent hippocampal plasticity, which requires postsynaptic 50 

PKA activity. In contrast, enduring forms of plasticity that are dependent on presynaptic 51 

PKA were unaffected. Furthermore, these mice did not display 52 

exaggerated metabotropic glutamate receptor-mediated long-term synaptic depression, 53 

a hallmark of the mouse model of fragile X syndrome. Taken together, these findings 54 

demonstrate that translin/trax mediates long-term synaptic plasticity that is dependent 55 

on postsynaptic PKA signaling. 56 

   57 

Key words: Translin, trax, long-term potentiation, long-term depression, local protein 58 

synthesis, hippocampal synaptic plasticity, FMRP, RNA-binding protein, microRNA 59 

 60 
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Introduction 64 

Extensive evidence suggests that localization of key mRNAs in the vicinity of synapses 65 

and activity-mediated regulation of their translation contributes to persistent forms of 66 

synaptic plasticity related to long-term memory (1-4). This synapse-specific, activity-67 

dependent mechanism requires precisely regulated molecular signaling in presynaptic 68 

or postsynaptic compartments (2, 3, 5). Several RNA-binding proteins (RBPs) take part 69 

in the trafficking and translational regulation of specific mRNAs and thus allowing 70 

diversity in the mechanisms engaged by different forms of plasticity (6-8). The RNA-71 

binding protein translin is an evolutionarily conserved brain-enriched protein, which 72 

regulates RNA trafficking and translational control (9-12). Together with its partner 73 

protein, translin-associated factor X (trax), these proteins form a microRNA-degrading 74 

enzyme that can trigger protein synthesis by reversing microRNA-mediated silencing 75 

(13-15). We have previously shown that the translin/trax RNase complex mediates 76 

activity-dependent local synaptic protein synthesis required for input-specific 77 

heterosynaptic plasticity (synaptic tagging and capture) and memory formation (15). 78 

However, the mechanisms that regulate translin/trax activity within synaptic 79 

compartments have not been investigated. 80 

Our previous findings suggest that translin/trax may interact with the cAMP-PKA 81 

signaling pathway. Specifically, the microRNA targets of translin/trax are predicted to 82 

regulate the expression of PKA-anchoring proteins, cAMP-degrading 83 

phosphodiesterases (PDEs), cAMP-producing Gs-coupled β2-adrenergic receptors and 84 

adenylyl cyclases (15). In fact, the cAMP-PKA signaling pathway is highly localized 85 

within presynaptic or postsynaptic compartments by PKA-anchoring proteins and 86 
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mediates protein synthesis required for persistent synaptic plasticity and memory 87 

formation (16-20). Therefore, investigating whether translin/trax interacts with PKA 88 

signaling within presynaptic or postsynaptic compartments can provide clues to 89 

understanding molecular mechanisms linking translin/trax to synaptic plasticity and 90 

memory formation.  91 

In the present study, we determined the role of translin/trax in distinct forms of synaptic 92 

plasticity, which require presynaptic or postsynaptic PKA signaling. As trax protein is 93 

unstable in the absence of translin, in the current study we used translin KO mice, which 94 

lack both translin and trax proteins (15, 21).  95 

 96 

Materials and Methods 97 

All experiments were performed according to the National Institutes of Health guidelines 98 

and were fully approved by the Institutional Animal Care and Use Committee at the 99 

University of Pennsylvania. 100 

Translin knockout (KO) mice  101 

The generation and maintenance of translin KO mice (MGI:2677496) were described 102 

previously (21, 22). Mice were backcrossed to C57BL/6J for more than 15 generations. 103 

Heterozygous male and heterozygous female mice were mated to produce homozygous 104 

translin KO mice and wildtype littermates. Mice were maintained on a 12h light/12h dark 105 

cycle with lights on at 8 am (ZT0). Food and water were available ad libitum. All 106 

experiments were performed during the light cycle using translin KO mice and wildtype 107 
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littermates as controls. 2- to 5-month-old mice were used for all experiments except for 108 

the LTD experiments in which 4- to 6-week-old mice were used.  109 

 110 

Drugs 111 

Forskolin (FSK, Molecular grade, Sigma), an adenylyl cyclase activator, was freshly 112 

prepared as a 50 mM solution in 100% ethanol and delivered at 50 μM final 113 

concentration in artificial cerebrospinal fluid (aCSF) as described before {Park, 2014 114 

#22}. (RS)-3,5-Dihydroxyphenylglycine (DHPG, Tocris), a potent agonist of group I 115 

metabotropic glutamate receptors (mGluRs), was freshly prepared as a 10 mM solution 116 

in milliQ water and delivered at 100 μM final concentration in aCSF as previously 117 

described (23). 118 

 119 

Electrophysiology 120 

Experiments were performed as described (15). Briefly, both male and female 2-5-121 

month-old mice were sacrificed by cervical dislocation and hippocampi were quickly 122 

collected in chilled, oxygenated aCSF (124 mM NaCl, 4.4 mM KCl, 1.3 mM 123 

MgSO4⋅7H2O, 1 mM NaH2PO4⋅H2O, 26.2 mM NaHCO3, 2.5 mM CaCl2⋅2H2O and 10 mM 124 

D-glucose) bubbled with 95% O2 / 5% CO2. 400 μm-thick transverse hippocampal slices 125 

were prepared using a manual slicer (Stoelting) and placed in an interface recording 126 

chamber at 28ºC (Fine Science Tools, Foster City, CA). The slices were constantly 127 

perfused with aCSF at 1 ml/min (or 2.5 ml/min for the mGluR-LTD experiment). Slices 128 

were equilibrated for at least 2 hours in aCSF. The stimulus intensity was set to elicit 129 

~40% of the maximum field-EPSP amplitude determined by an input-output curve in 130 
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each experiment. The first 20-min baseline values were averaged, and the average was 131 

used to normalize each initial fEPSP slope. The input–output relationship and paired-132 

pulse facilitation (PPF) were measured as previously described {Park, 2017 #46}. To 133 

electrically induce long-term potentiation (LTP), spaced 4-train (four 1 s 100 Hz trains 134 

delivered 5 minutes apart), massed 4-train (four 1 s 100 Hz trains delivered 5 seconds 135 

apart), theta-burst stimulation (TBS, 15 bursts of four 100 Hz pulses delivered for a total 136 

of 3 s at 5 Hz), and one-train (one 1 s 100 Hz train) stimulation were delivered after 20 137 

min baseline recordings. To chemically induce LTP, 50 μM of FSK in aCSF was bath 138 

applied to the slices for 15 minutes following 20-min baseline recordings. To chemically 139 

induce LTD, 100 μM of DHPG in aCSF was bath applied to the slices for 10 minutes 140 

following 20-min baseline recordings.  141 

 142 

Western blotting 143 

Hippocampal tissue homogenization, protein separation and transfer to polyvinylidene 144 

difluoride (PVDF) membranes were performed as previously described (24). 145 

Membranes were blocked in 5% BSA or 5% non-fat milk in TBST and incubated with 146 

primary antibodies (translin,1:100,000; FMRP, 1:10,000, Millipore) overnight at 4°C. 147 

They were washed and incubated with appropriate horseradish peroxidase-conjugated 148 

goat anti-mouse or anti-rabbit IgG (1:10,000, Santa Cruz) for 1 h in room temperature. 149 

Blots were exposed on a film by ECL and quantified using ImageJ. The density of signal 150 

was normalized to beta-tubulin levels (1:50,000, Sigma). Translin antibody was 151 

produced (New England Peptide, Inc.) based on the sequences provided previously 152 
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(25). The antibody synthesis was based on the C-terminal sequence of the human 153 

translin (CKYDLSIRGFNKETA). 154 

 155 

Data Analysis 156 

Data analyses were performed using Statistica 10. The maintenance of LTP or LTD was 157 

analyzed using a two-way repeated-measures ANOVA test on the last 20-min of the 158 

recordings {Park, 2014 #22;Park, 2017 #46}. The average of the normalized slopes over 159 

the last 20-min was compared between two groups using unpaired t-test. Western 160 

blotting data was analyzed using unpaired t-test. The ‘n’ used in all the experiments 161 

represents the number of mice. Differences were considered statistically significant 162 

when p < 0.05. Data are plotted as mean ± S.E.M. 163 

 164 

Results 165 

Translin KO mice show deficits in a specific form of PKA-dependent long-lasting 166 

LTP  167 

In our previous study, we found that translin knockout mice display normal basal 168 

synaptic transmission measured by paired-pulse facilitation and input-output curves. 169 

These mice also exhibit unaltered transient potentiation, induced by a single 100 Hz 170 

stimulation, that requires neither PKA activity nor protein synthesis (15). In the present 171 

study, we first tested long-lasting forms of LTP induced by spaced 4-train (four 100 Hz 172 

trains of 1 s each, delivered 5 minutes apart) or massed 4-train (four 100 Hz trains of 1 173 

s each, delivered 5 s apart) stimulation. The latter does not depend on PKA activation, 174 

whereas the former requires postsynaptic PKA activity (26-30). Hippocampal slices from 175 
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translin KO mice showed marked impairment in spaced 4-train LTP (Fig. 1B; n = 5 for 176 

each group, two-way repeated-measures ANOVA, F(1,8) = 34.43, p = 0.00038). The 177 

average of the initial fEPSP slope over the last 20 min of the recordings was reduced in 178 

slices from translin KO mice compared to slices from wildtype littermates (wildtype 179 

littermates: 176.6 ± 13.5%, n = 5; translin KO mice: 89.5 ± 9.6%, n = 5, t-test, p = 180 

0.00037). On the other hand, massed 4-train LTP was unaltered in slices from translin 181 

KO mice as shown in Fig. 1C (n = 5 for translin KO mice, n = 5 for wildtype littermates, 182 

two-way repeated-measures ANOVA, F(1,8) = 0.923, p = 0.365). The average of the 183 

initial fEPSP slope over the last 20 min of the recordings was similar between slices 184 

from translin KO mice and wildtype littermates (wildtype littermates: 143.6 ± 8.2%, n = 5; 185 

translin KO mice: 154.6 ± 9.9%, n = 5, t-test, p = 0.364).  186 

 187 

Next, we examined two other long-lasting forms of LTP induced by either theta-burst 188 

stimulation (TBS; 15 bursts of four 100 Hz pulses delivered at 5 Hz) or bath application 189 

of the adenylyl cyclase activator forskolin (FSK). These forms of LTP rely on increased 190 

transmitter release and require presynaptically compartmentalized PKA signaling (19, 191 

28, 31-33). TBS-LTP was unaffected in slices from translin KO mice (Fig. 2A; n = 5 for 192 

each group, two-way repeated-measures ANOVA, F(1,8) = 0.007, p = 0.94). The average 193 

of the initial fEPSP slope over the last 20 min of the recordings was similar between 194 

slices from translin KO mice and wildtype littermates (wildtype littermates: 150.03 ± 195 

7.8%, n = 5; translin KO mice: 151.2 ± 13.4%, n = 5, t-test, p = 0.936). Furthermore, 196 

slices from translin KO mice showed no impairment in the FSK-LTP compared to the 197 

WT mice (Fig. 2B; n = 5 for translin KO mice, n = 6 for wildtype littermates, two-way 198 
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repeated-measures ANOVA, F(1,9) = 0.07, p = 0.79). The average of the initial fEPSP 199 

slope over the last 20 min of the recordings was comparable between slices from 200 

translin KO mice and wildtype littermates (wildtype littermates: 180 ± 14.3%, n = 6; 201 

translin KO mice: 180.4 ± 11.8%, n = 5, t-test, p = 0.982).  202 

 203 

Taken together, these data suggest that translin is selectively involved in mediating the 204 

long-lasting form of LTP induced by spaced tetanic stimuli, but not in LTP induced by 205 

massed stimuli, TBS or forskolin. 206 

 207 

Translin KO mice exhibit unaltered mGluR-LTD and protein levels of hippocampal 208 

FMRP 209 

One of the most well-studied RBPs is fragile X mental retardation protein (FMRP). 210 

Exaggerated metabotropic glutamate receptor-mediated LTD (mGluR-LTD) is a well 211 

characterized phenotype of FMRP KO mice and has been proposed as an underlying 212 

mechanism of fragile X syndrome (34-36). Because both translin/trax and FMRP 213 

mediate local protein synthesis (15, 36), we tested mGluR-LTD in hippocampal slices 214 

from translin KO mice. In contrast to the findings from FMRP KO mice, mGluR-LTD was 215 

unaffected in slices from translin KO mice (Fig. 3A; n = 5 for each group, two-way 216 

repeated measures ANOVA, F(1,8) = 0.08, p = 0.79). The average of the initial fEPSP 217 

slope over the last 20 min of the recordings was comparable between slices from 218 

translin KO mice and wildtype littermates (wildtype littermates: 75.9 ± 3.2%, n = 5; 219 

translin KO mice: 78.9 ± 3.1%, n = 5, t-test, p = 0.473). We reasoned that if translin and 220 

FMRP are functionally independent, loss of translin/trax should not cause a 221 
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compensatory increase in FMRP protein levels. Indeed, Western blot analyses showed 222 

no changes in the protein levels of hippocampal FMRP in translin KO mice relative to 223 

wildtype littermates (Fig. 3B; translin KO mice: 102.5 ± 0.4%, n = 6; wildtype littermates: 224 

100 ± 4.3%, n = 6, t-test, p = 0.36). Our data indicate that translin/trax and FMRP play 225 

distinct roles in hippocampal synaptic plasticity. 226 

 227 

Discussion 228 

The translin/trax complex is implicated in neuropsychiatric disorders (37). However, the 229 

role of translin/trax in synaptic plasticity is largely unknown. In a previous report  (15), 230 

we provided the first evidence that translin/trax mediates activity-dependent synaptic 231 

translation that is critical for synaptic tagging and capture, a form of heterosynaptic 232 

associative plasticity (38, 39), and long-term memory. The present study further 233 

determined that translin/trax is selectively required for spaced tetani-induced LTP, a 234 

long-lasting form of hippocampal synaptic plasticity that is mediated by postsynaptic 235 

PKA activity.  236 

 237 

We found that translin/trax is required for spaced 4-train-LTP that relies on postsynaptic 238 

PKA activity (28) but dispensable for TBS- and FSK-LTP that rely on presynaptic PKA 239 

activity (19, 28). These findings highlight the role of translin/trax in postsynaptic PKA 240 

signaling-dependent persistent synaptic plasticity. Notably, synaptic tagging and capture 241 

is impaired in the absence of translin/trax (15) but is intact when postsynaptically 242 

compartmentalized PKA signaling is disrupted (19). However, these studies used 243 

massed 4-train-LTP, which does not rely on PKA signaling, to induce synaptic tagging 244 
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and capture. Considering this experimental caveat, multi-disciplinary approaches to 245 

manipulate localized translin/trax-PKA signaling with high spatiotemporal specification 246 

will further dissect the role of translin/trax in postsynaptic PKA signaling-mediated 247 

persistent synaptic plasticity.  248 

 249 

We found that mice lacking translin/trax display electrophysiological phenotypes that are 250 

distinct from those observed in mice lacking FMRP, regardless of sharing some 251 

common behavioral abnormalities (22). Translin KO mice show deficits in spaced 4-train 252 

LTP (Fig.1B) and high-frequency stimulation-induced synaptic tagging and capture (15), 253 

but FMRP KO mice do not exhibit these impairments (36, 40). Exaggerated mGluR-LTD 254 

is the prominent phenotype of FMRP KO mice (35), but it was not observed in translin 255 

KO mice (Fig. 3A). Thus, our study demonstrates a selective role for translin/trax in 256 

synaptic plasticity and provides a foundation for future studies defining signaling 257 

pathways that enable synaptic stimulation to trigger the activation of this microRNA-258 

degrading enzyme.  259 

 260 

Based on our published and current findings, we propose a working model in which 261 

translin/trax mediates persistent synaptic plasticity (Fig.4). During basal synaptic 262 

transmission (Fig.4A), the translin/trax microRNA-degrading enzyme is localized within 263 

the processing bodies (P-bodies) with its RNase inactive. This is supported by our 264 

previous data showing colocalization of trax with the P-body marker GW182 in 265 

hippocampal primary neuron dendrites (15). Given that P-bodies also contain mRNAs 266 

translationally repressed by the microRNA-mediated silencing complex (miRISC) (41-267 
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43), the translin/trax complex is well-positioned to degrade microRNAs. Based on our 268 

preliminary data (not shown) suggesting the interaction of translin and a PKA-anchoring 269 

protein in hippocampal tissue, it is possible that PKA-anchoring proteins might tether 270 

translin/trax complex and PKA within P-bodies in postsynaptic compartments. Following 271 

persistent plasticity-inducing stimuli or learning (Fig.4B), P-bodies are translocated to 272 

dendritic spines (44), and localized pools of PKA and the translin/trax complex are 273 

activated. Active translin/trax RNase then degrades microRNAs, relieving transcripts 274 

from translational repression. This allows the production of key plasticity-related 275 

proteins required for persistent plasticity. We have previously identified activin receptor 276 

type IC (ACVR1C) as one such plasticity-related protein (15). Whether PKA directly 277 

activates the translin/trax complex or acts through other targets warrants further 278 

investigation.  279 

 280 

Taken together, these findings expand our understanding of the role of translin/trax in 281 

persistent synaptic plasticity. Future investigations are needed to directly validate the 282 

proposed model. First, the compartment-specific function of translin/trax needs to be 283 

further validated using hippocampal subregion-specific deletion of translin/trax using 284 

Cre-dependent viral strategies. Second, experiments are also needed to validate the 285 

dynamics of translin/trax localization in P-bodies following plasticity-inducing stimuli. 286 

Tagging a fluorescent reporter to translin or trax would enable tracking the localization 287 

of translin/trax but achieving this without affecting molecular interactions and RNase 288 

activity is challenging. Lastly, molecular assays to determine mechanisms by which 289 

translin/trax interacts with localized PKA signaling will be required. Given the role of 290 
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translin/trax in synaptic memory mechanisms, our findings pave the way for future 291 

research aimed at elucidating the pathophysiology of neuropsychiatric disorders. 292 

 293 

List of abbreviations: 294 

aCSF – artificial cerebrospinal fluid 295 

AC – adenylyl cyclase 296 

ACVR1C - activin receptor type 1-C 297 

AMPAR - α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 298 

CaM - calmodulin 299 

cAMP - cyclic adenosine monophosphate 300 

DHPG - (RS)-3,5-Dihydroxyphenylglycine 301 

fEPSP – field excitatory postsynaptic potential 302 

FMRP - fragile X mental retardation protein 303 

FSK – forskolin 304 

GPCR – G-protein coupled receptor 305 

LTP – long-term potentiation 306 

LTD – long-term depression 307 

mGluR – metabotropic glutamate receptor 308 

miRISC – microRNA-induced silencing complex 309 

NMDAR – N-methyl D-aspartate receptor 310 

PDE - phosphodiesterase 311 

PKA – protein kinase A 312 

RBP – RNA-binding protein 313 
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RNase - ribonuclease 314 

TBS – theta-burst stimulation 315 

TN/TX – translin/trax 316 

Trax – translin-associated protein-X 317 

 318 
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 341 

 342 

 343 

 344 

Figure legends: 345 

 346 

Figure 1. Translin KO mice exhibit deficits in a postsynaptic PKA-dependent form 347 

of long-lasting LTP. 348 

A. A schematic representation of a hippocampal slice showing the placement of 349 

electrodes for field-EPSP recordings in the CA1 stratum radiatum upon stimulation of 350 

Schaffer collaterals. B. Hippocampal slices from translin KO mice (n=5; 3 males, 2 351 

females) showed impaired long-lasting LTP induced by spaced 4-train stimulation (four 352 

1s 100 Hz stimuli delivered 5 minutes apart) compared to slices from wildtype 353 

littermates (n=5; 1 male, 4 females) (two-way repeated-measures ANOVA, F(1,8) = 354 

34.43, p = 0.00038). C. Massed 4-train stimulation (four 1 s 100 Hz trains delivered 5 355 

seconds apart) elicited long-lasting LTP that was not significantly different between 356 

slices from translin KO mice (n=5; 2 males, 3 females)  and wildtype littermates (n=5; 1 357 

male, 4 females)  (two-way repeated-measures ANOVA, F(1,8) = 0.923, p = 0.365). 358 

Representative traces before (black) and after (red) stimulation are shown on top of 359 
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each graph. Scale bars for traces 2 mV, 2 ms. ‘n’ refers to the number of mice used. 360 

Error bars reflect S.E.M.  361 

 362 

Figure 2. Translin KO mice show no alterations in predominantly presynaptic 363 

forms of long-lasting LTP. 364 

A. Theta-burst stimulation (15 bursts of four 100 Hz pulses delivered at 5 Hz for a total 365 

of 3 s) induced similar levels of long-lasting LTP in slices from translin KO mice (n=5; 1 366 

male, 4 females) or wildtype littermates (n=5; 2 males, 3 females) (two-way repeated 367 

measures ANOVA, F(1,8) = 0.007, p = 0.94). B. Slices from translin KO mice (n=5; all 368 

females) and wildtype littermates (n=6; 1 male, 5 females) displayed similar levels of 369 

forskolin (FSK)-induced long-lasting potentiation (two-way repeated-measures ANOVA, 370 

F(1,9) = 0.07, p = 0.79). Representative traces before (black) and after (red) stimulation 371 

are shown on top of each graph. Scale bars for traces 2 mV, 2 ms. ‘n’ refers to the 372 

number of mice used. Error bars reflect S.E.M.  373 

 374 

Figure 3. Translin KO mice show unaltered mGluR-LTD and unchanged 375 

hippocampal protein levels of FMRP. 376 

A. Hippocampal slices from translin KO mice (n=5; males) and wildtype littermates (n=5; 377 

all males) displayed similar mGluR-LTD induced by bath application of 100 mM of 378 

DHPG for 10 minutes (two-way repeated measures ANOVA, F(1,8) = 0.08, p = 0.79). 379 

Representative traces before (black) and after (red) stimulation are shown on top of the 380 

graph. Scale bars for traces 2 mV, 5 ms. B. Hippocampal extracts from translin KO mice 381 

(n=6) and wildtype littermates (n=6) had similar protein levels of FMRP (t-test, p = 0.36). 382 
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Beta-tubulin was used as the loading control and the expression level was normalized 383 

to the level of wildtype littermates. Representative blots are shown on top of the graph. 384 

‘n’ refers to the number of mice used. Error bars reflect S.E.M.  385 

 386 

Figure 4. A working model for the role of translin/trax RNase complex in 387 

hippocampal synaptic plasticity 388 

(A) During basal synaptic transmission, the inactive translin/trax (TN/TX) RNase 389 

complex localizes to the discrete ribonucleoprotein foci called Processing body (P-body) 390 

in the postsynaptic dendrites. P-bodies also contain the microRNA-induced silencing 391 

complex (miRISC) formed by the microRNAs and other associated protein factors that 392 

bind to the mRNA transcripts and repress their translation. (B) Synaptic activity that 393 

induces persistent plasticity leads to NMDAR-mediated Ca2+ entry and GPCR activation 394 

by modulatory neurotransmitters (e.g. norepinephrine and dopamine). This results in 395 

adenylyl cyclase activation, rise in cAMP levels and PKA activation in the postsynaptic 396 

compartment. Synaptic activity also leads to dynamic changes in P-bodies causing 397 

them to localize in the vicinity of active dendritic spines. Active PKA subsequently 398 

results in activation of the translin/trax RNase in the P-bodies, either directly or through 399 

other targets. Once active, the translin/trax RNase degrades microRNAs bound to the 400 

mRNA transcripts, thus reversing the translational silencing. The released mRNAs are 401 

then translated by the polyribosomes leading to the synthesis of key plasticity-related 402 

proteins required for long-lasting LTP. 403 

 404 
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