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Genomic deletions provide a powerful loss-of-function model in non-
coding regions to assess the role of purifying selection on human
noncoding genetic variation. Regulatory element function is char-
acterized by non-uniform tissue/cell-type activity, necessarily linking
the study of fitness consequences from regulatory variants to their
corresponding cellular activity. We used deletions from the 1000
Genomes Project (1000GP) and a callset we generated from genomes
of participants in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) in order to examine whether purifying selection preserves
noncoding sites of chromatin accessibility (DHS), histone modifica-
tion (enhancer, transcribed, polycomb-repressed, heterochromatin),
and topologically associated domain loops (TAD-loops). To exam-
ine this in a cellular activity-aware manner, we developed a sta-
tistical method, Pleiotropy Ratio Score (PlyRS), which calculates a
correlation-adjusted count of "cellular pleiotropy" for each noncod-
ing base-pair by analyzing shared regulatory annotations across
tissues/cell-types. Comparing real deletion PlyRS values to simu-
lations in a length-matched framework and using genomic covari-
ates in analyses, we found that purifying selection acts to preserve
both DHS and enhancer sites, as evident by both depletion of dele-
tions overlapping these annotations and a shift in the allele fre-
quency spectrum of overlapping deletions towards rare alleles. How-
ever, we did not find evidence of purifying selection for transcribed,
polycomb-repressed, or heterochromatin sites. Additionally, we
found evidence that purifying selection is acting on TAD-loop bound-
ary integrity by preserving co-localized CTCF binding sites. Notably,
at regions of DHS, enhancer, and CTCF within TAD-loop boundaries
we found evidence that both sites of tissue/cell-type-specific activity
and sites of cellularly pleiotropic activity are preserved by selection.
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Large-scale sequencing studies have provided tremendous1

insight into biological function and human disease, with2

statistical signatures of natural selection serving as a primary3

identifying feature. The classic example is the analysis of4

selective constraints on protein coding genes evident from the5

depletion of missense or nonsense genetic variants. These ad-6

vances, however, are not directly translatable to the analysis7

of noncoding DNA, which has increasingly become a focus8

of human genetics research. Functional genomic studies have9

revealed numerous regions of regulatory activity marked by10

chromatin accessibility and histone modification (1, 2). Associ-11

ation signals for common human phenotypes are dramatically 12

enriched in these regulatory regions of the genome (3), show- 13

casing the importance of specialized cellular function. In 14

contrast to protein-coding sequences, the function of regula- 15

tory sequences is not determined by triplet codon structure 16

thereby providing no obvious analog to protein-truncating 17

single nucleotide variants (SNVs) to identify loss of function. 18

This ambiguity of the mutational consequences of individual 19

nucleotides within regulatory sequences complicates the ability 20

to study their function through the lens of purifying natural 21

selection. Previous work focusing on SNVs within noncoding 22

regions developed sophisticated genetic models that relied on 23

functional proxies such as transcription factor binding sites, 24

nucleotide conservation across species, or machine learning (4– 25

11). However, it is difficult to clearly interpret these findings 26

in terms of selection against the loss of regulation. In contrast 27

to SNVs, deletions are a class of variation that provide a direct 28

loss of normal regulatory function at a locus by physically 29

removing the sequence of a regulatory element in at least 30
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a heterozygous manner. This logic underlies experimental31

studies of regulatory function using CRISPR/Cas9 systems32

(12, 13). Yet, natural population genetic variation provides33

a more systematic and genome-wide view of the action of34

selection on deletions. Work done by sequencing consortia35

has demonstrated reduction of deletion variation in various36

categories of regulatory sequences (14–16).37

The hallmark feature of human regulatory elements is their38

non-uniform activity across tissues and cell types. Here, we39

offer a population genetic analysis of natural deletions in light40

of variable regulatory activity across tissues. Deletions that41

remove sites of genomic regulation with pleiotropic cellular42

effects (what we term "cellular pleiotropy", i.e. the same regula-43

tory element locus is active in more than one tissue or cell-type)44

might be expected to be, on average, more deleterious (i.e.45

fitness-reducing) than deletions that remove cell-type-specific46

sites, since any changes at the DNA level to these regulators47

potentially affects multiple tissues/cell-types simultaneously.48

Another possibility is that since tissue/cell-type-specific reg-49

ulation is what enables widespread cellular diversity, these50

regulatory elements must be under strong selective constraint51

to preserve their specialized biological function. These two52

potential modes of selection preserving regulation of cellular53

activity are not mutually exclusive, as selection may be oper-54

ating to remove overlapping deletions to preserve the utility55

of both types of regulators. Prior work has provided sug-56

gestive evidence that tissue activity count is a contributor57

to selective constraint in regulatory sequences (10, 16, 17).58

Studying purifying selection on noncoding deletions is thus59

inherently tied to the cellular activity of corresponding deleted60

regulatory sequences. To address this, we have developed a61

statistical method, Pleiotropy Ratio Score (PlyRS), to quantify62

the amount of tissue/cell-type activity (i.e. cellular pleiotropy)63

for individual nucleotides in light of the hierarchical devel-64

opmental structure of human tissues and cell types, while65

controlling for their correlation rather than using a simple66

tissue/cell-type count. We then analyzed separately several67

diverse epigenomic features (open chromatin, histone modi-68

fications, and topologically associated domain loops) taking69

into account non-independence of these individual annotations70

across tissues and cell types using our PlyRS values. In this71

way, we assessed the effect of purifying selection on millions72

of nucleotide positions in the human genome by examining73

patterns of PlyRS values within naturally occurring deletion74

sequences.75

Reduction of genetic variation and a shift in the allele fre-76

quency spectrum (AFS) towards rare variants are two key77

signatures of purifying selection. If selection is operating on78

the removal of deleterious deletions overlapping regulatory79

regions, we would expect to see both a reduction in deletion80

variation overlapping the important regulatory features and a81

shift in the AFS of remaining overlapping deletions towards82

rarer frequencies, relative to neutral expectations. These83

conditions on segregating deletions should be simultaneously84

present to conclude that purifying natural selection is acting85

to preserve a particular regulatory epigenomic feature(s), as86

either reduced deletion counts or a shift in the deletion AFS87

alone may indicate deletion calling artifacts or confounding88

genomic covariates. Both of these signatures are prone to89

various biological and technical confounders, particularly for90

structural variation. For example, the accuracy of deletion91

calls is influenced by their length and allele frequency (AF) 92

(18). Longer deletions have more prevalent missing coverage 93

and common deletions are observed more often in the popula- 94

tion, so these types of deletions are more likely to be correctly 95

identified using current methods based on analyzing short-read 96

sequencing data. Variant calling accuracy also depends on 97

the mappability of the sequence (19). Another known issue is 98

the observed negative correlation of deletion length and AF 99

(14, 20). This could be due to underlying biology, deletion 100

caller algorithm biases, or both. In addition to technical con- 101

founders, biological factors unrelated to the direct pressure of 102

selection may affect the degree of variation (i.e. the number of 103

segregating mutations) and the AFS. For example, the degree 104

of variation is linearly proportional to mutation rate; however, 105

the deletion mutation rate at fine-scale is still unknown and 106

could be influenced by sequence GC content and other local 107

genomic properties. In contrast to the overall variation, the 108

normalized AFS is not affected by mutation rate, at least 109

for relatively small sample sizes, but together with degree 110

of variation could be influenced by complex mechanisms like 111

background selection. To address these complications, we 112

simulated length-matched positions of each real deletion while 113

keeping the original AF label, and took into account relevant 114

genomic confounding variables co-occurring with the same 115

deletion. Using this framework, we compared the observed 116

diversity and AFS of real deletions to the expectations based 117

on computer simulations using analyses of PlyRS values across 118

their coordinates. 119

Results 120

Pleiotropy Ratio Score (PlyRS). To score deletions with respect 121

to their effect on regulatory function, we considered both 122

the number of removed elements and the activity of each 123

element across cell and tissue types. In contrast to SNVs, a 124

noncoding deletion can potentially remove regulatory function 125

at a genomic locus along two distinct "axes" (see SI Appendix, 126

Fig. S1 for a cartoon). One axis ("horizontal") corresponds 127

to the amount of regulatory space removed by the deletion 128

irrespective of its tissue/cell-type activity. The other axis 129

("vertical") corresponds to the combined amount of regulatory 130

activity across tissues and cell types of each base-pair (i.e. 131

the cellular pleiotropy of a regulatory coordinate). Thus, for 132

any deletion overlapping regulatory sequences, there will be a 133

simultaneous removal at that locus along both axes, which we 134

quantify by a counting score for each axis. 135

For the horizontal axis we count deleted base-pairs with a 136

regulatory annotation from any tissue/cell-type (SI Appendix, 137

Note S1a). We do not require removal of an entire regulatory 138

element for this horizontal count, since deletion of even a 139

partial regulatory element sequence can render it inoperable 140

(21). Additionally, since regulatory element boundaries are 141

not perfectly aligned between tissues, it could be the case that 142

a partial deletion of an element observed in one tissue may 143

correspond to a complete deletion of the element observed 144

in another tissue. Consequently, for a deletion overlapping 145

a regulatory element(s), the horizontal axis count score can 146

range from as low as 1 (only a single regulatory base-pair 147

deleted) to as high as the length of the deletion (all base-pairs 148

along the deletion length overlap a regulatory element[s]). 149

A simple numerical count of the number of tissues/cell- 150

types where a regulatory element locus has activity is not 151
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sufficient for properly specifying cellular pleiotropy, because152

this count can be heavily influenced by the cellular diversity153

of the particular tissues/cell-types included in the analysis.154

For example, a count of 3 in an analysis performed with heart155

tissue, lung tissue, and ten blood cell-types would not have the156

same interpretation as a count of 3 in an analysis performed157

with heart tissue, lung tissue, and only one blood cell-type.158

In the former, it could be that the count of 3 comes from159

three highly-correlated blood cell-types, but in the latter, the160

count of 3 would have to come from the more developmentally161

diverse set of all three tissues/cell-types. Therefore, to enable162

proper "counting" of cellular pleiotropy, we developed a sta-163

tistical method, called Pleiotropy Ratio Score (PlyRS), which164

calculates a correlation-adjusted count of cellular pleiotropy165

for each base-pair in the noncoding genome (SI Appendix, Note166

S1b).167

We use the PlyRS value at any given base-pair along the168

length of a deletion to provide the counting score along the ver-169

tical axis. At any base-pair coordinate within a deletion, the170

PlyRS value can range from 0-indicating no tissue/cell-type171

included in the analysis has annotated activity-to a maximum172

of 1-indicating that all tissues/cell-types analyzed have anno-173

tated activity. Between these extreme bounds, PlyRS does174

not simply calculate the fraction of tissues/cell-types where175

the base-pair exhibits regulatory activity, rather it weights176

this proportion relative to the overall correlation of regulatory177

activity across these tissues/cell-types along the genome. For178

example, a base-pair active in three highly related cell types179

would be assigned a lower PlyRS value than a base-pair active180

in three (or potentially less) unrelated cell types. Thus, as a181

consequence of the PlyRS method calculation, counts of ele-182

ments active in tissues/cell-types with common activity will be183

down-weighted while counts of elements active in tissues/cell-184

types with rare activity will be up-weighted. Similarly, for185

each base-pair that has only tissue/cell-type-specific activity,186

the PlyRS value will be different for that particular tissue/cell-187

type depending on how its activity covaries across the genome188

with the other regulatory tissues/cell-types being analyzed.189

SI Appendix Fig. S2 and Fig. S3, respectively, illustrate how190

PlyRS corresponds to the raw tissue/cell-type count and how191

PlyRS compares to tissue/cell-type-specific counts.192

Construction of Deletion and Regulatory Datasets. To exam-193

ine potential selective constraints on deletions within regula-194

tory regions, we needed fine-resolution of genomic coordinates195

for both deletions and regulatory regions as well as high-196

confidence deletion allele frequencies from population data.197

For this, we compiled deletion data from two callsets and198

regulatory data from seven callsets, and applied additional199

filters relevant to our analysis. See Materials and Methods for200

additional criteria used to ensure high-quality datasets.201

We used deletion data from the 1000 Genomes Project202

Consortium Phase 3 callset (1000GP) of breakpoint-resolved203

deletions for which deletions were genotyped in 2,504 individ-204

uals from 26 modern human populations (14) (SI Appendix,205

Note S2a). We additionally used deletions that we called and206

genotyped across 752 individuals sequenced as part of the207

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (22) (SI208

Appendix, Note S2b and Note S3 ), using the CNV algorithm209

GenomeSTRiP (23). We restricted our analysis to noncoding210

deletions. As expected, the bulk (>80%) of deletions in our211

datasets remaining after filtering were rare (below 1% AF).212

To analyze genomic deletions within regulatory regions, we 213

used regulatory data from the NIH Roadmap Epigenomics 214

Consortium (REC) (2). In particular, we used two callsets of 215

chromatin accessibility data (DNase I hypersensitivity "DHS") 216

and four callsets of histone modification data (H3K4me1 217

"enhancer", H3K36me3 "transcribed", H3K27me3 "polycomb- 218

repressed", and H3K9me3 "heterochromatin"). Two sets of 219

DHS annotation (hotspot and MACS) were used to check for 220

consistency in the analyses. DHS annotations are typically 221

associated with sites of open chromatin allowing accessibility 222

for regulator binding and histone annotations are typically 223

associated with sites of specific regulatory activity, as noted. 224

We additionally used regulatory data that demarcate topolog- 225

ically associated domain loops (TAD-loops) (24), which are 226

associated with local genomic regions of physically interacting 227

regulatory activity. 228

Depletion of Variation at DHS or Enhancer Sites. We first 229

tested whether there was evidence of depletion of noncod- 230

ing deletion variation overlapping chromatin accessibility and 231

histone modifications (SI Appendix, Note S4a). We corrected 232

for the confounding effects of mappability, deletion length, 233

and allele frequency using simulations. For each real dele- 234

tion in both the 1000GP and ADNI datasets, we randomly 235

simulated 1,000 deletions of the same length to occur on the 236

same chromosome and same noncoding genomic compartment 237

space (intronic or intergenic) using only uniquely mappable 238

sequence coordinates (SI Appendix, Note S2d) for both real 239

deletions and simulated deletions. For more detail on our 240

length-matched simulations, see SI Appendix, Notes S5a-S5c. 241

We summed the PlyRS values calculated per base-pair along 242

the length of every deletion. This sum, denoted PlyRSsum 243

(SI Appendix, Note S1c), corresponds to the total cellular 244

pleiotropy (for a specific regulatory feature) of the deletion, 245

encompassing both the horizontal and vertical "axes" along 246

which purifying selection may be operating on the deletion (SI 247

Appendix, Note S1 ). We compared PlyRSsum values for both 248

real and simulated deletions and quantified depletion across 249

regulatory features using Cohen’s D statistic (SI Appendix, 250

Note S5b). 251

Panel A of Fig. 1 shows PlyRSsum effect sizes from compar- 252

ing real data to simulations and indicates significant depletion 253

of deletions (Cohen’s D>2, corresponding to 2 std. dev.) 254

overlapping DHS or enhancer regions. We did not detect 255

a significant depletion for deletions overlapping transcribed, 256

polycomb-repressed, or heterochromatin epigenomic features. 257

The depletion of deletions overlapping DHS or enhancer sites 258

was significant not only in the full deletion sets, but also in 259

both the intronic and intergenic genomic compartments. Addi- 260

tionally, we found concordance between effect sizes in 1000GP 261

and ADNI datasets for DHS or enhancer deletion depletions, 262

suggesting reliable capture of biological information from dele- 263

tion callsets with differing characteristics (SI Appendix, Tables 264

S1-S2). These results suggest that purifying selection may be 265

operating broadly on deletions to preserve DHS and enhancer 266

epigenomic features. SI Appendix, Table S5d1 (Note S5d) lists 267

the effect sizes found in the depletion simulations. 268

Shift in Allele Frequency Spectrum at DHS or Enhancer Sites. 269

We next tested whether there was a shift in the allele frequency 270

spectrum of noncoding deletions overlapping the chromatin ac- 271

cessibility and histone modification epigenomic features. The 272
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Fig. 1. Depletion of deletions and shift of deletion allele frequency spectrum overlapping regulatory sites. (A) We calculated PlyRSsum (SI Appendix, Note S1c) for every
deletion to quantify overlap with sites of chromatin accessibility or histone modification. We plot the degree of reduction in the PlyRSsum for real deletions relative to simulation.
This reduction is measured using Cohen’s D, which is the effect size of a t-test on PlyRSsum values (SI Appendix, Notes S5a-S5b) in units of standard deviation (plotted with
95% confidence intervals on the mean reduction). Two units of effect size (Cohen’s = 2) approximately corresponds to the 95% confidence interval of significance in depletion.
Higher values of Cohen’s D indicate larger depletion within those sets compared to simulation. In presence of the true effect, there is sample size dependence on the underlying
t-test, and the expected value of Cohen’s D would be higher for larger datasets. (B) For each deletion we determined the magnitude of PlyRSsum depletion, calculated as a ratio
between its PlyRSsum and the average PlyRSsum of its length-matched simulated deletions (SI Appendix, Note S6b), for sites of chromatin accessibility or histone modification.
We tested whether PlyRSsum depletion magnitude depends on allele frequency (deletions categorized as rare [AF<=1%] or common), using multivariate logistic regression in
the presence of genomic covariates (SI Appendix, Note S6a). We plot the regression odds ratio (OR) with 95% profile likelihood-based confidence intervals. Results above 1
indicate positive correlation of the magnitude of PlyRSsum depletion with allele frequency. This corresponds to an excess of rare alleles overlapping the regulatory feature in the
real dataset compared to simulation, which is the expected result for features being preserved by the action of purifying selection against overlapping deletions.

4 | Radke et al.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.19.105205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.19.105205
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

analysis of allele frequency distribution is important because273

the total degree of variation can be confounded by mutation274

rate (unlike SNVs, we do not have good models for mutation275

rate along the genome for deletions [(25)]). The allele frequency276

distribution, when normalized, does not depend on mutation277

rate for relatively small populations (within the limits of the278

infinite sites approximation), but due to the recent explosive279

growth of the human population, this assumption may break280

down for extremely large sample sizes at which point recent281

recurrent mutations become relevant. However, for the sample282

sizes analyzed here, the allele frequency distribution can be283

assumed to be independent of mutation rate, with the chance284

of recurrent mutations being small. This is especially true for285

deletions which would require recurrent mutations to occur at286

the same breakpoints (start and end coordinates being iden-287

tical). Therefore, a shift in the allele frequency spectrum of288

real deletions in our datasets compared to simulated deletions289

would likely reflect the action of purifying selection. Still, the290

allele frequency distribution can be affected by a number of291

variables unrelated to selective pressure. To take into account292

the potential effect of background selection, we controlled293

for regional (50kb +/- deletion coordinates) SNV nucleotide294

diversity and recombination rate, as well as distance to the295

nearest transcription start site. We additionally controlled296

for regional GC content. Due to technical confounders, allele297

frequency is expected to be influenced by deletion length so298

we also controlled for length explicitly. We accounted for299

these genomic covariates using multivariate logistic regression,300

testing whether PlyRSsum depletion magnitude depended on301

allele frequency (deletions categorized as rare [AF<=1%] or302

common; SI Appendix, Note S6a). To measure the magnitude303

of potential PlyRSsum depletion for each deletion, we calcu-304

lated a ratio between its PlyRSsum and the average PlyRSsum305

of its length-matched simulated deletions (SI Appendix, Note306

S6b). If purifying selection is, in fact, acting against deletions307

overlapping regulatory features, we would expect the largest308

PlyRSsum depletions to be found in common deletions (in309

our test, an odds ratio [OR] above 1 which shows positive310

correlation with allele frequency).311

Panel B of Fig. 1 shows that for deletions overlapping312

DHS sites the OR significantly (confidence interval [CI] 95%)313

exceeded 1 in both datasets, indicating the action of purifying314

selection. Additionally, for deletions overlapping enhancer315

sites the OR significantly exceeded 1 in the 1000GP dataset,316

while the lower CI boundary of the OR was nearly significant,317

at 0.995, in the ADNI dataset. All intronic and intergenic318

genomic compartment sets for DHS or enhancer features had319

mean odds ratios >1 (except ADNI intronic enhancers at320

0.96). SI Appendix, Table S6c1, (Note S6c) lists the odds321

ratios found in the logistic regressions. These results suggest322

that purifying selection may be preserving DHS and enhancer323

epigenomic features by reducing allele frequencies of overlap-324

ping deletions. On the other hand, there is a lack of consistent325

allele frequency shift for genomic compartment sets for tran-326

scribed, polycomb-repressed, and heterochromatin features in327

both deletion datasets, with the mean OR sometimes falling328

below 1 and the OR CI often extending below 1. In light of329

the insufficient evidence across datasets for an excess of rare330

alleles for these features, combined with the lack of reduction331

in variation described above, we focused the analysis below332

on DHS and enhancer epigenomic features which showed sta-333

tistical significance of both key signatures of broad selection 334

against overlapping deletions. 335

Differential Selection on Preserving Cellular Activity. The re- 336

sults described above have indicated that purifying selection is 337

acting against the total cellular pleiotropic burden (PlyRSsum) 338

of noncoding deletions, preserving both DHS and enhancer 339

regulatory sites. However, these analyses do not clarify if 340

purifying selection preserves DHS or enhancer sites of both 341

tissue/cell-type-specific activity and cellularly pleiotropic ac- 342

tivity. One possibility is that deletions removing regulatory 343

elements active in multiple tissues/cell-types incur a greater 344

fitness cost. Another possibility is that since tissue/cell-type- 345

specific elements are vital to organismal development, deletions 346

removing them are subject to a stronger selective effect. It 347

could also be the case that purifying selective pressure on 348

deletions is acting to preserve both types of regulatory sites 349

simultaneously. To distinguish between these scenarios, we 350

calculated two additional PlyRS measures, PlyRSsum-mono and 351

PlyRSsum-pleio (SI Appendix, Note S1c). PlyRSsum-mono in- 352

cluded the sum of PlyRS values of each deleted base-pair for 353

which a base-pair is only associated with regulatory activity 354

in one tissue/cell-type. PlyRSsum-pleio included the sum of 355

PlyRS values of each deleted base-pair for which that base- 356

pair is associated with regulatory activity in more than one 357

tissue/cell-type. The sum of these two components is the orig- 358

inal measure of total cellular pleiotropic burden, PlyRSsum. 359

With these additional PlyRS measures, we performed the same 360

analyses as above to examine both a potential reduction in 361

variation and a shift in allele frequency, now applied separately 362

to each component of PlyRSsum. This allowed us to deter- 363

mine, within the same sets of real deletions, which scenario of 364

regulatory activity preservation was contributing to the signal 365

of depletion in variation and shift in the AFS as found above. 366

Fig. 2A shows a significant depletion of variation for 367

DHS or enhancer sites corresponding to both tissue/cell-type- 368

specific activity and for cellularly pleiotropic activity in both 369

1000GP and ADNI datasets. The effect size of this reduction 370

in variation for PlyRSsum-mono or PlyRSsum-pleio was greater 371

for PlyRSsum-pleio for both noncoding regulatory features, ex- 372

cept for enhancer sites in ADNI deletions where the effect 373

size was comparable (error bars overlapping). SI Appendix, 374

Tables S5d2-S5d3 (Note S5d) lists the effect sizes found in 375

the depletion simulations, including those for intronic and 376

intergenic compartments where depletion values did not con- 377

sistently favor greater reduction of PlyRSsum-pleio. Fig. 2B 378

shows that the magnitude of deletion depletion overlapping 379

DHS or enhancer sites leads to a significantly shifted AFS at 380

both sites of tissue/cell-type-specific activity and cellularly 381

pleiotropic activity. For DHS or enhancer sites in all genomic 382

compartments, the mean odds ratios of the magnitude of 383

depletion for PlyRSsum-mono or PlyRSsum-pleio in association 384

to allele frequency were >1 in both deletion datasets (ex- 385

cept ADNI intronic enhancers), and were comparable between 386

PlyRSsum-mono and PlyRSsum-pleio. SI Appendix, Tables S6c2- 387

S6c3 (Note S6c) lists the odds ratios found in the logistic 388

regressions. These results collectively indicate that purify- 389

ing selection is acting to preserve DHS or enhancer sites of 390

tissue/cell-type-specific activity as well as cellularly pleiotropic 391

activity. 392
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Fig. 2. Depletion of deletions and
shift of allele frequency spectrum
overlapping DHS or enhancer sites
of variable cellular activity. (A) We
calculated PlyRSsum-mono (monotropic) and
PlyRSsum-pleio (pleiotropic) (SI Appendix,
Note S1c) for every deletion to quantify
overlap with DHS or enhancer sites.
We plot the degree of reduction in
PlyRSsum-mono (or PlyRSsum-pleio) for real
deletions relative to simulation measured
using Cohen’s D (with 95% confidence
intervals on the mean reduction). (B)
For each deletion we determined the
magnitude of PlyRSsum-mono (monotropic)
(or PlyRSsum-pleio [pleiotropic]) deple-
tion, calculated as a ratio between its
PlyRSsum-mono (or PlyRSsum-pleio) and the
average PlyRSsum-mono (or PlyRSsum-pleio)
of its length-matched simulated deletions
(SI Appendix, Note S6b), for DHS or
enhancer sites. We tested whether
PlyRSsum-mono (or PlyRSsum-pleio) depletion
magnitude depends on allele frequency
(deletions categorized as rare [AF<=1%]
or common), using multivariate logistic
regression in the presence of genomic
covariates (SI Appendix, Note S6a).
We plot the regression odds ratio with
95% profile likelihood-based confidence
intervals.

Purifying Selection on CTCF Sites within TAD-loops. We also393

investigated whether there was evidence of depletion of vari-394

ation and a shift in the AFS of deletions overlapping topo-395

logically associated domain loops (TAD-loops). These large396

regions of self-interacting DNA facilitate cis-regulatory effects397

at a wider scale than that of individual regulators (26, 27) and398

so deletions removing a TAD-loop boundary may be under399

strong purifying natural selection to preserve the TAD-loop in-400

tegrity. The distance between TAD-loop boundaries is greater401

than our longest deletions (25kb limit, [SI Appendix, Note402

S2c]), and consequently deletions in our datasets can only403

overlap with at most one TAD-loop boundary. Additionally,404

the TAD-loop boundary data (SI Appendix, Note S4b) are405

less precise than chromatin accessibility or histone modifica-406

tion annotations, so the number of base-pairs of a deletion407

overlapping a TAD-loop boundary may not reflect actual dele-408

teriousness of the mutation but rather correspond to imprecise409

annotations on the edges. These characteristics of TAD-loop410

boundary annotation mean that using PlyRSsum to define the411

total cellular pleiotropy of overlapping deletions can propagate412

a potential bias in the measure. To avoid this and still test413

whether purifying selection may be operating on deletions414

overlapping TAD-loop boundaries, we measured overlap both415

as a binary variable and by calculating the maximal PlyRS416

value (PlyRSmax, SI Appendix, Note S1c) along the length417

of an overlapping deletion. We performed the same analy-418

ses as for the chromatin accessibility or histone modification419

annotations (SI Appendix, Notes S5a-S5c).420

Rao Huntley et al. (24) identified that a large majority421

( 86%) of TAD-loop loci had binding from the insulator pro-422

tein CTCF, which ensures integrity of DNA loops, and conse-423

quently, TAD-loop fidelity (28, 29). Given this critical function424

of CTCF and its presence within most TAD-loop boundaries,425

we suspected that deletions that overlap TAD-loop loci might426

be under stronger purifying selection if a deletion also simulta- 427

neously overlaps a CTCF site within the TAD-loop boundary 428

(SI Appendix, Note S4c). To elucidate this, in addition to 429

identifying the full set of deletions overlapping TAD-loop an- 430

notation (TAD-loop), we further refined deletions into two 431

subsets (SI Appendix, Note S5c): deletions overlapping TAD- 432

loop but not simultaneously overlapping a CTCF binding 433

site (TAD-loopnoCTCF) and deletions overlapping TAD-loop 434

while simultaneously overlapping a CTCF binding site (TAD- 435

loopCTCF). Only about 1% of all deletions in our datasets 436

overlapped TAD-loopCTCF, so we ignored intronic and inter- 437

genic designations in the analysis (but maintained them in 438

simulations). 439

Fig. 3A shows the effect sizes of binary overlap or PlyRSmax 440

overlap from comparing real deletions to simulations and in- 441

dicates that, with respect to the full set of TAD-loops being 442

overlapped (irrespective of whether CTCF sites are simulta- 443

neously overlapped), there was minimal depletion of deletion 444

variation, if any. However, as also seen in Fig. 3A, separation 445

into TAD-loopnoCTCF and TAD-loopCTCF subsets revealed 446

that a signal of depletion was evident only for deletions over- 447

lapping TAD-loopCTCF. Deletions in the ADNI dataset ex- 448

hibited the same characteristic pattern of greater reduction 449

in variation in TAD-loopCTCF versus TAD-loopnoCTCF as was 450

seen in the 1000GP dataset; however, the reduction seen in 451

ADNI deletions overlapping TAD-loopCTCF was not statisti- 452

cally significant. We did not find any difference between the 453

effect size of depletion for binary overlap compared to the 454

PlyRSmax overlap measure, suggesting that there may not 455

be stronger selection against deletions overlapping the most 456

cellularly pleiotropic TAD-loopCTCF. SI Appendix, Tables 457

S5d4-S5d5 (Note S5d) lists the effect sizes found in the TAD- 458

loop depletion simulations. We also examined whether the 459

depletion magnitude of binary overlap or PlyRSmax overlap 460
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Fig. 3. Depletion of deletions and shift of allele frequency spectrum overlapping TAD-loop regulatory sites. (A) We calculated a binary variable and PlyRSmax (SI Appendix, Note
S1c) for every deletion to quantify overlap with sites of TAD-loop. We plot the degree of reduction in the binary variable (or PlyRSmax) for real deletions relative to simulation
measured using Cohen’s D (with 95% confidence intervals on the mean reduction). (B) For each deletion we determined the magnitude of binary variable (or PlyRSmax)
depletion, calculated as the difference between the binary variable (or PlyRSmax) and the average binary variable (or PlyRSmax) of its length-matched simulated deletions (SI
Appendix, Note S6b), for sites of TAD-loop. We tested whether binary variable (or PlyRSmax) depletion magnitude depends on allele frequency (deletions categorized as rare
[AF<=1%] or common), using multivariate logistic regression in the presence of genomic covariates (SI Appendix, Note S6a). We plot the regression odds ratio (OR) with 95%
profile likelihood-based confidence intervals.

at TAD-loop loci exhibited dependence on allele frequency461

using the same logistic regression framework as above with462

chromatin accessibility and histone modification annotations.463

Fig. 3B shows compelling evidence of a shift in the deletion464

AFS based on the magnitude of depletion at TAD-loopCTCF,465

for which the mean odds ratio estimate for binary overlap466

in 1000GP was 2.70 (minimum [min] 95% CI: 1.35) and in467

ADNI was 7.67 (min CI: 1.76). The mean odds ratio estimate468

for PlyRSmax overlap of TAD-loopCTCF in 1000GP was 36.80469

(min CI: 3.49) and in ADNI was 30.11 (min CI: 1.27). The470

excess of rare alleles overlapping TAD-loopCTCF dramatically471

exceeded the shift for TAD-loopnoCTCF, which displayed only a472

modest effect in the ADNI dataset (min CI: 1.02) and was not473

significant in the 1000GP dataset. These results collectively474

suggest that purifying selection may be acting to preserve475

TAD-loop integrity by specifically preserving CTCF binding476

motifs within TAD-loop boundaries. SI Appendix, Tables S6c4-477

S6c5 (Note S6c) lists the odds ratios found in the TAD-loop 478

logistic regressions. 479

Discussion 480

Using the clarity of genomic deletions to identify loss of noncod- 481

ing regulatory function, we have examined whether purifying 482

selection is operating to preserve noncoding regulatory sites of 483

chromatin accessibility (DHS), histone modification (enhancer, 484

transcribed, polycomb-repressed, and heterochromatin), and 485

topologically associated domain loops (TAD-loops). Analysis 486

of selection in the noncoding genome is motivated by prior find- 487

ings in human genetics from genome-wide association studies 488

that conclude most of heritability is due to relatively common 489

noncoding alleles within regulatory annotations (3). Initially, 490

these findings appeared inconsistent with the expectation that 491

disease-associated alleles are under pressure from purifying 492

selection. However, recent studies demonstrated that complex 493
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trait effect sizes are negatively correlated with allele frequency,494

hinting at the action of purifying selection (30–32). These495

observations put the question of the effect of noncoding regula-496

tory alleles on function and fitness at the forefront of genomic497

studies ranging from basic evolutionary genetics to the al-498

lelic architecture of common human traits. Since a principal499

characteristic of human regulatory element function is their500

non-uniform activity across tissues and cell types, interpreting501

fitness consequences from genetic variants in noncoding regions502

is thus inherently linked to corresponding regulatory element503

cellular activity. To incorporate this defining feature into the504

study of noncoding purifying selection, we have developed505

a statistical method, Pleiotropy Ratio Score (PlyRS), which506

quantifies the extent of abundance of cellularly pleiotropic507

activity for individual base-pairs.508

Using our PlyRS method, our results indicate that purifying509

selection acts on both DHS and enhancer sites, as evident by510

both the depletion of deletions overlapping these annotations511

and a shift in the allele frequency spectrum of overlapping512

deletions towards rare alleles. Using simulated deletions in513

a length-matched framework and covariate-aware analyses,514

we notably found statistically significant evidence at DHS or515

enhancer regions that both sites of tissue/cell-type-specific516

activity and sites of cellularly pleiotropic activity are preserved517

by selection. We find some evidence that cellularly pleiotropic518

variants may be subject to a stronger reduction in variation519

than cell-type-specific variants. However, ambiguity between520

tissue/cell-type-specific and cellularly pleiotropic sites in terms521

of AFS shifts indicates that the strength of purifying selection522

across both types of regulatory site cellular activities may523

be roughly equivalent. Additional analysis on larger datasets524

would be needed to accurately quantify the relative contribu-525

tions of selection on sites of variable regulatory activity.526

In contrast to the findings above, we did not find evidence527

of purifying selection acting on other epigenomic annotations528

such as transcribed, polycomb-repressed, or heterochromatin529

sites, consistent with previously reported findings (14, 16). In530

the absence of statistical confirmation, we can conclude that,531

notwithstanding any specific regulatory locus potentially being532

under selective constraint, these classes of epigenomic regu-533

lators as a whole are not selectively preserved in noncoding534

space. These results underscore the importance of DHS and535

enhancer annotations for specifying critical cellular regulation.536

Notably, our findings parallel the observation in human genet-537

ics that the largest fraction of heritability resides in regulatory538

space marked by DHS or enhancer features (3, 33). Our results539

additionally support the hypothesis that an aggregate selective540

burden may occur on long deletions that overlap multiple DHS541

or enhancer sites simultaneously (14, 34). We find suggestive542

evidence that this may be the case for deletions longer than543

the median length in our datasets, especially on those that544

overlap cellularly pleiotropic sites (SI Appendix, Fig. S4).545

We have also presented evidence that purifying selection546

is operating to preserve TAD-loop boundary integrity by pre-547

serving co-localized CTCF binding sites. However, we did548

not find statistical evidence that selection is acting against549

deletions overlapping TAD-loop boundaries without simultane-550

ous removal of CTCF sites. We found conclusive statistically551

significant evidence for this preservation of TAD-loopCTCF552

sites in 1000GP but only a qualitative trend for this in ADNI.553

The difference in significance for these findings between dele-554

tion datasets may simply be due to the difference in power 555

to see this effect, as there are 4x the number of deletions in 556

1000GP in comparison to ADNI. We did not find statistically 557

significant evidence in either dataset that the sites of high- 558

est cellular pleiotropy of TAD-loopCTCF provides additional 559

signal for purifying selection beyond that for TAD-loopCTCF 560

sites of any cellular pleiotropy. This equivalence may again be 561

due to lack of power: either five primary tissues/cell-types in 562

TAD-loop boundary analysis are not numerous enough to see a 563

difference (compared to the 25 primary tissues/cell-types used 564

in the analysis of chromatin accessibility and histone modifi- 565

cation features), or deletions overlapping cellularly pleiotropic 566

TAD-loops are already so few in number that power is limited 567

(only 4% [1000GP] or 8% [ADNI] of all deletions in our 568

datasets). As with the DHS and enhancer findings mentioned 569

above, larger datasets may provide the power needed to clarify 570

the relative contributions of selection on TAD-loop and CTCF 571

sites of variable activity, as well as provide better resolution of 572

TAD compartments versus TAD-loop boundaries which may 573

improve analyses. The PlyRS method is flexible and easily 574

allows for the addition of new and larger regulatory datasets 575

as they become available. 576

Materials and Methods 577

We used deletions from two datasets, the 1000 Genomes Project 578

(1000GP, [(14)] and the Alzheimer’s Disease Neuroimaging Initia- 579

tive (ADNI [(22)], SI Appendix, Note S3 ), to examine selective 580

constraint within regulatory regions. The two deletion datasets 581

have different callset properties, enabling robustness of the analy- 582

sis. 1000GP consists of deletions derived from low-coverage whole 583

genome sequencing (WGS) that span a wider length range and are 584

genotyped from individuals of diverse demographic histories. ADNI 585

consists of deletions derived from high-coverage WGS data that are 586

on average longer and more rare, using genotypes from the subset of 587

individuals that we determined were of European ancestry as iden- 588

tified by principal components analysis. For both deletion datasets, 589

we restricted our analyses to noncoding deletions by removing any 590

deletion that overlapped any exon or UTR by one base-pair or more, 591

as exonic deletions have been previously shown to be under strong 592

purifying selection because of their protein-altering effects (35). We 593

also examined only deletions occurring on autosomes because sex- 594

chromosome functional elements may involve complex sex-biased 595

regulation (36) which might be subject to unique selective proper- 596

ties. To mitigate non-uniform (i.e. biased) deletion callability in the 597

noncoding genome which might distort the AFS of the remaining 598

set of deletions, we additionally excluded deletions overlapping any 599

regions of low mappability, segmental duplications, centromeres, 600

and reference assembly gaps. Additional details on the deletion 601

datasets and filtering criteria are given in SI Appendix, Note S2. 602

Specific characteristics of the deletion datasets are shown in SI 603

Appendix, Table S1 (1000GP) and Table S2 (ADNI). An extended 604

description of the ADNI dataset construction process is given in SI 605

Appendix, Note S3. Information on obtaining ADNI data access, 606

including files we deposited [in-progress] for this project, can be 607

found at: http://adni.loni.usc.edu/data-samples/access-data/ . 608

We used regulatory data from the NIH Roadmap Epigenomics 609

Consortium (REC) for definition of regulatory breakpoints as well 610

as uniform processing across multiple tissue/cell-types (2). We use 611

annotation data for sites of chromatin accessibility (DNase I hyper- 612

sensitivity “DHS”) and histone modification (H3K4me1 "enhancer", 613

H3K36me3 "transcribed", H3K27me3 "polycomb-repressed", and 614

H3K9me3 "heterochromatin”). Two sets of DHS annotation (hotspot 615

and MACS) were used to check for consistency. We used all 25 616

primary tissues/cell-types (SI Appendix, Note S4a and Table S3) for 617

which data were available across all six callsets for each tissue/cell- 618

type. We additionally used TAD-loop boundary regulatory data 619

consisting of a callset of 5 primary tissues/cell-types ([(24)], SI 620

Appendix, Note S4b). Additional details on the regulatory datasets 621

are given in SI Appendix, Note S4. Identity of the tissues and 622
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cell-types analyzed from REC is shown in SI Appendix, Table S3.623

For all analyses involving DNase hypersensitivity or histone mod-624

ification regulatory features, we excluded deletions (and genomic625

space) overlapping TAD-loop boundaries (SI Appendix, Note S5c),626

as deletions disrupting TAD-loop integrity may already be under627

purifying selection owing to the potentially resulting cis-regulatory628

effects. In this way, we ensure reliable interpretation of selective629

effects on deletions disrupting chromatin accessibility or histone630

modification, without introducing potential confounding from se-631

lective pressure from co-localized TAD-loop disruption, which we632

analyzed separately.633

To examine potential purifying selection against deletions to634

preserve regulatory features, we examined deletion overlap in the635

context of regulatory tissue activity. To properly "count" tissue636

activity removed by deletions overlapping regulatory features, we de-637

veloped a statistical method called Pleiotropy Ratio Score (PlyRS),638

which calculates a correlation-adjusted count of cellular pleiotropy639

for each base-pair in the noncoding genome. A description of the640

calculation of PlyRS, and derived PlyRS measures calculated for641

deletions, is given in SI Appendix, Note S1. Source code of PlyRS642

calculation can be downloaded from the repository [in-progress] on643

Github: https://github.com/davidwradke/PlyRS .644

To determine if the action of purifying selection is occurring645

against deletions overlapping regulatory sites, we required the iden-646

tification of two key signatures: reduction of genetic variation647

overlapping the sites and a shift in the allele frequency spectrum648

(AFS) towards rare variants of the remaining alleles overlapping649

the sites. These signatures were assessed in light of results from650

deletion simulations. A description of the simulation procedure651

and significance calculation of reduction in variation is given in SI652

Appendix, Note S5. Descriptions of the procedure involving multi-653

variate regression on deletion genomic covariates and significance654

calculation of shift in allele frequency spectrum are given in SI655

Appendix, Note S6.656
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