










Figure 3: The preprocessing for test set Λ and Σ. a) was the preprocessing for Λ. b) was the preprocessing for Σ. c) was
three typical edge expansion methods used in b[ii].

(Fig.3(c)). Our results showed the reflect method was the best. All pixel values of images were increased 109 for red
channel, 61 for green channel and 32 for blue channel in Set Σ.

2.4 Analysis of Diagnostic Performance Using Metrics Methods

The performances of diagnostic methods were usually measured by sensitivity and specificity in comparison to the standard
method. The sensitivity represents the true positive rate, while the specificity represents the true negative rate. The two
diagnostic indexes was calculated by

Sensitivity =
PT

PT + NF
;

Specif icity =
NT

NT + PF
;

(2)

where PT was the number of the positive samples being correctly diagnosed (True Positive), NF was the number of the
positive samples being diagnosed as negative (False Negative), NT was the number of the negative samples being correctly
diagnosed (True Negative), PF was the number of the negative samples being diagnosed as positive (False Positive). In this
study, we considered normal vaginal flora as the negative samples, altered vaginal flora and BV as the positive samples.

The performance of our models was illustrated by AUC (area under receiver operating characteristic (ROC) curve).
ROC curve was a graphical plot that illustrated the diagnosis ability of a binary classifier system as its discrimination
threshold was varied [36]. The ROC curve was created by plotting the true positive rate (TPR) against the false positive
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rate (FPR) at various threshold settings [36]. The true positive rate was known as sensitivity and the false positive rate
was equal to 1-specificity.

To show more performance details of our models and human readers, the confusion matrix was employed to illustrate
the prediction results of all three Nugent groups. In the confusion matrix, each row of the matrix represented the instances
in a predicted class while each column represented the instances in an actual class (or vice versa) [37]. The accuracy of
three groups of classifications was also provided.

2.5 Comparison to Human Readers

Three data sets Γ, Λ, Σ were then evaluated by our CNN model and five independent healthcare providers (HCPs), in-
cluding three technologists and two obstetricians. The five HCPs were from four representative teaching hospitals and the
leading private hospitals in China: The First Affiliated Hospital of Xi’an Jiaotong University, The Second Affiliated Hos-
pital of Soochow University, Beijing HarMoniCare women’s and children’s Hospital, Binzhou Medical University Hospital,
and Nanjing Medical University Affiliated Nanjing Maternity and Child Health Care Hospital. The diagnostic results were
compared using the metrics method.

3 Results

3.1 Development and Selection of the Best CNN Model for Nugent Scoring

Image data from Beijing Tsinghua Changgung Hospital were used to select the best CNN model for BV diagnosis. Four
CNN models were generated and trained by the 23280 training image set, then evaluated on the 5815 test images. For the
purpose of screening, we considered altered vaginal flora and BV as positive samples and normal vaginal flora as negative
samples. All models had AUCs greater than 0.95, with the 1/4 NugentNet model shown the best performance of AUC =
0.978 (Fig.4(a)). The NugentNet and 1/2 NugentNet had more training variables than the best model. These two models
showed overfitting on our data set, and hence gave lower AUCs than the 1/4 NugentNet. The number of training variables
of 1/8 NugentNet was only a quarter of 1/4 NugentNet. The AUC of the 1/8 NugentNet was slightly lower (0.004) than
the 1/4 NugentNet. Therefore, it was likely underfitting on our data set. The 1/4 NugentNet was chosen for the following
study as the best CNN model for the prupose of Nugent scoring and diagnosis of BV.

To better understand the performance of the best model on BV classification, the three classification results (Confusion
Matrix) of the best point of AUC curve for the 1/4 NugentNet was plotted against the labeled results of the test set. The
best point obtained 89.3% accuracy on the three-category classification, which was 5.6% higher than the microscopists
and comparable to the top experts’ performance in China [17]. The results showed only 3.8% (20/531) BV samples were
predicted as false negative (normal vaginal flora) and 0.1% (6/4120) normal vaginal flora samples were predicted as false
positive (BV).

Figure 4: The performance of our models on the test set. a) was the ROC curves of our four models, the 1/4 NugentNet
was the best model getting AUC=0.978. b) was the confusion matrix of the best points of the best model.
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3.2 Performance Comparison Between CNN Model and Human Practitioners

The 1/4 NugentNet model was comparable to Chinese top healthcare providers in classify Nugent scores from microscopic
images. To compare our best model and top level healthcare providers, five human readers from 5 representative teaching
hospitals and 1/4 NugentNet independently scored test Set Γ, 427 images from Beijing Tsinghua Changgung Hospital. Our
model obtained AUC=0.9746, which out performed 4 human readers and comparable to the best human practitioner(Fig.5).

The 1/4 NugentNet model had better accuracy in scoring image samples than human practitioners. Because the
Nugent scores are categorized in three classifications, the AUC curve does not refect the reality of diagnostic accuracy
in clinical settings. The three classification accuracies were calculated for 1/4 NugentNet and 5 human readers. The
three-class accuracy of 1/4 NugentNet achieved 80.3%, which was 10.3% higher than the human’s average result and 0.6%
higher than the the best human result (Tab. 3). The average performance of all the human readers was 94.3% sensitivity
and 73.1% specificity. At the best point of AUC curve, our model had a sensitivity of 91.4% and sensitivity of 91.3%. If
we moved the AUC curve of our model at the sensitivity of 94.3% to match the average of human readers, our specificity
was 89.4%, a 16.3% higher than the 73.1% average specificity of human readers. Overall, our CNN model achieved high
accuracy on Nugent scores from high quality images obtained from Beijing Tsinghua Changgung Hospital.
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Figure 5: Comparing the results of the best model
and five human readers on the independent test set Γ.

Sensitivity Specificity
Three Clas-

sification
Accuracy

Best Points(AI) 91.4% 91.3% 80.3%

High Sensitivity(AI) 97.4% 83.8% 80.8%

Technologist1 96.6% 65.0% 66.0%

Technologist2 96.3% 50.0% 62.1%

Technologist3 97.4% 67.5% 67.5%

Obstetrician1 93.3% 91.9% 79.6%

Obstetrician2 88.0% 91.3% 74.7%

Average (Technologists) 96.8% 60.8% 65.2%

Average (Human Readers) 94.3% 73.1% 70.0%

Table 3: The detail information of the results of the best
model and five human readers on the independent test set Γ.

3.3 Performance of CNN Model on Images from Different Clinical Settings

Since images from different clinical settings differented in size, brightness, and color (Tab.2), the preprocessing procedure
was essential to improved the accuracy for our CNN model. Using various preprocessing steps, we had much better
performance on data Set Λ and Σ (Tab.4). Data Set Λ had larger actual physical area and brighter samples than the
training data set we obtained from Beijing Tsinghua Changgung Hospitals. Adjusting physical area had improved the AUC
from 0.8552 to 0.9375. Adjusting brightness had improved the AUC from 0.8552 to 0.8626. Combined the adjustments
of brightness and physical area made the performance of our CNN model on Set Λ to an overall AUC of 0.9396 (Tab.4).
The test results of Σ showed similar pattern that adjusting of both brightness and physical area had greatly improved the
performance, AUC from 0.5137 to 0.9450 (Tab.4). Since images in Set Σ had smaller physical area than the training data,
we had to expand the edges of images to match the actual physical area for our model. Of the three common methods
tried, our results showed reflect was the best edge expansion method, which had increased the AUC from 0.5137 to 0.7136
(Tab.5). Both adjusting physical area and adjusting brightness greatly improved model performance on the testing data
Set Λ and Σ from different clinical settings.

Table 4: The performance of the best model using preprocessing on test sets Λ and Σ.

Independent Test Set Λ Independent Test Set Σ

Original
Image

Adjust
Physical

Area

Adjust
Bright-

ness

Adjust
Both

Original
Image

Adjust
Physical

Area

Adjust
Bright-

ness

Adjust
Both

AUC 0.8552 0.9375 0.8626 0.9396 0.5137 0.7136 0.8894 0.9450

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.05.20.101055doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.101055


Table 5: The performance of three edge expansion methods in adjusting physical area step on Σ.

Original Image Replicate Wrap Reflect

AUC 0.5137 0.6623 0.7038 0.7136

3.4 Comparison Between CNN Model and Human on Combined Images

Our model was comparable to human practitioners on Nugent score diagnosis using images from various clinical settings.
Data set Γ, Λ, and Σ were combined to get a independent testing data set of 1082 images. When applied the 1/4 NugentNet
model on the independent testing data set, it obtained AUC of 0.7007 on original data, 0.7884 after adjustment of physical
areas, 0.8917 after adjustment of brightness, and 0.9400 by preprocessing both (Fig. 6). When compared with 5 experts
who diagnosed the Nugent scores on the same image set, our model out performed three of them judged by sensitivity
and specificity (Fig. 6). The average performance of all the technologists was 96.5% sensitivity and 62.2% specificities.
When setting the sensitivity equal, our model had a specificity of 71%, 8.8% higher than the technologists’ average results.
When specificity was setted equal, the sensitivity of our model was 2.1% higher than technologists’ average. Using the
three-class accuracy as better read out of the Nugent scoring performance, our 1/4 NugentNet model achieved a total
accuracy of 75.1%, which is again better than three human experts and 2.1% higher than human average (Tab. 6). The
results showed that our model had great performance by applying preprocessing steps to different images.
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Figure 6: Comparing the results of the best model
and five human readers on the total independent
test sets with 1082 samples.

Sensitivity Specificity
Three Clas-

sification
Accuracy

Best Points(AI) 89.0% 85.0% 75.1%

High Sensitivity(AI) 97.3% 69.3% 71.1%

Technologist1 97.0% 60.0% 67.8%

Technologist2 95.3% 60.9% 67.5%

Technologist3 97.3% 65.6% 70.3%

Obstetrician1 94.4% 93.9% 80.9%

Obstetrician2 90.4% 92.7% 78.7%

Average (Technologists) 96.5% 62.2% 68.5%

Average (Human Readers) 94.9% 74.6% 73.0%

Table 6: The detail information of the results of the best
model and five human readers on the total independent
test sets with 1082 samples.

4 Discussion

In the past years, CNN methods had shown lots of examples of successful applications in medical image processing.
Typical examples were: automatically classification 26 common skin conditions [39]; using pixels and disease labels as
inputs to classify skin lesions [40]; identified prostate cancer in biopsy specimens and detected breast cancer metastasis
in sentinel lymph nodes [41]; automated classification of Gram staining of blood samples [33]; automatically diagnosis of
H. pylori infection [32]; predicting cardiovascular risk factors from extracted retinal fundus images [31]. Therefore, the
CNN methods was suitable for medical image processing. As a type of medical image, the microscopic image contained
lots of local details and global information. The local details included various types of bacteria. The global information
included the distribution density and ratio of various bacteria, etc. In the diagnostic process, all the information should be
considered for an accurate result. The local details could be extracted by the first few layers of the CNN model, while the
global information could be extracted by the last few layers. The last fully connected layer could use all the information
extracted from the convolution layer in front to obtain the Nugent score. The CNN model could accurate extract local
and global information for diagnosis [27,28,38]. Therefore, the CNN model was very suitable for Nugent score automatic
diagnosis.

The 1/4 NugentNet CNN model showed better performance to process microscopic images for BV diagnosis using
Nugent score than traditional image processing method. Traditional automatic image processing methods required three
difficult diagnostic steps to get the diagnosis results [17]. The first step involved the segmentation of the bacterial area,
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which required a series of artificially designed algorithms to extract the foreground. In the second step, the overlap clumps
would be split from the bacterial area, from which morphotypes of individual bacterium were obtained. In the third step,
the features of bacterial morphotypes were extracted and classifed using traditional machine learning methods. In our
CNN model, the features of the microscope images could be automatically extracted with diagnosis made spontaneously,
which avoided complex diagnostic steps in the traditional methods. The sensitivity, specificity and three-class accuracy
of traditional method were only 58.3%, 87.1% and 79.1% [17]. Our 1/4 NugentNet model had better performance in all
the three diagnostic performance indicators: a 24.1% increase for sensitivity, 9.5% increase for specificity, 10.2% increase
for three-class accuracy. Furthermore, our model could simultaneously adjust the sensitivity and specificity by adjusting
the predicting probability threshold. The diagnostic performance could not be further improved with the same traditional
automatic diagnostic methods, but could be further improved in our model with more training data.

The diagnosis accuracy of 1/4 NugentNet CNN was comparable to human experts with advantages in consistency
and flexibility. The test data set of 1082 images were judged by top experts, with each result agreed by at least two of
them. When tested independently by our CNN model and 5 human experts, results of 1/4 NugentNet on the test data
set had an average three-class accuracy 75.1% which is 2.1% higher than the average of experts. Although the overall
accuracy seems comparable, human readers showed considerable variability of sensitivity from 90.4% to 97.3%, and big
variation in specificity from 60.0% to 93.9% (Tab. 6). When we considered the most accurate point of our CNN model, the
specificity and sensitivity were 85.0% and 89.0% respectively. Aplication of CNN model in clinical settings could minimize
the potential diagnostic variations brought by different practitioners. Adjusting on the AUC curve, we could also find
diagnostic point with specific sensitivity for the purpose of clinical practice. For screening purpose, we could increase the
sensitivity to identify positive patients as many as possible. For confirmative testing, we could increase the specificity to
minimize false diagnosis. The CNN model could be implemented with different capacity in clinical settings.

Our model showed great performance and was overperformed technologists when the samples was standardized by the
preprocessing. Standardizing the actual physical area and the brightness of the samples made our model perform very
well on variable samples from different settings. We further studied the impact of the clarity of images and the number
of training set on the accuracy of our models. The results showed the image sharpening method did not improved the
model’s performance on the independent test sets, and the performance decreased when the samples were blurred. The
clarity of the samples was good enough for our models. To investigate the performance of our best model with different
training sample sizes, we trained the best model with five different sample sizes including 5000 images, 10000 images,
15000 images, 20000 images, and 23000 images. All the AUCs were greater than 0.95 (Fig.7). As we expected, a larger
training set could produce a model with better performance. When the training set had more than 15000 samples, the
performance of the model would improved only marginally as the number of samples increased.
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Figure 7: The performance of the best model with different training sample sizes: 5000 images, 10000 images, 15000images,
20000 images, and 23000 images.

The CNN model can increase the speed of BV diagnosis in clinical settings. We used a NVIDIA GeForce GTX 1080Ti
GPU for training and inference. The best model was faster than the NugentNet and 1/2 NugentNet in both training process
and inference process. In the training process, the 1/4 NugentNet model could be obtained within 10000 iterations and
could be completed in 2.4 hours by one GPU. But it needed months to years to train an proficient technologist. In the
inference process, it took our model 2.4 seconds to diagnose 100 images, while the traditional automatic diagnostic methods
needed 30 seconds to obtain the diagnosis result for a single microscope image [17]. By using the same hardware, our
model could diagnose 5 microscopic images per second. The inference speed of our model was more than 150 times faster

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.05.20.101055doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.101055


than traditional automatic diagnostic methods. The diagnostic efficiency of our model was much higher than traditional
automatic diagnostic methods.

In conclusion, our study first proved deep learning techniques to diagnose bacterial vaginosis based on microscopic
images. we constructed the convolutional neural network models for automatic BV diagnosis. For image-level BV diagnosis,
our models had better performance in terms of 3-class accuracy (89.3%) than experts and traditional automated diagnostic
methods. With the help of automatic scanning microscope, manual nugent scoring can be completely replaced by our
model and the problem of clinical manual Nugent scoring can be completely solved. In addition, lots of gynecological lower
genital tract infections including aerobic vaginitis (AV), vulvovaginal candidiasis (VVC) and trichomonas vaginitis (TV)
were diagnosed by the same microscope images. Our model could be further modified to diagnose all three infections.
Furthermore, our model could be used for diagnosis of other microscope images for infection diagnosis in different clinical
settings such as sepsis. It could be developed into an automatic diagnostic device for more precise, more efficient and
more stable than manual diagnosis and would standardize diagnostic process.
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