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Abstract 

Adaptive memory recall requires a rapid and flexible switch from external perceptual reminders to 

internal mnemonic representations. However, owing to the limited temporal or spatial resolution of 

brain imaging modalities used in isolation, the hippocampal-cortical dynamics supporting this process 

remain unknown. We thus employed an object-scene cued recall paradigm across two studies, 

including intracranial Electroencephalography (iEEG) and high-density scalp EEG. First, a sustained 

increase in hippocampal high gamma power (60-110 Hz) emerged 500 ms after cue onset and 

distinguished successful vs. unsuccessful recall. This increase in gamma power for successful recall was 

followed by a decrease in hippocampal alpha power (8-12 Hz). Intriguingly, the hippocampal gamma 

power increase marked the moment at which extrahippocampal activation patterns shifted from 

perceptual cue towards mnemonic target representations. In parallel, source-localised EEG alpha 

power revealed that the recall signal progresses from hippocampus to posterior parietal cortex and 

then to medial prefrontal cortex. Together, these results identify the hippocampus as the switchboard 

between perception and memory and elucidate the ensuing hippocampal-cortical dynamics 

supporting the recall process.  

 

Significance 

How do we adaptively switch from perceiving the external world to retrieving goal-relevant internal 

memories? To tackle this question, we used – in a cued-recall paradigm - direct intracranial recordings 

from the human hippocampus complemented by high-density scalp Electroencephalography (EEG). 

We found that a hippocampal signal ~500 ms after a perceptual cue marks the conversion from 

external (perceptual) to internal (mnemonic) representations. This sets in motion a recall cascade 

involving posterior parietal and medial prefrontal cortex, revealed via source-localised and time-

resolved EEG alpha power. Together, these results unveil the hippocampal-cortical dynamics 

supporting rapid and flexible memory recall.  
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Introduction 

Imagine spotting a familiar face at a (real) conference. As your acquaintance approaches, you 

frantically try to recall the last time the two of you met and – without sneakily glancing at the nametag 

– remember what their name was. This example illustrates how adaptive behaviour often requires us 

to shift our focus from external sensory information to internal mnemonic representations. In 

experimental terms, this scenario constitutes a cued recall task, where a reminder cue may or may 

not trigger recall of associated mnemonic target information. How does our brain accomplish the feat 

of converting an external reminder into a target memory?  

According to computational models, the hippocampus links disparate cortical representations into a 

coherent memory trace (Lisman, 1999; Wallenstein et al., 1998). It retains pointers to the cortical sites 

involved in the initial experience (Goode et al., 2020; Teyler and DiScenna, 1986) such that presenting 

a partial reminder prompts reinstatement of the entire association via hippocampal pattern 

completion (Marr, 1971; Norman and O'reilly, 2003). In support of these models, human functional 

magnetic resonance imaging (fMRI) studies linked hippocampal activation with cortical reinstatement 

of mnemonic target representations during successful recall (Bosch et al., 2014; Gordon et al., 2013; 

Grande et al., 2019; Horner et al., 2015; Ritchey et al., 2013; Staresina et al., 2013; Staresina et al., 

2012b). However, the relatively poor temporal resolution of the fMRI signal leaves open whether the 

hippocampus precedes or follows mnemonic reinstatement, let alone whether hippocampal 

engagement would mark the rapid switch from perceptual cue to mnemonic target representations.  

Moreover, the cognitive complexity and representational richness of memory recall likely requires 

concerted engagement of wider brain networks (Olsen and Robin, 2020; Ranganath and Ritchey, 

2012). Indeed, beyond the hippocampus, neuroimaging work has consistently implicated a particular 

set of cortical regions in episodic memory tasks (Ritchey and Cooper, 2020; Rugg and Vilberg, 2013), 

herein referred to as the ‘cortical retrieval network’ (CRN). The CRN overlaps with the ‘default mode 

network’ (Buckner et al., 2008) and includes posterior parietal regions as well as medial prefrontal 

cortex. It has been linked to retrieval success across multiple stimulus domains (Hayama et al., 2012) 

as well as to episodic (re)construction processes (Benoit and Schacter, 2015; Hassabis and Maguire, 

2007). Critically, a recent study employing ‘lesion network mapping’ suggests that the hippocampus 

serves as a functional hub linking these cortical nodes in service of memory processes (Ferguson et 

al., 2019). While these results indicate that successful memory relies on intricate hippocampal-cortical 

interactions, the temporal dynamics within the CRN are challenging to resolve with fMRI alone, 

hampering understanding of different CRN regions’ contributions (Ritchey and Cooper, 2020). 

To overcome these limitations, we used intracranial Electroencephalography (EEG) complemented by 

high-density scalp EEG to reveal (i) the role of the hippocampus in the conversion of perceptual cues 

to mnemonic targets and (ii) the ensuing dynamics in the fronto-parietal retrieval network. 
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Figure 1. Experimental paradigm. A. In a localiser session, participants saw trial-unique images of objects and 
scenes and indicated the category of the given image. This part served as an independent training dataset for 
multivariate pattern analyses. B. The main experiment employed an object-scene memory task, consisting of an 
encoding phase (top) and a cued recall phase (bottom). During encoding, participants saw trial-unique object-
scene pairs and indicated whether the given combination was plausible or implausible. During cued recall, 
participants were given either the object or the scene image as the cue and were asked to recall the paired 
target (scene or object image, respectively). The key conditions were (i) trials in which participants indicated 
they did remember the target image (“Remember” trials) and (ii) trials in which participants indicated they did 
not remember the target image (“Forgot” trials). Labels below denote the cue-target(memory) status of trials. 
O=object, S=scene, R=remember, F=forgot. 

 

 

Results 

Behaviour 

We used the same memory paradigm (Figure 1) in an intracranial EEG (iEEG) study (n = 11) and a high-

density scalp EEG study (n = 20). In addition, we conducted ‘localiser’ runs (Figure 1A) to train a 

classifier to distinguish brain patterns of object vs. scene representations (see below). In the memory 

experiment (Figure 1B), participants were presented with pairs of object and scene images during 

encoding. During retrieval, a cued recall task was employed in which only one of the images was shown 

(‘cue’), with the question whether the associated image (‘target’) was also remembered. Catch trials 

were interspersed in which participants were prompted to describe the target image after giving a 

“Remember” response.  

In the iEEG study, accuracy on the localiser task was on average 95% (SEM = 2%) correct (mean 

Reaction Time (RT) = 1.40 s, SEM = 0.21). During the cued recall task, iEEG participants indicated they 
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remembered the target on 67% of trials (SEM = 5%). During catch trials, accuracy was 94% (SEM = 2%). 

RTs were faster for “Remember” trials (M = 2.59 s, SEM = 0.26) than for “Forgot” trials (M = 5.95 s, 

SEM = 0.40; t(10) = 8.46, P < .001). “Remember” RTs did not differ significantly for object vs. scene 

targets (t(10) = 0.40, P = .695).  

In the scalp EEG study, participants remembered 60% (SEM = 3%) of target images. Accuracy on catch 

trials was 92% (SEM = 2%). RTs were faster for “Remember” trials (M = 1.61 s, SEM = 0.08) than for 

“Forgot” trials (M = 2.37 s, SEM = 0.17; t(19) = 5.30, P < .001). Again, RTs did not differ significantly for 

object vs. scene targets (t(19) = 0.73, P = .476).  

 

A hippocampal recall signal at ~500 ms 

Our first analysis examined spectral power in the hippocampus (Figure 2A) during successful vs. 

unsuccessful cued recall (“Remember” vs. “Forgot”). As shown in Figure 2B, we observed an extended 

cluster in the gamma frequency range (60-110 Hz, 570-1730 ms, peak frequency: 85 Hz) in which 

“Remember” trials elicited greater power than “Forgot” trials (Pcluster = .007, average cluster t(10) = 

3.53). The gamma effect was followed by a power decrease for “Remember” trials relative to “Forgot” 

trials below 30 Hz, with a distinctive peak in the alpha band (900-2600 ms, peak frequency: 9 Hz; Pcluster 

= .001, average cluster t(10) = -3.34). Hippocampal gamma and alpha power time courses are shown 

in Figure 2C. This finding replicates a previous report in which we found a gamma power increase 

followed by an alpha power decrease for successful vs. unsuccessful associative recognition memory 

(Staresina et al., 2016) and extends it to a cued recall paradigm.  

The hippocampal recall effect between ~500 and 1500 ms could emerge from two different scenarios. 

First, it could represent a ‘hardwired’ peak reflecting input propagation delays from visual cortex 

(Mormann et al., 2008), followed by sustained engagement from 500-1500 ms that accompanies the 

recall process. Alternatively, it could emerge from transient events (e.g., discrete bursts (van Ede et 

al., 2018)) occurring at different latencies across trials, with gamma peak latencies perhaps tracking 

reaction times (RTs). To adjudicate between these alternatives, we first plotted hippocampal gamma 

power (80-90 Hz) for all “Remember” trials as a function of RT. As shown in Figure 2D, this revealed a 

highly consistent peak at ~700 ms post cue onset, regardless of RT. Next, to test whether the 

hippocampal gamma effect accompanies successful recall in a sustained fashion, we plotted response-

locked gamma power. As shown in Figure 2E, this revealed that the gamma effect co-terminated with 

a participant’s “Remember” response (significant cluster from -1500 ms to -50 ms, average t(10) = 

4.28, Pcluster = .001). Together, these results suggest that a hippocampal recall signal sets in at ~500 ms 

and sustains until retrieval is complete (see Discussion). 
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Figure 2. Hippocampal recall effects. A. Hippocampal contacts across participants shown on a normalised sagittal 
(left) and horizontal (right) brain template. B. Results from a time-frequency analysis (P < .05, corrected), 
contrasting “Remember” vs. “Forgot” trials and revealing a cluster in the high gamma range (60-110 Hz, peak at 
85 Hz) with power increases for “Remember” trials, followed by a cluster in the alpha band (3-29 Hz, peak at 9 
Hz) with power decreases for “Remember” trials. For an unthresholded map, see Figure S1 C. Power time courses 
for “Remember” (green) and “Forgot” (grey) trials in the significant gamma (top) and alpha (bottom) clusters. 
Lines show condition means +/- SEM of condition differences across participants. D. Hippocampal gamma power 
(80-90 Hz across time from -.5 s to reaction time (RT)) across all “Remember” trials (pooled across participants), 
sorted based on trial-specific RT (white line). Dashed vertical line indicates median peak latency across all trials 
(700 ms). E. Response-locked hippocampal gamma power (80-90 Hz) for “Remember” (green) and “Forgot” 
(grey) trials. Lines show condition means +/- SEM of condition differences across participants. 

 

 

From perception to memory via the hippocampus 

To investigate whether the hippocampal recall signal marks the switch from perceptual to mnemonic 

representations, we used participants’ extrahippocampal iEEG contacts (Figure 3A) to train a linear 
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classifier on object vs. scene trials during the localiser sessions. Results confirmed high classification 

accuracy (Figure S2), with peak performance between 300-400 ms post stimulus onset. To capture 

object and scene representations during recall, a classifier was trained on the localiser data and 

applied to retrieval, yielding a time series of continuous object vs. scene evidence for successful and 

unsuccessful object cue-scene target and scene cue-object target retrieval trials (Figure 1). As shown 

in Figure 3B, retrieval representations were, as expected, strongly cue-driven within the first 500 ms 

for both “Forgot” and “Remember” trials (“Forgot” trials: 245-495 ms, Pcluster = .001, average cluster 

t(10) = 3.63; “Remember” trials: 245-445 ms, Pcluster = .008, average cluster t(10) = 3.86). Critically, only 

“Remember” trials then showed evidence for a representational switch from the cue to the target 

category. Specifically, for S-O(R) trials, representational patterns shifted from scene (cue) to object 

(target) evidence at ~500 ms and analogous for O-S(R) trials. The collapsed target evidence (i.e., the 

average of object evidence for S-O trials and flipped scene evidence for O-S trials) was signicantly 

greater than chance for “Remember” trials from 720-900 ms (Pcluster = .023, average cluster t(10) = 

2.57). Lastly, this collapsed target evidence was significantly greater for “Remember” trials than for 

“Forgot” trials from 555-895 ms (Pcluster = .001, average cluster t(10) = 3.15). 

 

 

Figure 3. Switch from cue to target representations. A. Extra-hippocampal contacts across participants shown 
on a normalised horizontal (top) and coronal (bottom) brain template. B. Object and scene evidence, based on 
a classifier trained on a ‘localiser’ session, for O-S (blue) and S-O (red) trials, separately for “Forgot” (left) and 
“Remember” (right) trials. Within the first 500 ms, classifier evidence reflects the cue category. Only for 
“Remember” trials, classifier evidence then switches (dashed rectangle) to reflect the recalled target category.  

 

 

Inspection of gamma power (Figure 2C) and classification time courses (Figure 3B) raises the intriguing 

possibility that the hippocampal gamma power increase during “Remember” trials at ~500 ms marks 

the moment at which the brain switches from cue to target representations. Figure 4A shows the 

hippocampal gamma recall effect (80-90 Hz, “Remember” minus “Forgot”) superimposed on the 

classification effect, suggesting that these two effects indeed evolve in tandem. To assess this notion 

more directly, we repeated the classification analysis for “Remember” trials, but realigned each trial 

to its hippocampal gamma power peak. Figure 4B (left) illustrates the switch from cue to target 

evidence around the hippocampal gamma peak. Note that the hippocampal recall effect sets in ~100 
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ms prior to the actual gamma peak (Figure 2, gamma effect onset: 570 ms, gamma peak for 

“Remember”: 700 ms), consistent with the notion that the representational cue-target switch starts 

as hippocampal gamma power distinguishes “Remember” from “Forgot” trials. To quantify the 

representational switch around hippocampal gamma peaks statistically, we averaged classifier 

evidence for O-S and S-O “Remember” trials across a 500 ms pre- and a 500 ms post- hippocampal 

gamma peak window (Figure 4B, right) and conducted a repeated-measures ANOVA including the 

factors Time Window (pre, post) and Trial Type (O-S, S-O). Results revealed a significant interaction 

(F(1,20) = 16.76, P = .002) in the absence of any main effect (both P > .28). For O-S trials, classifier 

evidence changed significantly from object (cue) to scene (target) evidence (t(10) = 2.73, P = .021). 

Likewise, for S-O trials, classifier evidence changed significantly from scene (cue) to object (target) 

evidence (t(10) = 4.14, P = .002). Finally, the same interaction emerged when comparing classifier 

evidence in a cue-locked vs. hippocampal-peak-locked fashion (F(1,20) = 15.62, P = .003, again using 

500 ms windows). Together, these results corroborate the notion that hippocampal engagement 

during “Remember” trials marks the moment of an extrahippocampal switch from perceptual cue to 

mnemonic target representations. 

 

 

Figure 4. A hippocampal switchboard function. A. Overlay of the hippocampal recall effect (“Remember” minus 
“Forgot” gamma power, cf. Figure 2C, a.u.) onto the extrahippocampal switch from cue to target representation 
for “Remember” trials (cf. Figure 3B). Inset shows hippocampal contacts across patients. B. Left: Object and 
scene evidence for “Remember” trials as in Figure 3B, but realigned to trial-by-trial hippocampal gamma peaks 
(time 0, vertical green line). Note the cue evidence (scene for S-O trials, object for O-S trials) before the 
hippocampal gamma peak vis a vis target evidence (object for S-O trials, scene for O-S trials) after the 
hippocampal gamma peak. Right: Illustration of the significant Time Window x Trial Type interaction around the 
gamma peak. [-.5 0] and [0 .5] denote the 500 ms time windows across which the classifier data were averaged.   

 

 

Recall signals across the cortical retrieval network 

Results from our iEEG sample showed that ~500 ms after cue onset, a hippocampal signal distinguishes 

successful from unsuccessful cued recall and marks the switch from cue- to target representations. 

However, hippocampal engagement alone is unlikely to be sufficient for full-blown memory recall. To 

elucidate the cortical dynamics associated with cued recall, we conducted the same experiment in a 

sample of 20 healthy participants using high-density scalp EEG.  
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A first sensor x frequency x time comparison of “Remember” vs. “Forgot” revealed an extended cluster 

of relative power decreases for “Remember” trials (Figure S3), with a peak effect at again 9 Hz (as for 

the iEEG study, cf. Figure 2B). We next projected the sensor EEG data into source space (see Methods), 

extracted alpha power (8-10 Hz) in the resulting virtual voxels and examined how the recall signal 

(alpha power decrease for “Remember” compared to “Forgot” trials) evolves across time. Performing 

the analysis across the entire 0-1500 ms interval revealed significant recall effects across the CRN, 

including MTL, posterior parietal cortex (PPC), lateral temporal cortex (LTC) and ventromedial 

prefrontal cortex (vmPFC; Figure 4A). This result replicates and extends a previous study in which we 

used source-localised Magnetoencephalography (MEG) alpha power to reveal recall effects across the 

CRN (Martín-Buro et al., 2020).  

Critically, we next performed the same analysis in a time-resolved fashion, progressing from 0 to 1500 

ms in 100 ms steps, each step averaging alpha power across a 100 ms time window. Each comparison 

was again cluster-corrected for multiple comparisons across virtual voxels. As shown in Figure 4B, the 

first time window to show a significant recall effect occurred from 600-700 ms and encompassed 

dorsomedial prefrontal cortex (dmPFC)/anterior cingulate cortex (ACC). Next, a significant effect was 

seen from 700-1000 ms in the MTL. It is worth pointing out that this is also the time window in which 

our intracranial data showed an alpha power decrease for “Remember” trials in the hippocampus 

(Figure 2B), providing a link between the two datasets and imaging modalities. From ~900-1300 ms 

the recall effect encompassed medial and lateral PPC, followed by a recall effect in vmPFC from ~1100 

– 1300 ms.  

To quantify these latency differences statistically, we extracted alpha power (8-10 Hz) time courses in 

voxels showing significant effects in the initial voxel x time contrast (Figure 4A) and overlapping with 

anatomically defined regions of interest for dmPFC, hippocampus, medial PPC and vmPFC. The alpha 

power effect (“Remember” vs. “Forgot”) was then binned into ten 100 ms segments from 500-1500 

ms and subjected to a repeated-measures ANOVA (Greenhouse-Geisser corrected) including the 

factors Region and Time. Results confirmed a significant Region x Time interaction (F(6.46, 122.74) = 

2.59, P = .019) in the absence of any main effect (both P > .380). Time courses and effect latencies are 

illustrated in Figure S4. Together, these results reveal a hitherto unknown sequence of recall signals 

within the CRN, starting in dmPVC/ACC and then proceeding from hippocampus via PPC to vmPFC. 
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Figure 4. Brain-wide recall dynamics. Results from source-localised EEG alpha (8-10 Hz) power, comparing 
“Remember” vs. “Forgot” trials. A. Voxel x time results (Pcluster < .05), revealing recall effects across the core 
retrieval network (including hippocampus, PPC, LTC and vmPFC). Colour reflects sum of significant t values across 
time. B. Time-resolved results (proceeding in 100 ms steps), showing only time windows with significant effects 
(each map thresholded at Pcluster < .05, no significant effects emerged from 1300-1400 ms).  

 

 

Discussion 

Our study elucidates the role of the hippocampus as a switchboard from perception to memory and 

unveils the ensuing cortical dynamics supporting the recall process. Using a simple and robust cued 

recall paradigm (Figure 1), iEEG recordings first revealed a hippocampal signal in the high gamma 

range (60-110 Hz) distinguishing between successful and unsuccessful recall from 500 ms onwards 

(Figure 2B). This gamma effect was followed by a relative power decrease for successful recall in the 

alpha band. Using multivariate pattern analysis (MVPA), we observed – for successful recall only – a 

representational switch from the cue stimulus category (< 500 ms) to the target stimulus category (> 

500 ms; Figure 3B). Time-locking the MVPA to hippocampal gamma peaks showed cue evidence before 

and target evidence after these peaks, indicating that the hippocampal gamma increase marks the 

moment at which brain states shift from perceptual to mnemonic representations. Moving beyond 

the hippocampus with high-density scalp EEG, we first established engagement of the cortical retrieval 

network (CRN) during successful recall, including posterior parietal cortex (PPC) and ventromedial 

prefrontal cortex (vmPFC) (Figure 4A). Critically, using time-resolved alpha power in source space, we 

found a particular recall cascade across the CRN: Starting at ~700 ms in the MTL, successful recall 

subsequently entailed PPC at ~900 ms, followed by vmPFC at ~1100 ms.  

 

The hippocampus as the switchboard from perceptual cues to mnemonic targets 

Our data provide strong empirical evidence for the long-held notion that the hippocampus 

orchestrates cortical pattern completion (Marr, 1971; Norman and O'reilly, 2003; Teyler and DiScenna, 

1986). Owing to modality-specific methodological limitations across species, such empirical evidence 
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has been challenging to obtain. That is, fMRI lacks the temporal resolution to pinpoint a hippocampal 

signal preceding target reinstatement, although recent analytical advances have yielded some 

progress in resolving fine-grained memory dynamics with fMRI (Staresina et al., 2013; Wittkuhn and 

Schuck, 2021). Scalp EEG and MEG, combined with advanced source reconstruction methods (Gross, 

2019; Michel et al., 2004), in principle provide adequate levels of spatial and temporal precision to 

uncover whole-brain memory dynamics (Bergström et al., 2013; Martín-Buro et al., 2020). However, 

ambiguities remain when interpreting activation in deeper sources such as the medial temporal lobe 

(MTL), at least without converging evidence from other imaging modalities. Optogenetic studies in 

mice have shown that experimental activation of hippocampal cell assemblies elicits contextual fear 

behaviour (Liu et al., 2012) and that silencing hippocampal cells abolishes reinstatement of memory 

representations in cortical structures such as entorhinal cortex, perirhinal cortex and retrosplenial 

cortex (Tanaka et al., 2014). However, it remains open to what extent contextual fear conditioning 

captures the intricacies of episodic memory recall in humans. Moreover, these studies remain agnostic 

about the fast temporal relationship between hippocampal and cortical engagement during episodic 

memory recall. 

The hippocampal recall effect reported here (Figure 2) unifies and extends a series of recent human 

electrophysiological results. Specifically, a hippocampal recall signal starting at ~500 ms after onset of 

a retrieval cue has been reported for evoked field potentials (Staresina et al., 2012a), high gamma 

power (Staresina et al., 2016) and single neuron firing rates (Staresina et al., 2019), attesting to the 

complementary nature of these electrophysiological signals (Buzsáki et al., 2012). Figure 2 moreover 

illustrates the sustained nature of the hippocampal recall effect, extending from ~500-1500 ms post 

cue onset. We have interpreted the 500 ms onset as reflecting conduction delays from sensory regions 

to the hippocampus (Mormann et al., 2008) and the ensuing ~1 s period as reflecting recurrent 

hippocampal-cortical interactions in service of memory retrieval (Staresina and Wimber, 2019). 

However, this pattern could also emerge from transient bursts (Vaz et al., 2019; Vaz et al., 2020) 

igniting the recall process at different latencies across trials, perhaps tracking trial-specific response 

times (RTs). As shown in Figure 2D (left), our data point to a highly consistent gamma peak occurring 

at ~700 ms post cue onset irrespective of RT, corroborating the notion that it reflects a relatively ‘hard-

wired’ delay at which a hippocampal recall signal sets in, at least in the experimental context of our 

cued recall paradigm. This gamma peak latency agrees with previous studies examining single neuron 

firing latencies in memory-selective hippocampal neurons (Rutishauser et al., 2015; Staresina et al., 

2019) and event-related potential (ERP) recordings from the hippocampus (Smith et al., 1986). 

Importantly though, we also found that hippocampal gamma remains sustained until a memory 

response is given (Figure 2D, right), suggesting that hippocampal engagement accompanies 

extrahippocampal reinstatement processes throughout recall. It deserves mention that the consistent 

onset notwithstanding, the sustained recall signal may well include discrete gamma bursts/ripples 

occurring at different latencies across trials (van Ede et al., 2018). 

While we here focused on target reinstatement in extrahippocampal sites, theoretical models 

implicate a prior pattern completion process within the hippocampus to retrieve the ‘index’ of the 

target representation (Teyler and DiScenna, 1986; Teyler and Rudy, 2007). In the current paradigm, it 

is challenging to disentangle whether any similarity between a given retrieval trial and its encoding 

counterpart would reflect such pattern completion processes or the perceptual match of the cue 

image with the encoding display (Figure 1). That said, in a previous study we found that an intra-

hippocampal pattern completion process commenced ~500 ms after cue onset (Staresina et al., 2016) 
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and directly correlated with high gamma power increases. Together, these data suggest that at ~500 

ms, a cue representation reaches the hippocampus and induces an intrahippocampal pattern 

completion process. If successful (reflected in increased high gamma power), this ignites sustained 

reinstatement of the episodic target representation in cortex (Staresina and Wimber, 2019). The 

subsequent decrease in hippocampal alpha power might then reflect increased levels of information 

processing, as postulated and shown for cortical information processing (Griffiths et al., 2019; 

Hanslmayr et al., 2016). As elaborated below, this alpha power decrease subsequently tracks the 

dynamic recall signal throughout the cortical retrieval network. 

 

Temporal dynamics in the cortical retrieval network 

The process of reinstating a full-blown episodic memory and deploying adaptive behaviour most likely 

relies on intricate interactions across multiple cortical areas beyond the hippocampus (Olsen and 

Robin, 2020; Ritchey and Cooper, 2020). Apart from content-specific areas involved in reinstatement 

(Ritchey et al., 2013; Staresina et al., 2012b; Wheeler and Buckner, 2004), recent fMRI research has 

revealed a cortical brain network consistently emerging during successful recall (Rugg and Vilberg, 

2013). This network includes medial and lateral parietal cortex (PPC) and ventromedial prefrontal 

cortex (vmPFC), all of which are densely connected with the hippocampus (Aggleton, 2012; Ferguson 

et al., 2019). What is still unresolved, however, is the particular role each of the different cortical 

retrieval network (CRN) nodes plays (Ritchey and Cooper, 2020).  

Capitalising on the temporal resolution of EEG, we found that within the CRN, a recall effect (alpha 

power decreases) first emerged in the MTL (including hippocampus, see also Figure S4), followed by 

medial PPC and lastly in vmPFC (Figure 4). Involvement of the hippocampus in this recall task is 

corroborated by our intracranial data revealing a hippocampal alpha power effect spanning the same 

time and frequency window (Figure 2) as well as by a previous fMRI study using the same paradigm 

(Staresina et al., 2013). This result adds to recent evidence emphasising the feasibility of using source-

localised M/EEG recordings to examine hippocampal memory processes (Martín-Buro et al., 2020; 

Pizzo et al., 2019; Pu et al., 2018; Ruzich et al., 2019).  

In any case, the functional significance of the MTL-PPC-vmPFC trajectory is unknown at present. There 

is ongoing debate about the role of different PPC regions (e.g., posterior midline, superior parietal 

lobule, inferior parietal lobule) in episodic retrieval (Cabeza et al., 2008; Wagner et al., 2005), but one 

prevalent view is that involvement of PPC regions scale with the amount of mnemonic evidence 

(Wagner et al., 2005). Likewise, the functional parcellation and the specific role of medial PFC in 

memory retrieval is still poorly understood (De La Vega et al., 2016), although there is consensus about 

a role of prefrontal areas in higher order information integration and action planning (Gilbert et al., 

2006; Rushworth et al., 2004). One tentative scenario could thus be that PPC serves as an ‘episodic 

buffer’ (Vilberg and Rugg, 2008), accumulating episodic details that are reinstated in content-specific 

areas through hippocampal pattern completion. Ventromedial PFC might then integrate this 

mnemonic evidence with the current task set and initiate goal-directed behaviour. On that note, it 

deserves mention that the MTL alpha power effect was preceded by a recall effect in dorsomedial 

prefrontal cortex (dmPFC)/anterior cingulate cortex (ACC) (Figure 4). This could reflect a general top-

down/control mechanism influencing the hippocampus and/or may reflect the role of ACC specifically 
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in conflict resolution (Botvinick et al., 2004), given that the external/perceptual cue image needed to 

be overridden in favour of the internal/mnemonic target image in our paradigm. 

Finally, the temporal dynamics of our findings are consistent with a role of the hippocampus - perhaps 

under top-down control of dmPFC - in triggering the switch from perception to memory and the 

associated recall cascade in the CRN. However, any conclusive evidence for a causal role would require 

an interventionist approach. This may be afforded by future work employing intracranial electrical 

stimulation of the hippocampus and/or perturbation of particular CRN nodes at specific times via 

transcranial magnetic stimulation (TMS). 

 

 

Materials and methods 

Participants 

For the intracranial EEG study, 10 patients from the Queen Elizabeth Hospital in Birmingham (UK) and 

one patient from La Paz University Hospital in Madrid (Spain), all suffering from medically intractable 

epilepsy, volunteered (6 male, 5 female, aged 24-53, M = 34.45). Additional patient characteristics are 

listed in Table S1. Ethical approvals were granted by the National Research Ethics Service UK (code 

15/EM/0182) and by the Clinical Research Ethics Committee at La Paz University Hospital Madrid (code 

IP-2401), respectively. 

Twenty healthy, right-handed participants (12 male, 8 female) with normal or corrected-to-normal 

vision volunteered in the EEG experiment. They were aged 20-33 years (M = 25.01). An additional six 

participants had been rejected from analysis due to noisy EEG data (n=2), inconsistent Polhemus data 

(n=2), or poor memory performance (< 40% ‘Remember’ trials, n=2). All participants were fluent 

English speakers. Participants gave written informed consent and received course credits or financial 

remuneration. Ethical approval was granted by the University of Birmingham Research Ethics 

Committee (ERN_14-1379). In additional to functional recordings, structural MRIs were acquired for 

15 participants.  

 

EEG experimental procedure 

The stimulus material consisted of 712 colour images sized 200 x 200 pixels, half depicting objects and 

half depicting scenes. It was based on a set of images used in previous studies (Konkle et al., 2010; 

Staresina et al., 2013) supplemented with additional images obtained via a Google search that 

matched the main image set in style. Participants received written and verbal instructions. 

Before and after the main experiment, participants performed ‘localiser’ runs. In each run,  

participants completed 10 practice trials (5 objects, 5 scenes) that were not recorded followed by 100 

unique images (50 objects, 50 scenes) presented in the centre of the screen. Each trial started with a 

fixation cross presented for 1.5 ± 0.1 s. Subsequently, an object or scene image was superimposed on 

the fixation cross. Participants had to press a button to indicate whether the image depicts an object 

or a scene. After 1 s, a legend appeared at the bottom of the screen reminding participants of the 
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assignment between left/right buttons and object/scene. To avoid contamination of the classifier by 

response mapping, this assignment was flipped in the second localiser run (initial assignment 

counterbalanced across participants). The trial terminated after a button press, although the image 

was shown for a minimum of 2 s and a maximum of 10 s. The localiser was included in the EEG study 

to match the iEEG paradigm, but data are not used in the present manuscript.  

The main experiment consisted of 8 runs following the paradigm used in (Staresina et al., 2013). Each 

run was split into 4 blocks: a pre-encoding delay block, an encoding block, a post-encoding delay block, 

and a retrieval block. Before and after each block, a progress bar was displayed for 6 s, alerting 

participants to the impending start of the next block. During delay blocks, random numbers between 

0 and 100 were shown, and participants pressed the left key for even numbers and the right key for 

odd numbers. This phase was self-paced, with a new number appearing immediately after a button 

press. Participants were encouraged to perform the task as fast as possible while maintaining high 

performance. Each delay block lasted 3 min.  

Each encoding block consisted of 32 trials. Each trial started with a fixation cross presented for 1.5 ± 

0.1 s. Subsequently, a unique, randomly chosen object-scene pair was shown. During 16 randomly 

assigned trials, the object appeared left of the centre and the scene appeared right, with the opposite 

arrangement for the other 16 trials. The object-scene pair remained on the screen until a button was 

pressed, but it was displayed for a minimum of 2.5 s and a maximum of 4 s. Participants used their 

right hand and indicated with the index finger that the object-scene pair was “plausible”, i.e., likely to 

appear in real life or nature, or used their middle finger to indicate that it was “implausible”. 

Each retrieval block comprised 32 trials. Each trial commenced again with a fixation cross 1.5 ± 0.1 s. 

Subsequently, a cue was shown in the centre of the screen, either an object or a scene taken from the 

previous encoding block. The object-scene pair remained on the screen until a button was pressed, 

but it was displayed for a minimum of 2.5 s and a maximum of 6 s. Participants were asked to indicate 

whether they “remember” (index finger) or “forgot” (middle finger) the corresponding paired 

associate. Half of the cues were objects, the other half scenes. Across the 32 trials, each cue type 

(object or scene) was presented in mini-blocks of eight consecutive trials alternating between 8 object 

cues (O) and 8 scene cues (S), i.e., O-S-O-S or S-O-S-O. Participants were instructed to only press 

“Remember” when their memory was vivid enough to give a detailed description of the associate. To 

ensure that this is indeed the case, in 20% of the cases “Remember” responses were followed by the 

instruction to enter a description of the target associate using the computer keyboard (‘catch-trials’). 

The experiment was programmed with Psychophysics Toolbox Version 3 (Brainard, 1997). 

 

iEEG experimental procedure 

For the iEEG study, the procedure was largely similar, with a few modifications. The stimulus pool for 

the memory portion consisted of 192 objects and 192 scenes (drawn from the same pool as described 

above). To accommodate different levels of cognitive capacity across epilepsy patients, we prepared 

three versions of the experiment, varying in the duration of each run. In Level 1, an encoding/retrieval 

block consisted of 8 trials, resulting in a total of 24 runs including a pre/post-encoding delay of 30 s. 

In Level 2, there were 12 runs with 16 trials per encoding/retrieval block and 60 s delay periods. In 

Level 3, there were 6 runs with 32 trials per encoding/retrieval block and 120 s delay periods. Which 
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version was used depended on performance on a short practice run at difficulty Level 1. Two patients 

performed the task at Level 1, four at Level 2 and the remaining five patients at Level 3. In terms of 

stimulus timing, responses were self-paced, but images remained on the screen for a minimum of 2 s 

and a maximum of 10 s (at which point the response was coded as ‘invalid’ and included in the ‘Forgot’ 

condition). Instead of typing in responses during the ~20% catch trials, patients verbally described the 

paired associate and responses were transcribed by the experimenter. In order not to overtax 

patients, runs were spread across 1-3 experimental sessions, with an effort to keep sessions close in 

time. Again, object/scene localiser runs were conducted before and after each memory session. The 

same set of 50 object and 50 scene images was used repeatedly, images and response legend 

remained on the screen for a minimum of 2 s and a maximum of 10 s, and no switch of response finger 

assignment was introduced. 

 

iEEG acquisition and preprocessing 

Intracranial EEG (iEEG) was recorded for pre-surgical epilepsy diagnosis using laterally implanted 

depth electrodes. Electrode shafts contained 5-15 contacts. Data were digitised at 512 Hz (n=1) or 

1024 Hz (n=10). Intra- and extrahippocampal contacts were identified based on the post-implantation 

structural MRI. Contacts with hardware artifacts were discarded based on visual inspection (average 

of 5% across patients). The numbers of contacts per patient included in the analyses are listed in Table 

S1. For hippocampal contacts, data were locally re-referenced to a white-matter contact on the same 

electrode. For extrahippocampal contacts, a Common Median Reference including all contacts was 

used to re-reference the data.  

 

EEG acquisition and preprocessing 

Electroencephalogram (EEG) was recorded with 128 sintered Ag/AgCl active electrodes and a BioSemi 

Active-Two amplifier. The signal was digitized at a rate of 1024 Hz on a second computer via ActiView 

recording software (BioSemi, Amsterdam, Netherlands). Electrode positions and headshape were 

measured using a Polhemus FASTRAK device (Colchester, VT, USA) in conjunction with Brainstorm 

(Tadel et al., 2011). All EEG data processing was performed in MATLAB using FieldTrip (Oostenveld et 

al., 2011). Data were downsampled to 256 Hz, high-pass filtered at 0.1 Hz using a windowed sinc FIR 

filter and low-pass filtered at 100 Hz using a Butterworth IIR filter. Furthermore, a band-stop filter was 

applied at 50 Hz to remove line noise. Retrieval data were then segmented into epochs, starting at -1 

s and ending at the time of the button press +1 s, or at 6 s post-stimulus, whichever was shorter. Noisy 

EEG channels were identified by visual inspection and discarded. Subsequently, Infomax ICA (Bell and 

Sejnowski, 1995) was used to clean the data. To this end, all epochs were manually inspected and 

artifact trials containing muscle artifacts or mechanical artifacts (≈10%) were discarded. The resultant 

data were high-pass filtered above 1 Hz and ICA was applied. Using visual inspection of the spatial 

patterns, time-series and power spectra, ICA components associated with eye blinks, eye movements, 

and EMG were rejected from the original data (prior to manual artifact rejection and high-pass 

filtering). Next, discarded EEG channels that were interpolated using a weighted average of the 

neighbouring channels. Finally, the data were re-referenced using a Common Average Reference 

(CAR).  
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EEG source modelling 

Individual structural MRIs were segmented into grey matter, white matter, cerebrospinal fluid, skull, 

and scalp compartments. For 5 participants, individual MRIs were not available and the standard MNI 

template was used instead. As geometric model of the head, a hexahedral mesh with a shift of 0.3 

was used. The FieldTrip-SimBio pipeline (Vorwerk et al., 2018) was used with tissue conductivities of 

0.33, 0.14, 1.79, 0.01, and 0.43 in order to create a Finite Element Method (FEM) volume conduction 

model. To co-register the MRI with the Polhemus coordinates of the electrodes, the fiducials (nasion, 

LPA, RPA) were manually identified in each MRI. A source grid model with 10 mm spacing and 3294 

grid points was defined in MNI space and mapped onto each participant’s MRI. This ensured that a 

given grid point corresponded to the same anatomical location across participants. 

The data were projected into source space using linearly constrained minimum-variance (LCMV) 

beamformers (Van Veen et al., 1997). Retrieval trials were band-pass filtered in the 2 – 30 Hz band 

and trial-wise covariance matrices were averaged and regularized. 

For region-of-interest based analyses in source space, we used anatomical masks provided by the AAL 

atlas (Tzourio-Mazoyer et al., 2002). The following bilateral masks were included: dmPFC: 

'Cingulum_Ant', 'Cingulum_Mid', ‘Supp_Motor_Area'; Hippocampus: 'Hippocampus'; PPC: 

'Precuneus', 'Cingulum_Post'; vmPFC: 'Frontal_Med_Orb', 'Frontal_Sup_Orb', 'Rectus'. 

 

Time-frequency analysis 

For both iEEG and EEG, short-time Fourier analysis of the retrieval data was performed using FieldTrip 

with sliding time windows in 10-ms (iEEG) or 25-ms (EEG) steps. For a lower frequency range (2–29 Hz 

iEEG, 2-48 EEG, 1-Hz steps), the window length was set to five cycles of a given frequency and the 

windowed data segments were multiplied with a Hanning taper. For calculation of EEG alpha power 

(8-10 Hz) in source space, 50-ms time steps were used. For iEEG hippocampal gamma power (30–

150 Hz, 5-Hz steps, iEEG only), we applied multitapering using a fixed window length of 400 ms and 

seven orthogonal Slepian tapers. Power values for each frequency were normalised via z-

transformation across all trials, including a 500 ms pre-stimulus baseline interval. To remove outliers, 

the 10% most extreme power values across trials were discarded within each channel and for each 

time/frequency bin prior to creating condition-specific averages. Analyses were restricted to 2.6 s post 

cue onset for iEEG data and to 1.5 s post cue onset for EEG data, as this marked the respective average 

response time for “Remember” trials across participants (leaving a 100 ms buffer in the EEG data to 

avoid contamination by the motor response). 

 

Multivariate analysis 

Multivariate classification of iEEG data was performed using MVPA-Light (Treder, 2020). For all 

multivariate analyses, a linear discriminant analysis (LDA) was used as classifier (Fisher, 1936). The 

classifier was trained on localiser data to discriminate between objects and scenes. When applied to 
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the retrieval data, the classifier produces a decision value (dval) that represents the signed distance 

to the hyperplane. Here, a positive dval is evidence for an activation pattern associated with an object, 

whereas a negative dval is associated with a scene. 

For both localiser and retrieval data, z-scoring was applied across trials for each time point separately 

to normalise channel variances and remove baseline shifts. Z-scoring was first done across trials within 

each run in order to account for signal changes across time. The runs were then concatenated and 

jointly normalised using another z-scoring operation. Non-hippocampal contacts (36-128 depending 

on participant) served as features. To quantify whether object and scene cues can be differentiated, 

LDA was trained and tested on the localiser data (Figure S1, 100 ms temporal smoothing applied). Data 

were split into training and test sets using 5-fold cross-validation (Lemm et al., 2011) and Area Under 

the ROC Curve (AUC) was used as metric. The analysis was repeated five times with random folds in 

each iteration and results were averaged. To investigate the occurrence of object/scene 

representations in the retrieval phase (Figure 3), Error! Bookmark not defined. used a transfer 

learning approach wherein the classifier was first trained on the localiser data averaged in the 300-

400 ms window that contained the peak performance. This classifier was then tested for every time 

point in the retrieval phase (also applying 100 ms temporal smoothing).  

To investigate how the timing of the switch from cue to target representation relates to hippocampal 

gamma power, we realigned each retrieval trial to its respective gamma peak. To this end, time-

frequency data were normalised in each frequency band as described above and a single power time 

series was created by averaging z power across hippocampal contacts within the 60-110 Hz range. 

Again, prior to averaging across frequencies and hippocampal contacts, a trimmed mean was used 

wherein power values above the 90-th percentile (across trials) were discarded. We then identified 

local maxima in the 0.2 – 1.2 s interval cantered on the median latency of gamma peaks across 

participants for “Remember” trials (0.7 s). If one or more discrete gamma peaks were found in this 

interval, the respective time axis was realigned to the highest peak. Transfer classification was then 

repeated on the realigned data and dvals were calculated. 

 

Statistics 

For behavioural analyses, reaction times (RTs) within participants were summarised by calculating the 

median in order to mitigate the effect of outliers. At the group level, arithmetic mean (M) and standard 

error of the mean (SEM) are reported. Paired-samples t-tests were used to compare RTs in 

“Remember” and “Forgot” trials, and for object and scene cues (in “Remember” trials). Unless stated 

otherwise, FieldTrip’s cluster permutation test (Maris and Oostenveld, 2007) was used to account for 

multiple comparisons for all time-frequency and classification analyses, both in sensor space and in 

source space. A paired-samples t-test with a threshold of P < .05 was used to define initial clusters. 

Maxsum (sum of all t-values in cluster) served as cluster statistic and Monte Carlo simulations were 

used to calculate the cluster p-value (alpha = .05, two-tailed) under the permutation distribution. 

Analyses were performed at the group level. 
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Resource Availability 

Data and analysis code will be made publicly available on OSF (https://osf.io/) upon publication.  
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Supplemental Material 
 

 

Table S1. iEEG patient characteristics. Bold numbers denote group averages. ‘Diffuse’ epileptic focus indicates 
that invasive monitoring did not yield a clear focus. 

 

 

Figure S1. Unthresholded hippocampal time-frequency map. Colours depict the difference in z power for 
“Remember” vs. “Forgot” trials, averaged across participants. Horizontal black line at 30 Hz indicates different 
settings for deriving power for lower vs. higher frequencies. 

 

 

Figure S2. iEEG object vs. scene decoding. Results show mean +/-SEM of cross-validated LDA results across 

participants, revealing significant above-chance classification (relative to label-shuffled surrogates) from ~200 

ms onwards, with peak performance from 300-400 ms (dashed vertical lines). Horizontal black line indicates 

statistical significance using cluster-based correction for multiple comparisons across time (Pcluster < .001)  

Patient # Age Sex Handedness Epileptic Focus Hemisphere
Retrieval 

Trials

Localiser 

Trials

hippocampal 

contacts

extrahippocampal 

contacts

1 24 F R hippocampus L 184 100 8 27

2 35 M R posterior cingulate, angular gyrus, superior parietal lobe R 192 100 2 112

3 41 M R hippocampus R 192 150 12 34

4 44 M R lateral temporal cortex L 192 200 4 115

5 28 M R lateral temporal cortex R 160 300 9 109

6 26 F L hippocampus R 192 200 8 101

7 53 M R diffuse ~ 192 200 7 41

8 29 M R fronto-temporal cortex L 192 100 12 91

9 30 F R hippocampus L 192 200 12 49

10 32 F R fronto-temporal cortex R 192 200 2 82

11 37 F R diffuse ~ 192 200 7 94

34 188 177 8 78
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Figure S3. Extended EEG results of time x frequency x sensor comparison for “Remember” vs. “Forgot” trials, 
including a time range from 0-1.5 s, a frequency range from 2-48 Hz and all 128 channels. This revealed a 
significant time-frequency cluster (summed across significant sensors) in which alpha power (spanning 
frequencies in the beta range but with a peak at 9 Hz) was reduced for “Remember” vs. “Forgot” trials from 
~800-1500 ms post stimulus onset (Pcluster < .001). The scalp topography of the effect (summed across significant 
time/frequency bins) indicated a widespread extent, with a slightly stronger effects at left compared to right 
hemisphere sensors. 
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Figure S4. Temporal dynamics of EEG alpha (8-10 Hz) recall effects. A. Left: z power time courses for “Remember” 

(green) and “Forgot” trials (grey; mean +/- SEM of condition differences across participants). Black dotted line 

marks time points of significant condition differences surviving cluster-based correction for multiple 

comparisons across time. Right: Regions of interest defined as the overlap of significant voxels resulting from 

the main voxel x time analysis (cf. main Figure 4A) and AAL masks. X coordinates refer to MNI space. B. T values 

for the comparison of “Remember” vs. “Forgot” in each region, thresholded at P < .05 (uncorrected). dmPFC = 

dorsomedial prefrontal cortex/anterior cingulate cortex, HIPP = hippocampus, PPC = posterior parietal cortex, 

vmPFC = ventromedial prefrontal cortex. 
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